Spacetime Topology and CPT violation

Kumar Ghosh

Institute for Theoretical Physics, Karlsruhe Institute of Technology.

February 22, 2016

-

・ロト ・回ト ・ヨト ・

- Lorentz and CPT invariance, CPT theorem
- Different origins of CPT violation
- Conventions
- Calculation
- Discussion and future plans

イロト イロト イヨト イ

• Lorentz invariance is described by the Lorentz transformation

$$t' = \gamma(t - \frac{vx}{c^2}), \ x' = \gamma(x - vt), \ y' = y, \ z' = z$$
 (1)

with $\gamma = (1-\frac{v^2}{c^2})^{-1/2}$

• CPT invariance consists of CPT transformation, where C: Charge conjugation, P: Parity, and T: Time reversal.

CPT theorem (Lüders, Pauli, in the 1950-s)

Every local relativistic quantum field theory is invariant under the combined operation of C, P and T, even if some of the separate invariances do not hold.

Some important references:

[1] G. Lüders, Ann. Phys. (N. Y.) 2 (1957) (1).

[2] J. Sakurai, Invariance Principles and Elementary Particles, Princeton Univ. Press, Princeton, 1964.

[3] R. Streater, A. Wightman, PCT, Spin and Statistics, and All That, Benjamin, New York, 1964.

イロト イポト イヨト イヨ

- A consequence of CPT theorem is that a CPT violation automatically indicates a Lorentz violation.
- In order to preserve this symmetry, every violation of the combined symmetry of two of its components (such as CP) must have a corresponding violation in the third component (such as T). Thus violations in T symmetry are often referred to as CP violations.
- Thus any CPT violation gives a hint of fundamentally new physics at different scales for example quantum gravity or strings.
- The CPT violation may have been important in the very early universe.

イロト イポト イヨト イヨ

• Introduce a gauge invariant Chern-Simons-like term into the Abelian gauge field Lagrangian, which violates CPT and Lorentz invariance. For example

$$\mathcal{L}_{CS-like} = \frac{1}{4} m \epsilon^{\mu\nu\rho\sigma} k_{\mu} A_{\nu} F_{\rho\sigma}$$
⁽²⁾

with real parameter m and fixed real symmetry breaking "vector" k_{μ} of unit length. [Adam and Klinkhamer, Nucl. Phys. B 607, 247 (2001)] [Carroll, Field, Jackiw, Phys. Rev. D 41 (1990) 1231].

Considering a classical gauge field interacting with fermions, a CPT and Lorentz violating term can be introduced into the fermionic part of the Lagrangian

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - eA\!\!\!/ - m - \gamma_5 b\!\!\!/)\psi.$$
(3)

イロト イヨト イヨト イヨト

The Lorentz and CPT breaking term is proportional to the constant "four vector" b_{μ} [Adam and Klinkhamer, Phys. Lett. B 513, 245 (2001)].

The CPT and Lorentz violation occur in certain chiral gauge theories defined over a manifold having non trivial topology $(M = \mathbb{R}^3 \times S^1)$ with one compactified coordinate. Perturbative expansion of the effective gauge field action gives rise to some CPT odd local Chern-Simons-like terms. The CPT and Lorentz violation occurs in the effective action of gauge field due to quantum effects of the chiral fermions.

The existence of a CPT anomaly is established for a particular four-dimensional Abelian lattice gauge theory with Ginsparg-Wilson fermions. [Klinkhamer, Schimmel, Nuclear Physics B 639 (2002) 241].

イロト イポト イヨト イヨ

- We consider chiral gauge theories which are anomaly free. For example chiral Yang-Mills with gauge group G = SO(10).
- In our calculation four-dimensional spacetime manifold $(M = \mathbb{R}^3 \times S^1)$ is considered, with noncompact coordinates $x^1, x^2, x^3 \in \mathbb{R}$ and compact coordinate $x^0 \in [0, L]$.
- Natural units are used, that is: $\hbar = c = 1$.
- Metric is taken to be Euclidean flat metric $g_{ab} = \text{diag}(1, 1, 1, 1)$.
- The gauge fields and fermion fields are periodic with respect to x^0 coordinate.
- Another assumption is about the gauge field: $A_0(x) = 0$.

・ロト ・回ト ・ヨト ・

• The Euclidean Weyl action is given by

$$S[\bar{\psi}, \psi, A] = \int_{M} d^{4}x \; \psi_{L}^{\dagger} \; i\sigma_{-}^{\mu}(\partial_{\mu} + A_{\mu}) \; \psi_{L}. \tag{4}$$

with $\sigma_{-}^{\mu} = (\mathbb{I}, -i\sigma^m)$, where σ^m are the 2×2 Pauli matrices and \mathbb{I} is the 2×2 identity matrix.

- We shall look at the effective action of the gauge fields. In vacuum the virtual creation and annihilation of fermion-antifermion pairs interact with the classical gauge fields. The effective action $\Gamma[A]$ is a functional which takes these interactions into account.
- $\bullet\,$ In path integral formalism the functional $\Gamma[A]$ is obtained by integrating out the fermionic degrees of freedom

$$\exp(\Gamma[A]) = \int \mathcal{D}\psi_L^{\dagger}(x)\mathcal{D}\psi_L(x) \ \exp\left(\int_M d^4x \ \mathcal{L}[\psi_L^{\dagger},\psi_L,A]\right),\tag{5}$$

which is formally equal to the determinant of the operator $[\sigma_{-}^{a}(\partial_{a} + A_{a})]$.

イロト イヨト イヨト イヨ

- First consider the case gauge fields are independent of x^0 [F. R. Klinkhamer, Nucl. Phys. **B578** 277 (2000).]
- We decompose the fermion fields into Fourier modes

$$\psi_L(\vec{x}, x^0) = \sum_{n=-\infty}^{\infty} e^{2\pi i n x^0/L} \xi_n(\vec{x}), \text{ and } \psi_L^{\dagger}(\vec{x}, x^0) = \sum_{n=-\infty}^{\infty} e^{-2\pi i n x^0/L} \xi_n^{\dagger}(\vec{x}).$$
(6)

Then the Weyl action can be rewritten as

$$I = \sum_{n=-\infty}^{\infty} I_3[\chi_n^{\dagger}, \chi_n, A], \tag{7}$$

where $I_3[\chi_n^{\dagger}, \chi_n, A] = \int d^3x \ \chi_n^{\dagger} \ \left(i\sigma^m(\partial_m + A_m) + i\frac{2\pi n}{L}\right)\chi_n$

• Finally the effective action can be factorized as:

$$\exp(\Gamma[A]) = \prod_{n=-\infty}^{\infty} \int \mathcal{D}\chi_n^{\dagger} \mathcal{D}\chi_n \, \exp\left(-I_3[\chi_n^{\dagger}, \chi_n, A]\right) \tag{8}$$

• For n = 0 factor, we get the one loop result

$$\Gamma^{n=0}[A] \supseteq \frac{1}{L} \int_0^L dx^0 \int d^3x \ \frac{M}{|M|} \ \omega_{CS},\tag{9}$$

where

$$\omega_{CS} \simeq \epsilon^{ijk} tr(A_i \partial_j A_k - \frac{2}{3} A_i A_j A_k)$$
(10)

・ロト ・日子・ ・ ヨト

is the Chern-Simons density.

- $\bullet\,$ Now we consider the more general case where the gauge fields can depend upon the compactified coordinate $x^0.$
- Unlike the previous case we have to use the four-dimensional integration instead of three dimensional integration.
- Like the previous case we rewrite our Weyl action as:

$$\mathcal{I} = \int d^4x \; \psi_L^{\dagger}(x) \; [\gamma^{\mu}(\partial_{\mu} + A_{\mu})] \; \psi_L, \tag{11}$$

where

$$\gamma^0 = \sigma^0, \quad \gamma^i = i\sigma^i, \tag{12}$$

Image: A match the second s

• The physically relevant factor in the effective action can be computed as

$$\begin{split} \Gamma[A] &= \frac{g^2}{2} tr[T^a T^b] \int \frac{d^4 p}{(2\pi)^4} A^a_i(-p) A^b_j(p) \pi^{ij}(p) \\ &- \frac{g^3}{3} tr[T^a T^b T^c] \int \frac{d^4 p}{(2\pi)^4} \frac{d^4 q}{(2\pi)^4} A^a_i(-p-q) A^b_j(p) A^c_k(q) \pi^{ijk}(p,q) + O(g^4) \end{split}$$

with

$$\pi^{ij}(p) = \int \frac{d^4k}{(2\pi)^3} tr[\gamma^i S(k)\gamma^j S(k+p)],$$
(13)

$$\pi^{ijk}(p,q) = \int \frac{d^4k}{(2\pi)^3} tr[\gamma^i S(k)\gamma^j S(k+p)\gamma^k S(k+p+q)]$$
(14)

and

$$S(k) = \frac{1}{\gamma^i k_i - \gamma^0 k_0} = \frac{\gamma^i k_i + k_0}{(\gamma^i k_i)^2 - k_0^2}$$
(15)

・ロト ・回ト ・ヨト ・

• From the equation (13) we have

$$\pi^{ij}(p) = \int_0^1 dx \int \frac{d^4l}{(2\pi)^4} \frac{\operatorname{tr}[\gamma^i(\not{l} - x\not{p})\gamma^j(\not{l} + (1-x)\not{p})]}{(\vec{l^2} + \Delta)^2}$$
(16)

where $\Delta = x(1-x)p^2 + l_0^2$ and x is the Feynman parameter.

- We divide the domain of integration in two parts, namely, $l_0 = 0$ and $l_0 \neq 0$.
- For $l_0 = 0$ part (this is similar to the case when gauge fields does not depend upon the x^0 coordinate) we can introduce Pauli-Villars regularization scheme and get the usual Chern-Simons like term.

$$T_0 \sim \frac{M_0}{|M_0|} \epsilon^{ijk} p_k. \tag{17}$$

イロト イポト イヨト イヨ

• The infrared divergences can be regularized by imposing antiperiodic boundary conditions for the Dirac (and Pauli-Villars) fields on the surface of a large ball B^3 , where the gauge potentials vanish.

• We consider the case when $l_0 \neq 0$. Since l_0 is discrete So we shall do the following replacements with respect to the previous expressions:

$$\int \frac{dl_0}{2\pi} \longrightarrow \frac{1}{L} \sum_{m=-\infty}^{\infty}, \text{ where } m \neq 0$$
(18)

・ロト ・回ト ・ヨト

• For a particular 'm',

$$T(p_n) = \frac{1}{L} \sum_{m=-\infty}^{\infty} \omega_m \int \frac{d^3l}{(2\pi)^3} \int_0^1 dx \; \frac{\text{tr}[\gamma^i \gamma^j \gamma^k] p_k + (1-2x) \text{tr}[\gamma^i \gamma^j \gamma^0] \; \rho_n}{(\vec{l}^2 + \Delta)^2}$$
(19)

and

$$T_{div}(p_n) = \frac{1}{L} \sum_{m=-\infty}^{\infty} \omega_m \int \frac{d^3l}{(2\pi)^3} \int_0^1 dx \; \frac{\text{tr}[\gamma^i \gamma^j \gamma^k \gamma^l] l_k l_l}{(l^2 + \Delta)^2}.$$
 (20)

where,

$$p_n = (\rho_n, \vec{p}), \ \rho_n = \frac{2\pi n}{L}, \\ l_n = (\omega_m, \vec{l}), \ \omega_m = \frac{2\pi m}{L}, \\ \Delta = x(1-x)|p_n|^2 + \omega_m^2.$$

- \bullet We shall concentrate on the term $T(p_n),$ which eventually gives rise to the CPT violating term.
- From equation (19) we calculate

$$\int \frac{d^3l}{(2\pi)^3} \frac{1}{(l^2 + \Delta)^2} = \frac{1}{8\pi\sqrt{\Delta}}$$
(21)

So we have terms like

$$T_1(p_n) \sim \frac{1}{L} \sum_{m=-\infty}^{\infty} \omega_m \int_0^1 dx \frac{1}{\sqrt{\Delta}},$$
(22)

$$T_2(p_n) \sim \frac{1}{L} \sum_{m=-\infty}^{\infty} \omega_m \int_0^1 dx \frac{(1-2x)}{\sqrt{\Delta}},$$
(23)

イロト イヨト イヨト イ

• To remove the UV divergent term (20) we introduce Pauli-Villars fields having large positive mass M_n for a particular p_n . After subtracting it from $T_1(p_n)$ we get the regularized result:

$$T_r = -\lambda + \lambda^2 \arcsin\left(\frac{1}{\sqrt{1+\lambda^2}}\right) - \arctan(\lambda),$$
(24)

where λ is the upper limit of $2\frac{|\omega_m|}{|p_n|}$. Now T_r converges with respect to λ with a limiting value $-\frac{\pi}{2}$.

• Finally from two point functions, we get the following contribution to the effective action:

$$T = F \frac{1}{L} \int d^4 x \text{ tr } \left[\epsilon^{ijk} A_i \partial_j A_k \right]$$
(25)

<ロ> (日) (日) (日) (日) (日)

where, $F \sim \left(\left(\frac{M_0}{|M_0|} + T_r \right) \right)$, with M_0 is the Pauli-Villars mass, and $T_r = -\frac{\pi}{2}$.

 $\bullet\,$ The three point function $\pi^{ijk}(p,q)$ is defined by

$$\pi^{ijk}(p,q) = \int \frac{d^4k}{(2\pi)^4} tr[\gamma^i S(k)\gamma^j S(k+p)\gamma^k S(k+p+q)] \\ = 2\int_0^1 dx \int_0^{1-x} dy \int \frac{d^4l}{(2\pi)^4} \frac{N}{(\vec{l}^2 + \Delta)^3},$$
(26)

where

$$N = \operatorname{tr}[\gamma^{i}(\not{l} - x\not{p} - y\not{r} + M)\gamma^{j}(\not{l} + (1 - x)\not{p} - y\not{r})\gamma^{k}(\not{l} - x\not{p} + (1 - y)\not{r})], \quad (27)$$

$$l = k + xp + y(p+q) = k + xp + yr$$
, and (28)

$$\Delta = x(1-x)p^2 + y(1-y)r^2 - 2prxy + l_0^2.$$
(29)

• Like the previous section we can divide the domain of l_0 in to two parts that is $l_0 = 0$ and $l_0 \neq 0$ part. For $l_0 = 0$ part from Pauli-Villars regularization we get the following term

$$T_3 \sim \frac{2}{3} \frac{M_0}{|M_0|} \epsilon^{ijk}$$
 (30)

イロト イヨト イヨト イヨ

For $l_0 \neq 0$ case we look at the terms like

$$T_4 = \int \frac{d^3l}{(2\pi)^3} \frac{\operatorname{tr}[\gamma^i \gamma^l \gamma^j \gamma^m \gamma^k + \gamma^i \gamma^l \gamma^j \gamma^k \gamma^m + \gamma^i \gamma^j \gamma^l \gamma^k \gamma^m] l_l l_m}{(\vec{l}^2 + \Delta)^3} \sim \epsilon^{ijk} \frac{1}{\sqrt{\Delta}} \quad (31)$$

and

$$T_5 = \int \frac{d^3l}{(2\pi)^3} \frac{\operatorname{tr}[\gamma^i \gamma^j \gamma^k]}{(\vec{l}^2 + \Delta)^3} \sim \epsilon^{ijk} \frac{1}{\Delta^{3/2}}$$
(32)

The above term gives rise to the CPT violation in the effective action, which looks like.

$$T_6 = F \frac{1}{L} \epsilon^{ijk} \int d^4 x \, \operatorname{tr}[A_i A_j A_k]. \tag{33}$$

where, $F \sim \frac{2}{3} \left(\frac{M_0}{|M_0|} + T_4 + T_5 \right)$, Where the limiting value of $(T_4 + T_5)$ is $-\frac{\pi}{2}$, and M_0 is the Pauli-Villars mass.

イロト イヨト イヨト イヨト

• The CPT transformation of the anti-Hermitian gauge field is given by

$$A_{\mu}(x) \to A_{\mu}^{T}(-x). \tag{34}$$

For the Hermitian electromagnetic vector potential $A_{\mu}(x)$ CPT transformation is given by $A_{\mu}(x) \rightarrow -A_{\mu}(-x)$.

Under CPT transformation the terms like ε^{ijk}(A_i∂_jA_k) and ε^{ijk}(A_iA_jA_k) change sign. So they are CPT-odd terms. In the above terms (9), (25), (33) not every Lorentz index is contracted with a four-vector. So these terms are obviously not Lorentz invariant.

Discussion

• The CPT violating local terms are invariant under infinitesimal gauge transformations but not invariant large gauge transformation. For non-Abelian gauge group there are some non-local terms in perturbation theory of the effective gauge field action which restore the gauge invariance under the large gauge transformations. These non-local terms drop out for Abelian gauge fields with local support.

[L. Alvarez-Gaume, S. Della Pietra, G. Moore, Ann. Phys. (N. Y.) 163 (1985) 288.]

- The mass scale of the CPT violating terms of the gauge fields is of the order $\frac{1}{L}$, which depends upon the range of the compactified coordinate.
- The amount of CPT violation changes when the gauge fields depend upon the compactified coordinate.
- If gauge fields depend upon the compactified coordinate x^0 , they should not oscillate very rapidly with respect to x^0 coordinate.
- In future we are trying to establish the CPT anomaly nonperturbatively (more rigorously) also by choosing the lattice regularization of chiral gauge theories.

イロト イポト イヨト イヨ

THANK YOU!

・ロト ・回ト ・ヨト ・