
EVALUATING GEOMAGNETIC CUTOFFS 
WITH HIGH-PERFORMANCE 3-D 

TRAJECTORY CALCULATIONS

Keito Watanabe

University of Alberta

October 9th, 2020



GOALS

• Simulate cosmic ray trajectories within the 

geomagnetic field

• Perform optimization & parallelisation

• Evaluate the geomagnetic rigidity cutoffs for 3D 

neutrino flux calculations



GEOMAGNETIC 
RIGIDITY CUTOFFS

Zenith < 90°

Forbidden Trajectories

𝑅 < 𝑅𝑐𝑢𝑡𝑜𝑓𝑓

Allowed Trajectories

𝑅 > 𝑅𝑐𝑢𝑡𝑜𝑓𝑓

Detector

Rigidity, 𝑅 =
𝑝

𝑞

Zenith > 90°



IMPLEMENTATION

+q

Lorentz Force: 

Ԧ𝐹 = 𝛾𝑚 Ԧ𝑎 =
𝑞

𝛾𝑚
( Ԧ𝑝 × 𝐵)

𝑟 = 𝑅𝐸

Detector

𝑟 = 𝑅𝐸 + ℎ

h

(𝑡, 𝑟, 𝜃, 𝜙, 𝑝𝑟 , 𝑝𝜃 , 𝑝𝜙)



IMPLEMENTATION

𝑟 = 𝑅𝐸

Detector

𝑟 = 𝑅𝐸 + ℎ

𝑟 = 𝑟𝑒𝑠𝑐 = 10RE

h

Magnetic field has to be evaluated at 

each step of the trajectory!

+q ↔ -q
(𝑡, 𝑟, 𝜃, 𝜙, 𝑝𝑟 , 𝑝𝜃 , 𝑝𝜙)



IMPLEMENTATION

Detector

𝑟 = 𝑅𝐸 + ℎ
𝑟 = 𝑟𝑒𝑠𝑐 = 10RE

h

𝑟 > 𝑟𝑒𝑠𝑐

𝑟 > 𝑅𝐸

𝑟 = 𝑅𝐸

Binary criterion based on 

radial component



Algorithm:

𝑘1 = ℎ𝑓 𝑡𝑛, Ԧ𝑠𝑛

𝑘2 = ℎ𝑓 𝑡𝑛 +
1

2
ℎ, 𝑠𝑛 +

1

2
𝑘1

𝑘3 = ℎ𝑓 𝑡𝑛 +
1

2
ℎ, 𝑠𝑛 +

1

2
𝑘2

𝑘4 = ℎ𝑓 𝑡𝑛 + ℎ, Ԧ𝑠𝑛 + 𝑘3

𝑘 =
1

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

Ԧ𝑠𝑛+1 = Ԧ𝑠𝑛 + 𝑘
𝑡𝑛+1 = 𝑡𝑛 + ℎ

4TH-ORDER RUNGE-KUTTA • Truncation error of 𝑂 ℎ5

(cf. Euler 𝑂 ℎ2 )

• Widely used in literature and in space physics for 

electron trajectory calculations



IGRF MODEL
𝑉 𝑟, 𝜃, 𝜙

= 𝑅𝐸 ෍

𝑛=1

𝑁

෍

𝑚=0

𝑛
𝑅𝐸
𝑟

𝑛+1

𝑔𝑛
𝑚 𝑡 cos 𝑚𝜙 + ℎ𝑛

𝑚 𝑡 sin 𝑚𝜙 𝑃𝑛
𝑚(cos𝜃)

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html


IGRF MODEL
𝑉 𝑟, 𝜃, 𝜙

= 𝑅𝐸 ෍

𝑛=1

𝑁

෍

𝑚=0

𝑛
𝑅𝐸
𝑟

𝑛+1

𝑔𝑛
𝑚 𝑡 cos 𝑚𝜙 + ℎ𝑛

𝑚 𝑡 sin 𝑚𝜙 𝑃𝑛
𝑚(cos𝜃)

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

Total of 

𝑁 𝑁 + 3 ≈ 208
trigonometric terms to 

calculate per step! 

(N=13 as of 2020)

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html


ALGORITHM: RIGIDITY CUTOFF

MC Sampling

Linearly Interpolated Results

Different 𝑅𝑐𝑢𝑡𝑜𝑓𝑓 based on zenith 

and azimuthal direction with respect 

to detector frame



OPTIMIZATION: PYTHON VS C++

Python:

• Slow loop evaluation

• Function call overhead

C++:

• Minimal function call overhead

• Code optimization performed in 

compile time

• More control for optimization 

procedures (const, pass-by-

reference etc.)

Type Iterations 

per Second

Performance 

Ratio

Python 0.286 1.51 × 10−3

C++ (Scalar Form) 226.23 1.194

C++ (Vector Form) 189.35 1

Performance with C++ is ~103 better 

than Python version!



Ԧ𝑠 = Ԧ𝑟, Ԧ𝑝 =
(𝑟, 𝜃, 𝜙, 𝑝𝑟 , 𝑝𝜃 , 𝑝𝜙)

VECTOR VS SCALAR 
RUNGE-KUTTA METHODS

Vector Form:

Ԧ𝑓 = Ԧ𝑓 𝑡, Ԧ𝑠 ; Ԧ𝑠𝑛+1 = Ԧ𝑠𝑛 + 𝑘; 𝑡𝑛+1 = 𝑡𝑛 + ℎ Scalar Form:

𝑓𝑖 = 𝑓𝑖 𝑡, 𝑠𝑗
sn+1𝑖 = 𝑠𝑛𝑖 + 𝑘𝑖
𝑡𝑛+1 = 𝑡𝑛 + ℎ

Different forms of the 

Runge-Kutta algorithm 

affect the stability and 

performance of the 

code 



VECTOR VS SCALAR 
RUNGE-KUTTA METHODS

No energy loss term ⇒ |p| is constant 

throughout the trajectory

Vector form is more numerically 

stable!



VECTOR VS SCALAR 
RUNGE-KUTTA METHODS

Vector form is ~0.8x slower than trajectory 

calculations in scalar form



PROFILING: TAN VS SIN/COS

Profile from Valgrind

https://www.valgrind.org/info/tools.html

Largest component of 

trajectory calculation

tan() is ~1.5x slower than 
sin()

cos()

Function Average Function 

Evaluation 

Duration [ns]

tan() 36.4514

sin()

cos()

25.3672

• Obtained from <cmath>

• Compiled with optimization flag –O2

https://www.valgrind.org/info/tools.html


RESULTS Geomagnetic Rigidity Cutoffs at Kamioka, Japan



RESULTS Geomagnetic Rigidity Cutoffs at Kamioka, Japan from Honda, 2002 

Annu. Rev. Nucl. Part. Sci. 2002.52:153-199.



OUTLOOK

• Optimize the physics involved in the calculation, ex. 

Reduce number of calls for magnetic field 

evaluation

• GPU acceleration to parallelize trajectory 

computations

• Use muon tracing for 3D neutrino flux calculations

• Implement continuous energy losses to the 

differential equation



BACK-UP SLIDES



RESULTS: DIPOLE MODEL
𝐵𝑟 𝑟, 𝜃, 𝜙 = −2𝑔1

0
𝑅𝐸
𝑟

3

cos 𝜃 ;

𝐵𝜃 𝑟, 𝜃, 𝜙 = −𝑔1
0
𝑅𝐸
𝑟

3

sin 𝜃 ;

𝐵𝜙 = 0

V 𝑟, 𝜃, 𝜙

= 𝑅𝐸
𝑅𝐸
𝑟

2

𝑔1
0 cos 𝜃



IGRF MODEL VS DIPOLE MODEL


