Studying the Pierre Auger Fluorescence Detector Using a Flying Light Source

Lenka Tomankova

3rd KSETA Plenary Workshop, Durbach, Feb 2016

Contents

- I.Ultra-high energy cosmic rays
- 2. Pierre Auger and Telescope Array observatories
- 3. Auger fluorescence detector
- 4.Flying light source

Magnetic deflection

Difference in Auger and TA spectra

Extensive air shower

Shower detection by fluorescence telescopes

2.2m diameter aperture with UV filter
13m² segmented mirror
440 PMTs per camera

Image of shower on camera

Image of shower on camera

Absolute (drum) calibration

- -Large-diameter Lambertian source
- -Entire camera read out simultaneously
- _Very "un-shower-like"
- _9.9% systematic uncertainty

Flying light source

The idea: replace air shower by a light source of known properties

Flying light source

The idea: replace air shower by a light source of known properties

The Octocopter

Remotely flown commercial platform (mikrokoptor)GPS-assisted waypoint flight → fly in the FO\
 Redundancy of 1–2 rotors
 Electronically stabilized
 Payloads up to ~1 kg
 Flight time up to 20 min

regular dodecahedron structure I 2 individually driven LEDs inside coated with Tyvek diffuser sphere

> isotropic to 0.5% Ø 10 cm, 150 g total

Light source

Emission spectrum in UV
Isotropic & homogeneous
Point-like

Absolute light source calibration

uracy of number of photons at the aper

Error source	%
Energy msmt.	1.4
Intensity stability	1.2
Atmospheric effects	1.4
Flight distance	0.6
lsotropy	0.5
Other	0.2
TOTAL	3.7

Stiff-neck-prevention program...

Octocopter image on the camera

Octocopter image

Absolute calibration cross-check

e the reconstructed number of photons at the aperture with the expectation from Oct

Reconstructed light fraction
$$= N_{\gamma}^{\text{reconstructed}}$$
 From Octocopter light source c

Ir	tegration region	Pixel	
		r10/c10 p208	r04/c17 p356
	Hottest pixel	0.675 ± 0.028	0.653 ± 0.027
	$\zeta = 1.14^{\circ}$	0.812 ± 0.034	0.772 ± 0.032
	$\zeta = 4.0^{\circ}$	0.863 ± 0.036	0.817 ± 0.034
	Entire camera	0.919 ± 0.039	0.880 ± 0.037

Cross-calibration with TA

Octocopter fits into a carry-on, fully portable
First cross-calibration measurements at TA dor
Analysis in progress

Conclusions

Energy calibration of observatories is of key importance
Octocopter is well suited for end-to-end in-situ studies
Alternative calibration at Auger with 5% accuracy (prev. 9.9%)
Improved understanding of the point spread function

References & acknowledgements

[1] J. N. Matthews for the Pierre Auger and Telescope Array Collaborations, Progress Towards a Cross-Calibratio
 [2] K. Machida for the Pierre Auger and Telescope Array Collaborations, Light Source Test At the Telescope Array

Many thanks to all of my colleagues who generously contributed with their plots and photos to this presentation.

Backup

Energy scale systematics

Systematic uncertainties on the energy scale		
Absolute fluorescence yield	3.4%	
Fluor. spectrum and quenching param.	1.1%	
Sub total (Fluorescence yield - sec. 2)	3.6%	
Aerosol optical depth	3%÷6%	
Aerosol phase function	1%	
Wavelength depend. of aerosol scatt.	0.5%	
Atmospheric density profile	1%	
Sub total (Atmosphere - sec. 3)	3.4%÷6.2%	
Absolute FD calibration	9%	
Nightly relative calibration	2%	
Optical efficiency	3.5%	
Sub total (FD calibration - sec. 4)	9.9%	
Folding with point spread function	5%	
Multiple scattering model	1%	
Simulation bias	2%	
Constraints in the Gaisser-Hillas fit	$3.5\% \div 1\%$	
Sub total (FD profile rec sec. 5)	$6.5\% \div 5.6\%$	
Invisible energy (sec. 6)	3%÷1.5%	
Stat. error of the SD calib. fit (sec. 7)	0.7%÷1.8%	
Stability of the energy scale (sec. 7)	5%	
Total	14%	

Declination-dependent spectra

Northern Auger flux is not more similar to flux measured by TA

TA hotspot & Auger warmspot: E>57 Eev

Energy calibration

Point spread function

- I. photons reflect off PMTs
- 2. reflect on mirror again
- 3. hit camera in broad beam

Ghost formation

- I. photons reflect off PMTs
- 2. miss mirror & reflect on aperture
- 3. produce center-symmetric image