EVALUATING GEOMAGNETIC CUTOFFS WITH HIGH-PERFORMANCE 3-D TRAJECTORY CALCULATIONS

Keito Watanabe University of Alberta October 9th, 2020

- Simulate cosmic ray trajectories within the geomagnetic field
- Perform optimization & parallelisation
- Evaluate the geomagnetic rigidity cutoffs for 3D neutrino flux calculations

GEOMAGNETIC RIGIDITY CUTOFFS

Allowed Trajectories $R > R_{cutoff}$

 $Zenith < 90^{\circ}$

Forbidden Trajectories

 $R < R_{cutoff}$

 $Zenith > 90^{\circ}$

Rigidity, $R = \frac{p}{|q|}$

IMPLEMENTATION

+q $(t,r,\theta,\phi,p_r,p_{\theta},p_{\phi})$

 $\overrightarrow{p_0}$

Lorentz Force: $\vec{F} = \gamma m \vec{a} = \frac{q}{\gamma m} (\vec{p} \times \vec{B})$

$$r = R_E$$

Det

10

 $r = R_E + h$

Detector

 $r = R_E$

h

 $= R_E + h$

Magnetic field has to be evaluated at each step of the trajectory!

 $r = r_{esc} = 10R_{\rm E}$

4TH-ORDER RUNGE-KUTTA

• Widely used in literature and in space physics for electron trajectory calculations

IGRF MODEL

 $V(r,\theta,\phi)$ $\sum_{n=1}^{n} \left(\frac{R_E}{r}\right)^{n+1}$ $[g_n^m(t)\cos(m\phi) + h_n^m(t)\sin(m\phi)]P_n^m(\cos\theta)$ $= R_E$ n=1 m=0

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

OPTIMIZATION: PYTHON VS C++

Performance with C++ is ${\sim}10^3$ better than Python version!

Python:

- Slow loop evaluation
- Function call overhead

C++:

- Minimal function call overhead
- Code optimization performed in compile time
- More control for optimization procedures (const, pass-byreference etc.)

Туре	Iterations per Second	Performance Ratio
Python	0.286	1.51×10^{-3}
C++ (Scalar Form)	226.23	1.194
C++ (Vector Form)	189.35	1

VECTOR VS SCALAR RUNGE-KUTTA METHODS

Different forms of the Runge-Kutta algorithm affect the stability and performance of the code

Vector Form:

$$\vec{f} = \vec{f}(t, \vec{s}); \ \vec{s}_{n+1} = \vec{s}_n + \vec{k}; \ t_{n+1} = t_n + h$$

321

Scalar Form:

 $f_i = f_i(t, s_j)$ $s_{n+1_i} = s_{n_i} + k_i$ $t_{n+1} = t_n + h$

 $\vec{s} = (\vec{r}, \vec{p}) =$ $(r, \theta, \phi, p_r, p_{\theta}, p_{\phi})$

double r_k1 - stepsize_ * dr_dt(pr); double theta_k1 = stepsize_ * dtheta_dt(r, ptheta); double phi_k1 = stepsize_ * dphi_dt(r, theta, pphi); double pr_k1 = stepsize_ * dpr_dt(r, theta, phi, pr, ptheta, pphi); double ptheta k1 - stepsize * dptheta_dt(r, theta, phi, pr, ptheta, pphi); double pphi_k1 = stepsize_ * dpphi_dt(r, theta, phi, pr, ptheta, pphi); double r k2 = stepsize * dr dt(pr + 0.5 * pr k1); double theta k2 stepsize_ * dtheta_dt(r + 0.5 * r_k1, ptheta + 0.5 * ptheta_k1); double phi_k2 - stepsize_ * dphi_dt(r + 8.5 * r_k1, theta + 8.5 * theta_k1, pphi + 0.5 * pphi_k1); double pr k2 stepsize_ * dpr_dt(r + 0.5 * r_k1, theta + 0.5 * theta_k1, phi + 0.5 * phi_k1, pr + 0.5 * pr_k1, ptheta + 0.5 * ptheta_k1, pphi + 0.5 * pphi_k1); double ptheta k2 stepsize_ * dptheta_dt(r + 0.5 * r_k1, theta + 0.5 * theta_k1, phi + 0.5 * phi_k1, pr + 0.5 * pr_k1, ptheta + 0.5 * ptheta_k1, pphi + 0.5 * pphi_k1); double pphi k2 = stepsize * dpphi dt(r + 0.5 * r k1, theta + 0.5 * theta k1, phi + 8.5 * phi_k1, pr + 8.5 * pr_k1, ptheta + 0.5 * ptheta_k1, pphi + 0.5 * pphi_k1); double r k3 - stepsize * dr dt(pr + 0.5 * pr k2); double theta k3 stepsize * dtheta_dt(r + 0.5 * r_k2, ptheta + 0.5 * ptheta_k2); double phi_k3 = stepsize_ * dphi_dt(r + 0.5 * r_k2, theta + 0.5 * theta_k2, pphi + 0.5 * pphi k2); double pr_k3 = stepsize * dpr dt(r + 0.5 * r k2, theta + 0.5 * theta k2, phi + 0.5 * phi_k2, pr + 0.5 * pr_k2, ptheta + 8.5 * ptheta k2, pphi + 8.5 * pphi k2); double ptheta k3 stepsize * dptheta dt(r + 0.5 * r k2, theta + 0.5 * theta k2, phi + 0.5 * phi_k2, pr + 0.5 * pr_k2, ptheta + 0.5 * ptheta_k2, pphi + 0.5 * pphi_k2); double pphi k3 stepsize_ * dpphi_dt(r + 0.5 * r_k2, theta + 0.5 * theta_k2, phi + 0.5 * phi_k2, pr + 0.5 * pr_k2, ptheta + 0.5 * ptheta_k2, pphi + 0.5 * pphi_k2); double r_k4 = stepsize_ * dr_dt(pr + pr_k3); double theta k4 - stepsize * dtheta dt(r + r k3, ptheta + ptheta k3); double phi k4 stepsize_ * dphi_dt(r + r_k3, theta + theta_k3, pphi + pphi_k3); double pr_k4 stepsize_ * dpr_dt(r + r_k3, theta + theta_k3, phi + phi_k3, pr + pr_k3, ptheta + ptheta_k3, pphi + pphi_k3); double ptheta k4 stepsize_ * dptheta_dt(r + r_k3, theta + theta_k3, phi + phi_k3, pr + pr_k3, ptheta + ptheta_k3, pphi + pphi_k3); double pphi k4 stepsize_ * dpphi_dt(r + r_k3, theta + theta_k3, phi + phi_k3, pr + pr_k3, ptheta + ptheta k3, pphi + pphi k3); traj_vector_.r += (1. / (6. * rel_mass)) * (r_k1 + 2. * r_k2 + 2. * r_k3 + r_k4); traj_vector_.theta += (1. / (6. * rel_mass)) * (theta k1 + 2. * theta k2 + 2. * theta k3 + theta k4); traj vector .phi +-(1. / (6. * rel_mass)) * (phi_k1 + 2. * phi_k2 + 2. * phi_k3 + phi_k4); traj_vector_.pr += (1. / (6. * rel_mass)) * (pr_k1 + 2. * pr_k2 + 2. * pr_k3 + pr_k4); traj_vector_.ptheta += (1. / (6. * rel_mass)) * (ptheta_k1 + 2. * ptheta_k2 + 2. * ptheta_k3 + ptheta_k4); traj vector .pphi += (1. / (6. * rel mass)) * (pphi_k1 + 2. * pphi_k2 + 2. * pphi_k3 + pphi_k4);

traj_vector_.t += stepsize_;

VECTOR VS SCALAR RUNGE-KUTTA METHODS

No energy loss term $\Rightarrow |\vec{p}|$ is constant throughout the trajectory

VECTOR VS SCALAR RUNGE-KUTTA METHODS

Vector form is ~0.8x slower than trajectory calculations in scalar form

PROFILING: TAN VS SIN/COS

tan() is ~1.5x slower than $\frac{\sin(0)}{\cos(0)}$

Function	Average Function Evaluation Duration [ns]
tan()	36.4514
sin() cos()	25.3672

- Obtained from <cmath>
- Compiled with optimization flag –O2

RESULTS

Geomagnetic Rigidity Cutoffs at Kamioka, Japan

RESULTS

Annu. Rev. Nucl. Part. Sci. 2002.52:153-199.

OUTLOOK

- Optimize the physics involved in the calculation, ex.
 Reduce number of calls for magnetic field evaluation
- GPU acceleration to parallelize trajectory computations
- Use muon tracing for 3D neutrino flux calculations
- Implement continuous energy losses to the differential equation

BACK-UP SLIDES

RESULTS: DIPOLE MODEL

$$W(r,\theta,\phi) = -2g_1^0 \left(\frac{R_E}{r}\right)^3 \cos(\theta);$$

$$B_r(r,\theta,\phi) = -2g_1^0 \left(\frac{R_E}{r}\right)^3 \cos(\theta);$$

$$B_\theta(r,\theta,\phi) = -g_1^0 \left(\frac{R_E}{r}\right)^3 \sin(\theta);$$

$$B_{\phi} = 0$$

Geomagnetic Rigidity Cutoffs at Kamioka for p+ 0 45 20 - 40 40 - 35 Zenith Angle [Degrees] 60 Rigidity [GV] 80 The state - 20 120 - 15 140 - 10 160 5 180 -300 350 50 100 200 250 150 ò Azimuthal Angle [Degrees]

IGRF MODEL VS DIPOLE MODEL

