Theoretical Astroparticle Physics

KSETA Plenary meeting Durbach, Feb. 22-24, 2016

Thomas Schwetz-Mangold

Karlsruher Institut für Technologie

Theoretical Astroparticle Physics Cornering WIMP Dark Matter

KSETA Plenary meeting Durbach, Feb. 22-24, 2016

Thomas Schwetz-Mangold

Karlsruher Institut für Technologie

Why do we need dark matter?

Why do we need dark matter?

galaxies and galaxy clusters seem to contain much more gravitating matter than luminous matter

Missing matter in galaxy clusters and galaxies

F. Zwicky 1933 virial theorem applied to galaxy clusters

Cosmological evidence for DM

69% Dark Energy

5% Atoms 26% Dark Matter

Cosmological evidence for DM

need DM to grow enough structure

S. Dodelson

within the Standard Model there is no suitable particle to provide the DM
need new particle(s)

 within the Standard Model there is no suitable particle to provide the DM
need new particle(s)

- Why is it so abundant?
- Why is it (quasi) stable?
- Is it elementary or composite?
- Is there a "dark sector"?

sterile neutrino talk by S. Mertens

axion: possibly related to the strong-CP problem

hidden photon DM: FUNK experiment at KIT

rest of this talk:

Weakly Interacting Massive Particles (WIMPs)

The WIMP hypothesis: thermal freeze-out

$$\Omega_{\rm DM} \approx \frac{2 \times 10^{-37} {\rm cm}^2}{\langle \sigma_{\rm annih} v \rangle} \approx 0.23$$

Lee, Weinberg, 1977 Bernstein, Brown, Feinberg, 1985 Scherrer, Turner, 1986

The WIMP hypothesis: thermal freeze-out

 $\Omega_{\rm DM} \approx \frac{2 \times 10^{-37} {\rm cm}^2}{\langle \sigma_{\rm annih} v \rangle} \approx 0.23$

Lee, Weinberg, 1977 Bernstein, Brown, Feinberg, 1985 Scherrer, Turner, 1986

"typical" annihilation cross section: $\langle \sigma_{\text{annih}} v \rangle \sim \frac{g^4}{2\pi m^2} \simeq 6 \times 10^{-37} \text{cm}^2 \left(\frac{g}{0.1}\right)^4 \left(\frac{m}{100 \text{ GeV}}\right)^{-2}$

- "Weakly Interacting Massive Particle" (WIMP)
- relation with new physics at the TeV scale

WIMP searches

WIMP searches

indirect detection

PAMELA, FERMI, AMS-2, HESS, IceCube

WIMP searches

indirect detection

accelerators

LHC

PAMELA, FERMI, AMS-2, HESS, IceCube

WIMP searches

indirect detection

PAMELA, FERMI, AMS-2, HESS, IceCube

direct detection

accelerators

LHC

XENON, LUX, CDMS, Edelweiss, DAMA, CoGeNT, CRESST, PICASSO, COUPP,...

WIMP models

SUSY diagrams contributing to neutralino annihilation cross sec.

EFT: only SM + DM particle

"simplified" models DM particle + mediator

EFT: only SM + DM particle

missing energy signature:

- DM particle escapes detector
- invisible particle with life time > 10^{-7} s
- no direct proof that it's DM

DM at LHC - model dependent searches

look for additional signature of new physics and relate missing energy to DM in a model-dependent way

Ex.: SUSY decay chain

DM at LHC - EFT and mono-j searches

DM at LHC - EFT and mono-j searches

ATLAS, 1502.01518

expected limit (±1σ±2σ) observed limit Thermal relic truncated, max coupling

EFT description may not be valid at LHC energies
Buchmuller, Dolan, McCabe, 1308.6799; 300
Busoni et al., 1402.1275, 1405.3101; many more

green curve: correct thermal abundance

(assuming only that operator is present)

Ex. for simplified model

CMS, 1408.3583

Indirect detection of DM

Indirect detection of DM

today

@ freeze-out

Indirect detection of DM

- annihilation cross section today corresponds to the "thermal" one only for s-wave processes (v-independent)
- p-wave annihilations: $\sigma v \sim v^2 \Rightarrow$

@ freeze-out:
$$v^2 \sim T/m \sim 0.05 c^2$$

today: $v \sim 10^{-3} c$

FERMI dwarf spheroidals

FERMI & MAGIC, 1601.06590

"thermal Xsec" excluded for DM mass < 100 GeV (assuming s-wave annihilation!)

astro ("J-factor")

FERMI y excess from galactic center

Hooper, Goodenough, 2009, 2010; many more

Calore, Cholis, McCabe, Weniger, 1411.4647:

GeV excess robust and highly statistically significant with a spectrum, angular distribution, and overall normalization in good agreement with that predicted by simple annihilating dark matter models

FERMI y excess from galactic center

range of "thermal" cross sections (incl. astrophys. uncertainty)

consistent with dwarf limits within astrophys. uncertainty
FERMI y excess from galactic center

range of "thermal"
cross sections (incl.
astrophys. uncertainty)

consistent with dwarf limits within astrophys. uncertainty

- Limits on DM interpretation from other channels (antiprotons, radio waves, positrons) Bringmann, Vollmann, Weniger, 1406.6027
- non-DM explanations, e.g. milli-second pulsars, non-stationary state of cosmic rays in GC (e.g., burst event 10⁶ yrs ago) Petrovic, Serpico, Zaharijas, 2014 26

DM direct detection

Direct detection - signature events / keV : talk by N. Foerster

$$\frac{dN}{dE_R} \propto \frac{\rho_{\rm DM}}{m_{\rm DM}} \int_{v > v_{\rm min}} d^3v \frac{d\sigma}{dE_R} v f_{\oplus}(\vec{v}, t)$$

$$f_{\oplus}(\vec{v},t) = f(\vec{v} + \vec{v}_{\odot} + \vec{v}_{\oplus}(t))$$

annual modulation

Direct detection - status

LUX, 1512.03506

Direct detection - status

Direct detection - status

Bozorgnia, Catena, Schwetz, 2013

DAMA: highly significant signal for annual modulation

 CDMS-Si: 3 events, P=0.19% LH-test

in tension with limits

dependent on

particle physics

- astrophysics

DM-halo independent comparison of experiments

Bozorgnia, Schwetz, 1410.6160

s. also delNobil, Feldstein, Fox, Frandsen, Gelmini, Gondolo, Kahlhöfer, Harnik, McCabe, Sarkar, ...

Direct detection and the WIMP hypothesis

testing cross sections
 ~ 10⁻⁴⁵ cm²

 parameter region motivated by WIMP argument (thermal freeze-out) model dependent!

$$\sigma_{\text{scatt}} < 10^{-45} \text{ cm}^2 \stackrel{?}{\leftrightarrow} \sigma_{\text{annih.}} \sim 10^{-36} \text{ cm}^2$$

Direct detection and the WIMP hypothesis

Ex. I: Higgs-portal with fermionic DM χ

(A,Z)

excluded by XENON, LUX

Lopez-Honorez, TS, Zupan, 12

• excluded by XENON, LUX $\frac{1}{\Lambda_1}(\overline{\chi}\chi)(H^{\dagger}H)$

• s-channel resonance at $m_{\chi} \approx m_H/2$

Lopez-Honorez, TS, Zupan, 12

• excluded by XENON, LUX $\frac{1}{\Lambda_1}(\overline{\chi}\chi)(H^{\dagger}H)$

• s-channel resonance at $m_{\chi} \approx m_H/2$

pseudo-scalar Higgs-Portal $\frac{1}{\Lambda_5}(\overline{\chi}\gamma_5\chi)(H^{\dagger}H)$

Lopez-Honorez, TS, Zupan, 12

EFT: only SM + DM particle

Kahlhoefer, Schmidt-Hoberg, Schwetz, Vogl, 1510.02110

SM +

DM fermion + U(I)' gauge symmetry with Z' mediator

 $\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$

Kahlhoefer, Schmidt-Hoberg, Schwetz, Vogl, 1510.02110

SM +

DM fermion + U(I)' gauge symmetry with Z' mediator

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

need "dark Higgs" S to give mass to Z' and DM $\mathcal{L}_{S} = \left[(\partial^{\mu} + i g_{S} Z'^{\mu}) S \right]^{\dagger} \left[(\partial_{\mu} + i g_{S} Z'_{\mu}) S \right] + \mu_{s}^{2} S^{\dagger} S - \lambda_{s} \left(S^{\dagger} S \right)^{2} + y S \bar{\psi} \psi$

Kahlhoefer, Schmidt-Hoberg, Schwetz, Vogl, 1510.02110

SM +

DM fermion + U(I)' gauge symmetry with Z' mediator

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

need ,,dark Higgs" S to give mass to Z' and DM $\mathcal{L}_{S} = \left[(\partial^{\mu} + i g_{S} Z'^{\mu}) S \right]^{\dagger} \left[(\partial_{\mu} + i g_{S} Z'_{\mu}) S \right] + \mu_{s}^{2} S^{\dagger} S - \lambda_{s} \left(S^{\dagger} S \right)^{2} + y S \bar{\psi} \psi$

Higgs mixing and kinetic mixing open new portals to SM + $\lambda S^*SH^{\dagger}H + \chi F'_{\mu\nu}F^{\mu\nu}$

Kahlhoefer, Schmidt-Hoberg, Schwetz, Vogl, 1510.02110

- U(I) gauge symmetry (Z')
- SM + Fermionic DM particle
 - dark Higgs S breaking the U(I)
- Z' (vector) and S (scalar) mediator particles
- unitarity provides constraint on parameter space
- gauge invariance implies certain constraints on couplings (e.g., to leptons → dilepton resonances)
- kinetic and mass mixing of the Z-Z' → additional interaction channels + constraints from EWPT

Z'mediated interaction

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

Effect of additional "portals"

 $+\lambda S^* S H^\dagger H + \chi F'_{\mu\nu} F^{\mu\nu}$

Higgs-portal

loop induced kinetic mixing ($\Lambda = 10 \text{ TeV}$)

Sectuded WIMP DM Pospelov, Ritz, Voloshin, 2007

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

Secluded WIMP DM Pospelov, Ritz, Voloshin, 2007

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

Secuded WIMP DM Pospelov, Ritz, Voloshin, 2007

Secuded WIMP DM Pospelov, Ritz, Voloshin, 2007

Secluded WIMP DM

example with scalar mediator

secluded region

Lopez-Honorez,TSM, Zupan, 12

Conclusions

- DM provides a challenge for particle physics many possible DM candidates
- thermally produced DM (WIMP) is crucially tested by direct, indirect, and LHC searches
- next years will increase pressure on the WIMP hypothesis - or maybe find a signal (!)
- thermal WIMPs are hard (impossible?) to exclude
- a non-detection in ~5 years will make non-WIMP candidates more attractive

additional slides

smaller DM couplings

Kahlhoefer, Schmidt-Hoberg, Schwetz, Vogl, 1510.02110

Figure 7. Constraints for small DM couplings $(g_{DM}^A = 0.1)$. The left panel considers the case Axial+Vector(SM)-Axial(DM) and should be compared to figure 4. The right panel considers the case Vector(SM)-Axial(DM) with loop-induced kinetic mixing, assuming that $\epsilon = 0$ at $\Lambda = 10$ TeV (cf. figure 6).

DAMA modulation & CDMS-Si

DAMA/LIBRA

CDMS 1304.4279

Modified DM-nucleus interaction?

Ex.: negative interference between neutron and proton amplitudes

Modified DM-nucleus interaction?

Ex.: negative interference between neutron and proton amplitudes

more examples:

- inelastic scattering
- light mediator particles
- electromagnetic interact.

DM-halo independent comparison of experiments

$$\frac{dN}{dE_R} = \frac{\rho_{\chi}\sigma_0|F(E_R)|^2}{2m_{\chi}\mu^2} \eta(v_{\min}) \quad \text{with} \quad \eta(v_{\min}) \equiv \int_{v > v_{\min}} d^3v \, \frac{f_{\oplus}(\vec{v})}{v}$$

consider now

$$\frac{2m_{\chi}\mu^2}{\sigma_0|F(E_R)|^2} \frac{dN}{dE_R} = \rho_{\chi} \eta(v_{\min})$$

DM-halo independent comparison -CDMS-Si versus LUX / SuperCDMS

joint probability for CDMS-Si and LUX / SuperCDMS

DM-halo independent comparison -DAMA versus LUX / SuperCDMS / ...

joint probability for modulation amplitude in DAMA (3rd bin) and the LUX / SuperCDMS results

expansion in v_e

Bozorgnia, Schwetz, 1410.6160

Herrero-Garcia, Schwetz, Zupan, 2012