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Particle Physics QAT

Karlsruhe Institute of Technology

investigates the irreducibly smallest detectable particles
and the irreducibly fundamental forces
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Particle Physics QAT

Karlsruhe Institute of Technology

investigates the irreducibly smallest detectable particles @

and the irreducibly fundamental forces
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Two points of view

Theorists Experimentalists

Field equations < > Particles
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The “Standard Model of Particle Physics”
- a quantum field theory '&‘(IT

Lagrange
density

I= _"‘:-t Fﬁv s

‘ . 3 LIB)& +h.c '-.-j
| g, + L. “flqﬁ?"rkc B Fermion Field
) JRLTEON  cuonres

Experiment
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Lagrange Formalism

Lagrangian

The Lagrangian is a function of fields fully describing
the kinematics of all known particles

Excitations of these fields are interpreted as particles

Classical observables become expectation values of operators that act on the
fields

The Standard Model Lagrangian has some intrinsic degrees of freedom ( “phases”)
that do not change the observables
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Comparison with
observation




Constituents of Matter .\X(IT

Karlsruhe Institute of Technology

* All matter we know off today is made up of six
guark and six lepton flavors:

Fermions
Quarks
u C t
up charm top
d S b

down strange  bottom

Leptons "Za Hi %

electron muon tau
neutrino | neutrino neutrino
electron muon tau

* All of them are fermions with spint/.
* They have no sub-structure, but most of them decay
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Constituents of Matter ﬂ(".

Karlsruhe Institute of Technology

* All matter we know off today is made up of six
guark and six lepton flavors: @

Fermions

- ..

o .. - J .
.. - o

* All of them are fermions with spint/z.
* They have no sub-structure, but most of them decay
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Fundamental Interactions

KIT
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 We know four fundamental interactions, which

act between them:

Fermions
Quarks
u C t
up charm top

d| s b

down | strange bottom

Leptons
sl Vol Ve W
electron muon tau
neutrino | neutrino neutrino
electron muon tau

14

Electromagnetic
Force:

‘\|0’

Strong Force:

@

b
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Fundamental Interactions _\ﬂ(IT

Karlsruhe Institute of Technology

 We know four fundamental interactions, which

act between them:
Electromagnetic

Fermions Force:
2 ¥ te,
Quarks -
u C t =
up charm top
d S b

down strange  bottom

Leptons "é Hi %

electron muon tau

neutrino | neutrino neutrino
electron muon tau

Strong Force:

b
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Constituents of Matter

.\\‘
Karlsruhe Institute of Technology

* All matter we know off today is made up of six

guark and flavors:
Fermions
Quarks
u C t
up charm top
d S b
down strange  bottom
Leptons
sl Vol Ve W
electron muon tau
neutrino | neutrino neutrino
e | u T
electron muon tau

16

* Gauge: Can choose arbitrary phase 19
for wave functions

W(Z,t) — P(F,t)e??

* But phase must be the same at any point in
space, at any time! (— global symmetry)

* Possible to allow arbitrary phase (7, t)
of ¥(Z,t) at each point in space and any
time. (— local symmetry)

* But this requires introduction of a mediating
field A, , which transports phase information
from point to point:

w('ij)at)._e _ f,u_ _6.
V(T 1)

(2, t)
(2!, )
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Constituents of Matter U -\X‘(IT

* All matter we know off today is made up of six

quark and flavors: * Gauge: Can choose arbitrary phase 19

. for wave functions
Quarks U C t w(x, t) — w(w, t)e

up | charm  top  But phase must be the same at any point in
space, at any time! (— global symmetry)

ad S b
down strange  bottom
* Possible to allow arbitrary phase (7, t)
Leptons 5 )

Ve | it Vi of ¥(Z,) at each point in space and any
electron muon tau
neutrino | neutrino  neutrino time. (— local symmetry)

e U T * But this requires introduction of a mediating
electron | muon  tau field A, , which transports phase information

from point to point:

H(Z, 1) (2!, )

17 Institute of Experimental Particle Physics (IEKP)
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Local Gauge Symmetries ﬂ(".

Karlsruhe Institute of Technology

* Structure of fundamental interactions enforced
by principle of local gauge symmetries:

Electromagnetic P'art?gles tool light to be
Force: significantly influenced
Fermions Bosons . ; by gravitation.
N,
Quarks R
>‘h

Weak Force:

Leptons

>
\Strong Force:

Institute of Experimental Particle Physics (IEKP)

* Lead to introduction of force carrying
particles (- Bosons).

* Strictly requires to have m = 0! B
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. ;;-p;y' e

Institute of Experimental Particle Physics (IEKP)

can you confirm?

Can this theory be confirmed by experiment?
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Can this theory be confirmed by experiment? ﬂ(".

Karlsruhe Institute of Technology

* Local gauge symmetries strictly require force
mediating particle to have m = 0:

Fermions Bosons

- ... .

o ... .

20 Institute of Experimental Particle Physics (IEKP)




Case of Electroweak Symmetry ﬂ(".

Karlsruhe Institute of Technology

* Local gauge symmetries strictly require force
mediating particle to have m = 0:

Fermions Bosons

- ... .
Leptons e * Weak interactions are described
by weak gauge symmetries! —
symmetry exists.
... . V * Force mediating particles are
have which explicitly breaks

my = 91.1876 4+ 0.0021 GeV symmetry! — symmetry not
realized in nature.
mw = 85.385 +£0.015 GeV

21 Institute of Experimental Particle Physics (IEKP)



Case of Electroweak Symmetry

* Local gauge symmetries strictly require force
mediating particle to have m = 0:

Fermions Bosons
Quarks
u C t )4
up charm top photon

d s b/

down strange  bottor

Leptons "/e Mi %

electron muon tau

No way!
neutrino  neutrino  neutrir
electron muon tau \\ .

. interactions are described
2ak gauge symmetries! —
netry exists.

/c/e mediating particles are

have which explicitly breaks

myz = 91.1876 £ 0.0021 GeV
mwy = 85.385 £0.015 GeV

22

symmetry! — symmetry not
realized in nature.

Institute of Experimental Particle Physics (IEKP)



Higgs Mechanism - save the SM o .\\_‘(IT

stitute of Technology

The gauge mechanism depends The observations in not compatible
on symmetry with symmetry

Solution: Introduce new field ¢ with characteristic interaction potential.
e Symmetric (i.e. in Lagrangian density£)

* BUT symmetry broken in energy ground state of the system (=quantum vacuum)

23 Institute of Experimental Particle Physics (IEKP)



Higgs Mechanism (J -\X‘(IT

The gauge mechanism depends The observations in not compatible
on symmetry with symmetry

Solution: Introduce new field ¢ with characteristic interaction potential.
e Symmetric (i.e. in Lagrangian density£)

* BUT symmetry broken in energy ground state of the system (=quantum vacuum)

* Incorporation of spontaneous symmetry breaking in gauge field theory

= Higgs mechanism: Needle on point:

e

@  symmetry

24 Institute of Experimental Particle Physics (IEKP)



Higgs Mechanism

.\\‘
Karlsruhe Institute of Technology

* New Field leads to prediction of new particle: — Higgs boson!

* Allows to incorporate mass terms in the theory.

* Gauge symmetry compromising mass terms compensated by characteristic coup-

lings to Higgs particle

Higgs coupling is
o« m? (for force mediating W & Z boson)

o« my (for weakly interacting fermions)

25

Re(#)
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Where to search for the Higgs Boson? :g -\X‘(IT

s}

_—

® The standard model has many free but constrained parameters

® the only unconstrained parameter of the Higgs Boson was its
mass

@ Prediction from theory:
® Production rate (cross section)
® Couplings
® branching ratio to final states of interest
@ signatures

26 Institute of Experimental Particle Physics (IEKP)



Snapshot of our Physics Understanding of Today .&‘(IT

hnology

Feb 2014
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Where to search for the Higgs Boson?

g

IT

Karlsruhe Institute of Technology

* All properties of the (SM) Higgs boson are a function of mg

Production processes
Vector boso

fusion

Gluon fusion

W2z Ww.Z

=]}

Associated production

'b—l_‘!- a8 L& _s_ﬁ_

g

.........

o(pp — H+X) [pb]
| 1

NLO Qcp 4 NLO Ew) p
1 oo, =

Production (in proton proton collisions)

g st g ]

180 200
M, [GeV]

10—2||||||||..].|
80, 100 120 0 140 . 160
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Where to search for the Higgs Boson? g _\ﬂ(IT

Karlsruhe Institute of Technology

* All properties of the (SM) Higgs boson are a function of mg :
Production processes

ot

Gluon fusion Vector boso Associated production
fusion q 209000000~ =
W,z wz ¢ ~H
- : »
g 7!
= HY s :
q -
~at

Bosonic decays Leptonic decays

I
5 b
H I' H['
i g imtea o -
5 b
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—
TTTT T UL
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Discovery of a new particle 4" July 2012 ..\ﬂ(".

Karlsruhe Institute of Technology
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Discovery of a new particle 4" July 2012

KIT

Karlsruhe Institute of Technology

31

Scratching magic
bo boundary.

Discovery driven
by high resolution

channels (H — ~
&H — Z7).

Broad moderate
excesses for
H— WW.

No signal seen in
fermionic decay
channels.
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1 0 — \‘ \/ | 50
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seus EXp. fOFSMH - ] o TYeea =
[ | — H— vy ~L~‘ 5 66
=10 |__[| == H— ZZ “. i
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Does the new particle couple to fermions?
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Karlsruhe Institute of Technology

Higgs to leptons experimentally

Fermions

F=N | = ' ' —z
Quarks t 8 - :§
u C c N Jo
up charm top too heavy — B 4
g I
041 3
~10
-
d S b < hopeless + ¥/ Y
down strange | bottom o r— i
oM cC
Leptons o0 —
Ve H‘ Vi < massless T - ]
electron  muon tau N N
neutrinc neutrino | neutrino B 1
e 7 | 10% -
electron m’in tau perfect. / - .
10-4 L : | | |
20 200 300 400 1000
My [GeV]
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How modern particle physics experiments
work P i P -\X‘(IT

W Accelerating protons very close the the

speed of light

Colliding them and see what is
happening

33

40 million collisions / second
Each one is considered an “Event”

Measured: Hits and Calorimetry
deposits
@ Reconstruction of high-level objects
(muons, electrons ..)

@ Clustering of several particles to “Jets”
Only further consider events with special
kinematic properties and sort the
remaining ones into categories

Do the statistical evaluation on a final
distribution

Institute of Experimental Particle Physics (IEKP)
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34

Measured: Hits and Calorimetry
deposits
@ Reconstruction of high-level objects
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How modern particle physics experiments
work P i P -\X‘(IT

W Accelerating protons very close the the

speed of light

Colliding them and see what is
happening

40 million collisions / second

Each one is considered an “Event’

Measured: Hits and Calorimetry
deposits

@ Reconstruction of high-level objects
(muons, electrons ..)

W Clustering of several particles to “Jets”

35

Only further consider events with special
kinematic properties and sort the
remaining ones into categories

Do the statistical evaluation on a final
distribution

Institute of Experimental Particle Physics (IEKP)



How modern particle physics experiments
work P i P -\X‘(IT

W Accelerating protons very close the the
speed of light

@ Colliding them and see what is
happening

® 40 million collisions / second

Each one is considered an “Event’

Measured: Hits and Calorimetry
deposits

@ Reconstruction of high-level objects
(muons, electrons ..)

W Clustering of several particles to “Jets”

@ Only further consider events with special
kinematic properties and sort the
remaining ones into categories

B Do the statistical evaluation on a final
distribution

Analysis

36
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Higgs to two tauons

» XIT

stitute of Technology

* If mpg is given all properties of the (SM) Higgs boson are known:

Gluon fusion Vector boson
fusion
g ‘ HO
| HO
9 :
q
Vi
T _
W € u.d
A V“ u

37

Decay Mode BR

T — eV.V, 17.83%

T — [V, Uy 17.41%

7 —1-prong v, | 37.10%

T —3-prong v, | 15.20%
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H — 77 Decay Channel ﬂ(“.

Karlsruhe Institute of Technology

Six decay modes:
ThThy, UTh, €Th,
el pp, €€

* |solation (based on energy Th,

deposits in vicinity of reconstructed
candidate).

* Discrimination against electrons

—

Th SRR
Compatible w/ invariant mass

(based on shower shape & E/p).

requirements

_ A - * Discrimination against muons.
Hadron + Strip
E Three Hadrons
/
single '-'
Hadron ;‘

38
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Performance of Hadronic 7 Reconstruction .\\_‘(IT

Karlsruhe Institute of Technology

0 'IJI 1
0.

39

CMS, 19.7 fb™ at 8 TeV

£16000-_IIIIIIIIII|I|l'llfl'll]lll]l]l'll]l'll][__
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‘ t ]

6000 |- [ Jacp i
4000 [ :
2000 | t
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g Three Hadrons

16 18 20
T
s [GeV]

» Efficiency ~ 60% (~ 3% fakerate), flat for
pr(7) > 30 GeV & independent from
pileup events.

=
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1.2
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Karlsruhe Institute of Technology

Reconstruction of the missing energy

® Missing transverse energy (MET):
® momentum in plane perpendicular to beam axis, in
theory equivalent to neutrino momentum
@ Sum over all reconstructed and energy-corrected
particles in the event in x-y-plane together with
MET is O by definition

@ A multivariate regression technique removes —
biasing effects and gives an estimation of phase
space of

MET

40 Institute of Experimental Particle Physics (IEKP)



Analysis Strategy .\X‘(IT

Karlsruhe Institute of Technology

41

Analyze all six inclusive decay channels (7,7x, (7h, eTh, ep, pp, ee) & many more
exclusive decay channels for VV H production (7 — ¢¢, W — /v ).

Select two isolated leptons (7n, ©, €).

. ut
Restrict £ to reduce background from o 01— h
W + jets events. 3 - —— H—wrm, =125 GeV

= 0.14
B Z—1T
m scrimi- £ o1
Usg fully r_econstructed -+ as discrimi § o.a2f SRR e e
nating variable: = ;
0.1—
] 0.08F-
fra 0.06
/0, :
0.041
_ _ _ 0.02-
Use further kinematic properties of the event to -
" PR " 1 1 1 L L I L 1 1 I 'l i L 1
improve sensitivity % 50 100 150 200 250

m,, [GeV]
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Background Control

IT

Karlsruhe Institute of Technology

4 =TT

* Embedding (in Z — up
replace © by sim 7).

* Norm from Z — puu .

S

()

O

tt E

* From simulation. o

* Normalization from %
sideband.

QCD multijet

* Normalization &
shape taken from
SS/OS or fakerate.

42

200

100

Z — U

* From simulation

* Corrected for jet — 7
or e/u — 7 fakerate.

T T T T T T | T T T T T T T

------ SM H(125 GeV)—>tr

—e— Observed
- B Z—tt
o == Z— ee

100 200 300
m_ [GeV]

Events

Obs/Bkg

W + jets, Diboson
* From simulation

* Normalization from
sidebands.

— T T T Ty
i —— Observed 3

18000 = UT () Bkg. uncertainty 5
Z— 3

16000 F=pgaseline % Z—*El =
selection . 3

14000 | [ Electroweak 3
| Eg 3

12000 + [CJacop =
10000 =
8000 -—:
High-m‘_ =

6000 control region -
4000 —:

==
) SRR B 43
1.0 "0“‘“'." aveete, 0"0.'“‘*¢ o £ 3 i
osf T

0 20 40 B0 80 100 120 140 1€

my [GeV]
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D

stribution of m -

KIT

Karlsruhe Institute of Technology

dN/dm., [1/GeV]

dN/dm,, [1/GeV]

43
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3o Evidence of Higgs Coupling to Fermions

KIT

Karlsruhe Institute of Technology

CMS H—t, 4.9 fb™" at 7 TeV, 19.7 fb™ at 8 TeV
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© 1o
> 10" \ /'g
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® 1072 f---mmeee
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—
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CMS H—tt, 4.9fb™" at 7 TeV, 19.7 fb' at 8 TeV

1 ] ] 1 I 1 ] ] 1 I 1 ] L 1 I ] ] ] 1
[ m, =125 GeV B Ll 1
1 I 68% CL !
. o Best fit i
L ¢ sm =
[ 1 L L 1 I 1 1 L 1 I 1 L L 1 I 1 L L 1 )
0 0.5 1.0 15 2.0

Couplings normalized to
Standard Model expectations

Institute of Experimental Particle Physics (IEKP)



Quo Vadis I — 7+ AT

Karlsruhe Institute of Technology

 Why is H — 77 still hot?

* Most promising channel to have direct access to
Higgs fermion couplings.

* H — 77 needs to be reestablished in 2016 data.

* 30 need to be turned into an unquestionable 50

. §
discovery. b

« H — 77 is the only channel to measure direct CP violation in the Higgs sector.

* Exciting: H-tautau opens the windows to probe physics beyond the standard
model

45 Institute of Experimental Particle Physics (IEKP)



Quo Vadis I — 77 ‘(lT

Karlsruhe Institute of Technology

e Why is H — 7 still hot?

Most promising channel to have direct access to
Higgs fermion couplings.

* H — 77 needs to be reestablished in 2016 data.

* 30 need to be turned into an unquestionable 50

. 56
discovery. i

« H — 77 is the only channel to measure direct CP violation in the Higgs sector.

Exciting: H-tautau opens the windows to probe physics beyond the standard
model

What will be next?

46 (IEKP)
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Application to Particle Physics -\X‘(IT

* Goldstone Potential:

¢ = \/2 (p1 +ig2)
V(g) = —1|8” + Ag[*
L(¢) = 0,90"¢" —V(9)

* invariant under U (1) transformations
(i.e. ¥ symmetric).

* metastable in ¢ = 0.
* ground state breaks U(1) symmetry,

BUT at the same time all ground
states are in-distinguishable in ¥,

48 Institute of Experimental Particle Physics (IEKP)



Application to Particle Physics -\X‘(IT

* Goldstone Potential:

¢ = \/2 (p1 +ig2)
V(g) = —1|8” + Ag[*
L(¢) = 0,90"¢" —V(9)

* invariant under U (1) transformations Re(4)
(i.e. ¥ symmetric).

* metastable in ¢ = 0. * ¢ has radial excitations in the
potential V' (¢).

* ground state breaks U(1) symmetry,

BUT at the same time all ground %

states are in-distinguishable in ¥,
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Application to Particle Physics -\X‘(IT

* Goldstone Potential:

¢ = \/2 (p1 +ig2)
V(g) = —1|8” + Ag[*
L(¢) = 0,90"¢" —V(9)

* invariant under U (1) transformations Re(4)
(i.e. ¥ symmetric).
* metastable in ¢ = 0. * ¢ can move freely in the circle
that corresponds to the minimum
* ground state breaks U(1) symmetry, of V(¢).

BUT at the same time all ground
states are in-distinguishable in ¥,

50 Institute of Experimental Particle Physics (IEKP)
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