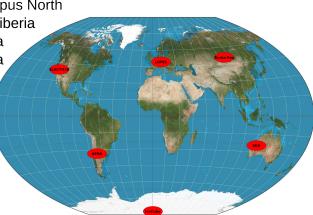


Studies of Radio Emission from Particle Showers

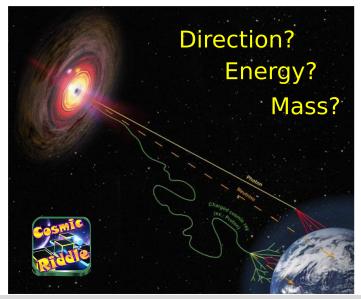
3rd KSETA Plenary Workshop 2016


Olga Kambeitz | 24.02.2016

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

Overview

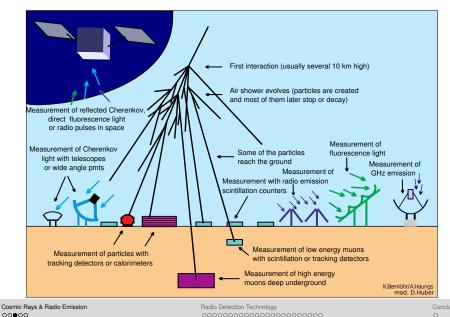
- Cosmic Rays
- Radio Emission
- Radio Detection Technology
 - SLAC T-510 in California
 - LOPES at Campus North
 - Tunka-Rex in Siberia
 - AERA in Pampa
 - SKA in Australia
 - IceCube-Gen2 at South Pole
- Conclusion


Cosmic Rays & Radio Emission

Radio Detection Technology

Conclusi O 2/30

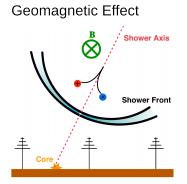
24.02.2016


Cosmic Rays

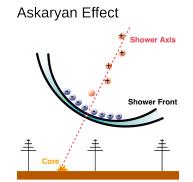
Cosmic Rays & Radio Emission OCOO Olga Kambeitz – Studies of Radio Emission from Particle Showers Radio Detection Technology

Conclusior O 3/30

Detection Principles



Olga Kambeitz - Studies of Radio Emission from Particle Showers


24.02.2016

Radio Emission from Air Showers

- Coherent emission at MHz frequencies
- Two relevant emission mechanisms:

- Induction of time-varying current
- Dominant process

- Time-varying net charge of shower
- Second order effect

Cosmic Rays & Radio Emission 00000 Olga Kambeitz - Studies of Radio Emission from Particle Showers Radio Detection Technology

Motivation

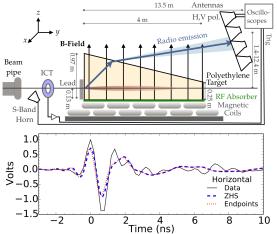
- General mission:
 - understanding radio emission
 - establishing radio detection technique
 - contributing to physics: energy,

mass composition,

horizontal air showers

- ideal in hybrid detection mode
- scalable detectors
- duty cycle of almost 100%
- high angular resolution (< 0.5°)
- calorimetric energy measurement of electromagnetic component

Radio Detection Technology


Understanding Radio Emission

- laboratory measurement of radio frequency emission from cascades of secondary particles
- first measurements that validate electrodynamic simulations

Cosmic Rays & Radio Emission 00000 Olga Kambeitz – Studies of Radio Emission from Particle Showers Conclusio O 7/30

SLAC T-510

Result:

• ZHS and Endpoint describe the measured data

Cosmic Rays & Radio Emission

Radio Detection Technology

Accelerator experiment:

- 5 GeV electron beam
- high-density polyethylene target
 - 1000G magnetic field
 - 4 ANITA horn antennas

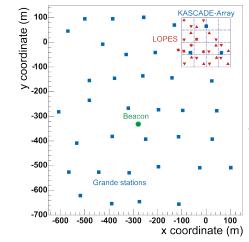
24.02.2016

0 8/30

Proof of Principle

- Interferometric visualization of radio pulses
- Sensitivity to longitudinal shower development
- Shower maximum via wavefront

Cosmic Rays & Radio Emission


Radio Detection Technology

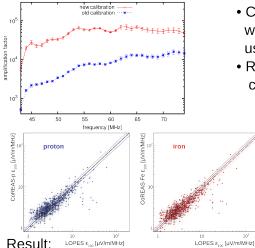
Conclusior O 9/30

LOPES

Cosmic F

Olga Kaml

• 30 dipole antennas up to 2010


• 10 tripole antennas up to 2013

triggered by KASCADE

Rays & Radio Emission	Radio Detection Technology		Conclusion
0	000000000000000000000000000000000000000		0
nbeitz - Studies of Radio Emission from Particle Showers		24.02.2016	10/30

LOPES

- Comparison of LOPES data with CoREAS simulations using full detector simulation
- Revised absolute amplitude calibration of LOPES

24.02.2016

• The updated calibration leads to a better agreement with CoREAS simulations

Cosmic Rays & Radio Emission

Radio Detection Technology

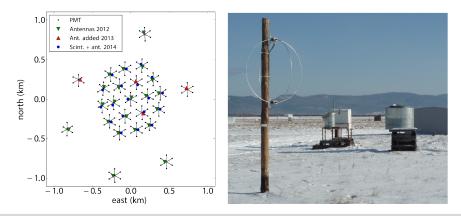
Conclusior O 11/30

Proof of Feasibility

- Absolute amplitude calibration
- Determination of Xmax and radio energy
- Correction of lateral distribution function for asymmetry

Cosmic Rays & Radio Emission

Radio Detection Technology

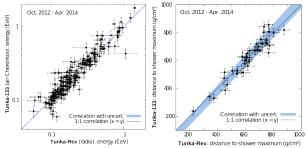

Conclusion O 12/30

24.02.2016

Tunka-Rex

44 SALLA antennas:

- 25 triggered by Tunka-133 photo-multipliers
- 19 triggered by Tunka-Grande scintillators


Cosmic Rays & Radio Emission

Radio Detection Technology

Conclusio O 13/30

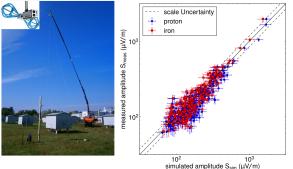
24.02.2016

Tunka-Rex

- Determination of radio energy and Xmax
- Reconstruction of air shower parameters

Result:

- Precision in radio energy of 20 % due to the absolute scale uncertainty
- Radio Xmax resolution of 40 g/cm²


24.02.2016

Cosmic Rays & Radio Emission

Radio Detection Technology

Conclusion O 14/30

Tunka-Rex

- Absolut calibration of antenna (also for other experiments)
- Measured amplitude and simulation comparison

Result:

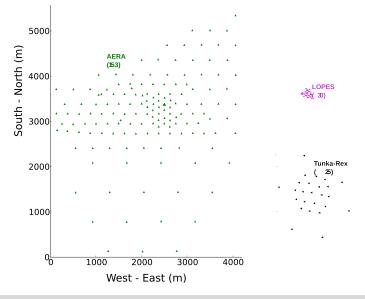
- LOPES got a new calibration and the factor 2 discrepancy of simulation and measured data could be solved
- Radio amplitude precision of 20%

24.02.2016

Cosmic Rays & Radio Emission

Radio Detection Technology

Larger Dimension


- Polarisation measurement
- Nanosecond-level time synchronization
- Energy estimation of cosmic rays
- Different concepts of Xmax determination

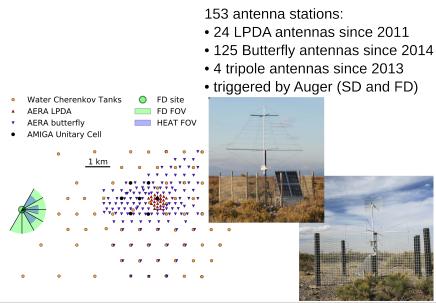
Cosmic Rays & Radio Emission

Radio Detection Technology

Conclusion O 16/30

24.02.2016

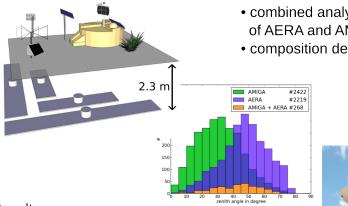
Cosmic Rays & Radio Emission


Radio Detection Technology

Conclusion O 17/30

Olga Kambeitz - Studies of Radio Emission from Particle Showers

24.02.2016


17

Cosmic Rays & Radio Emission

Radio Detection Technology

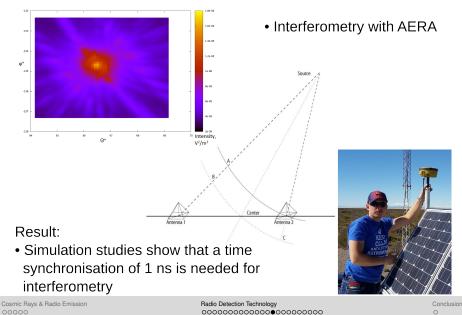
Conclusior O 18/30

 combined analysis of AFRA and AMIGA data

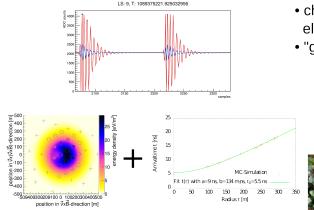
composition determination

Result:

- Super-hybrid events (AERA, AMIGA, surface detector, fluoreszence detector)
- Muon number (AMIGA) and electron number (AERA) will determine mass composition


Cosmic Rays & Radio Emission

Radio Detection Technology


Olga Kambeitz - Studies of Radio Emission from Particle Showers

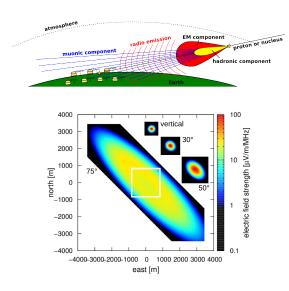
24.02.2016

Olga Kambeitz - Studies of Radio Emission from Particle Showers

changes in electronics software

• "global fit" approach

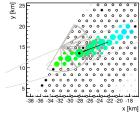
Result:


- Read-out of 4 channels (instead of 2)
- First combination of reconstruction modules for AERA

Cosmic Rays & Radio Emission

Radio Detection Technology

Olga Kambeitz - Studies of Radio Emission from Particle Showers


- Radio detection of horizontal air showers
- Lateral distribution function studies
- Energy of horizontal air showers

Cosmic Rays & Radio Emission

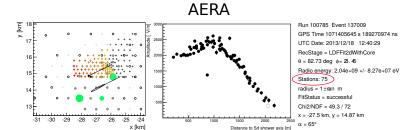
Radio Detection Technology 22/30

Olga Kambeitz - Studies of Radio Emission from Particle Showers

SdHAS

Event 24667045 :-)

Time (UTC): 2013/12/18 12:40:29 Time (GPS): 1071405645 s 189283000 ns Trigger: 4C1; no T5 Stations: 35 (Acc: 11, Bad: 82)


Global reconstruction (LDF + axis) (5)

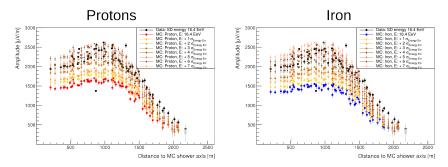
E = (1.64 ± 0.16) 10¹⁹ eV $(\theta, 0) = (82.8 \pm 0.1, 24.3 \pm 0.1) \text{ deg}$

(x,v) = (-26.87 ± 0.31, 14.13 ±0.15) km $N19 = 3.4 \pm 0.3$ radius = 88.86 ± 0.34 km

Monitorina

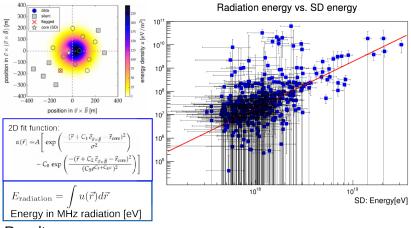
average stations age: 14.0 yr

Cosmic Rays & Radio Emission


Radio Detection Technology

Conclusion 23/30

Olga Kambeitz - Studies of Radio Emission from Particle Showers


Cosmic 0000 Olga Ka

• Understanding lateral distribution functions of horizontal air showers is essential for radio energy determination

• Variation in core and energy are performed

nic Rays & Radio Emission	Radio Detection Technology		Conclusion O
ambeitz - Studies of Radio Emission from Particle Showers		24.02.2016	24/30

Result:

- First determination of energy estimator for horizontal air showers
- Needs some improvements in 2D lateral distribution fit

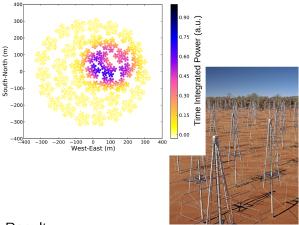
Cosmic Rays & Radio Emission	Radio Detection Technology		Conclusion
00000	000000000000000000000000000000000000000		0
ga Kambeitz – Studies of Radio Emission from Particle Showers		24.02.2016	25/30

Experiment of the Future

• Exploring the Universe with the world's largest radio telescope

• Topography of radio emission with additional particle detectors

smic Rays & Radio Emission	Radio
0000	000
Kambeitz - Studies of Radio Emission from Particle Showers	


Cos

Olga

Radio Detection Technology

Conclusion O 26/30

SKA

- 60,000 dipole antennas planned
- Particle detectors for triggering

Result:


· Simulation studies of feasibility and science potential ongoing

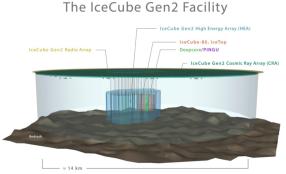
Cosmic Rays & Radio Emission

Radio Detection Technology 27/30

Olga Kambeitz - Studies of Radio Emission from Particle Showers

Beyond IceCube

- Upgrade of IceCube from 1 km³ to 10 km³ detector volume
- IceCube-Gen2 cosmic ray array on surface (veto)
- IceCube-Gen2 radio array?


Cosmic Rays & Radio Emission

Radio Detection Technology

Conclusion O 28/30

24.02.2016

IceCube-Gen2

- Upgrade of the surface/veto array
- Studying the radio extension

Result:

• Simulation studies whether primary gammas from the galactic center can be detected

24.02.2016

Cosmic Rays & Radio Emission

Radio Detection Technology

Conclusion

- General mission:
 - understanding radio emission: done
 - establishing radio detection technique: done
 - contributing to physics: energy, mass composition, horizontal air showers: ongoing
- Radio Detection Technology:
 - alternative approach for E > 10¹⁷ eV
 - similar precision possible as for established techniques
 - ideal for combinations in hybrid detectors
 - high efficiency for inclined showers
- Experiments:
 - SLAC T-510

accelerator test measurement to validate simulation codes

LOPES

proof of principle of radio technique

- Tunka-Rex proof of feasibility of radio technique
- AERA

world-largest radio engineering array

SKA

future radio experiment for topography of radio emission

 IceCube-Gen2 study of radio extension

Radio Detection Technology