

Hot TopHiggs @ LHC

Search for $H \to b \bar{b}$ in Association with Single Top Quarks in CMS

KSETA Plenary Workshop - Durbach

Simon Fink | 23.02.2016

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Top Quark

 heaviest elementary particle

 $\Rightarrow m_{top} = 173.2 \, GeV$

 discovered in 1995 at Fermilab, Chicago

Higgs Boson

- second heaviest elementary particle
 - $\Rightarrow m_{\text{Higgs}} = 125.1 \, \text{GeV}$
- discovered in 2012 at CERN, Geneva

Top Quark

 heaviest elementary particle

 $\Rightarrow m_{top} = 173.2 \, \text{GeV}$

 discovered in 1995 at Fermilab, Chicago

Higgs Boson

 second heaviest elementary particle

 $\Rightarrow m_{\rm Higgs} = 125.1 \, {\rm GeV}$

Top Quark

 heaviest elementary particle

 $\Rightarrow m_{top} = 173.2 \, \text{GeV}$

 discovered in 1995 at Fermilab, Chicago

Higgs Boson

 second heaviest elementary particle

 $\Rightarrow m_{\rm Higgs} = 125.1 \, {\rm GeV}$

Top Quark

 heaviest elementary particle

 $\Rightarrow m_{top} = 173.2 \, \text{GeV}$

 discovered in 1995 at Fermilab, Chicago

Higgs Boson

 second heaviest elementary particle

 $\Rightarrow m_{\rm Higgs} = 125.1 \, {\rm GeV}$

Top Quark

 heaviest elementary particle

 $\Rightarrow m_{top} = 173.2 \, \text{GeV}$

 discovered in 1995 at Fermilab, Chicago

Higgs Boson

 second heaviest elementary particle

 $\Rightarrow m_{\rm Higgs} = 125.1 \, {\rm GeV}$

Electron

Direct: Absolute Value

Direct: Absolute Value

• two feynman diagrams for the tHq production in SM

• two feynman diagrams for the tHq production in SM

• destructive interference in SM

•
$$\mathcal{A} \propto (C_V - C_t)$$

two feynman diagrams for the tHq production in SM

■ destructive interference in SM
■ A ∝ (C_V − C_t)

$$C_x = rac{y_x}{y_x^{SM}}$$

• two feynman diagrams for the tHq production in SM

• destructive interference in SM • $\mathcal{A} \propto (C_V - C_t)$

$$C_x = rac{y_x}{y_x^{SM}}$$

vastly different cross sections dependent on point in (C_V, C_f)

- 4 b quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

event topology:

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

event topology:

- 4 *b* quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

event topology:

- 4 b quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy

3 tag signal region

- 3 b-tags
- # jets ≥ 4
- exactly one muon/electron

4 tag signal region

- 4 b-tags
- # jets \geq 5
- exactly one muon/electron

Kar Bruke Institute of Technology

- 4 b quarks
- 1 isolated lepton
- 1 light forward jet
- missing energy
- 3 tag signal region
 - 3 b-tags
 - # jets ≥ 4
 - exactly one muon/electron
- 4 tag signal region
 - 4 b-tags
 - # jets \geq 5
 - exactly one muon/electron

jet assignment is a combinatorial problem

- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

- jet assignment is a combinatorial problem
- use constraints to reduce number of possible permutations
- look at distributions for all possible assignments and all events
- use such variables to find right assignments

Boosted Decision Trees

assignment with highest MVA output gets chosen

- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest MVA output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest MVA output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest MVA output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest MVA output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

assignment with highest MVA output gets chosen

- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest MVA output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest MVA output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest MVA output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

- assignment with highest MVA output gets chosen
- build your new objects
- look at object distributions
- variables distinguish between signal and background

MVA input variables

 $\eta_{a\prime}$

m_{thad}

- obtain variables dependent on the reconstruction, e.g.:
 - pseudorapidity of the light forward jet
 - mass of the hadronically decaying top quark
- additional reconstruction-independent lepton charge used
- train MVA to separate signal from background

MVA input variables

 $\eta_{q'}$

 $m_{t_{had}}$

- obtain variables dependent on the reconstruction, e.g.:
 - pseudorapidity of the light forward jet
 - mass of the hadronically decaying top quark
- additional reconstruction-independent lepton charge used
- train MVA to separate signal from background

Classification MVA

- subject all samples (MC and Data) to the classification training
- systematic uncertainties implemented either as rate or shape uncertainties
- blinded at hight BDT output regions to not bias ourselves

- get random "toys" from your background-only distribution
- see what signal strength factor you can exclude
- go down to the first signal strengh not excludable
- do this a lot of times ... ⇒ expected limit

- get random "toys" from your background-only distribution
- see what signal strength factor you can exclude
- go down to the first signal strengh not excludable
- do this a lot of times ... ⇒ expected limit

- get random "toys" from your background-only distribution
- see what signal strength factor you can exclude
- go down to the first signal strengh not excludable
- do this a lot of times ... ⇒ expected limit

- get random "toys" from your background-only distribution
- see what signal strength factor you can exclude
- go down to the first signal strengh not excludable
- do this a lot of times ...
 ⇒ expected limit

Expected Limits

- expected limits calculated for 51 points in (Ct,CV) plane
- most systematic uncertainties included

(C_t, C_V)	Expected Limit @ 95% C. L.		
(-1,1.0)	10.95		
(+1 , 1.0)sm	182.25		

- not yet able to exclude points in (C_t,C_V) plane
- still very early in LHC Run II

Conclusions

- presented search for tHq with $H \rightarrow b\bar{b}$
- presented pioneering use of reconstruction techniques
- 8 TeV combination paper submitted to journal
- 13 TeV analysis currently going through the approval process in CMS
- more data \Rightarrow first exclusions!!!

tHq input variables

Electric charge of b-quark jet from decay of top quark, multiplied by lepton's charge. The jet charge is defined as in Eq. (1) in Ref. [37], with $\kappa = 1$

 ΔR between the two jets from decay of Higgs boson

 ΔR between b-quark jet and W boson from decay t \rightarrow bW

 ΔR between reconstructed top quark and Higgs boson

Pseudorapidity of recoil jet

Invariant mass of b-quark jet from decay of top quark and charged lepton

Mass of reconstructed Higgs boson

Pseudorapidity of the most forward jet from decay of H

Tranverse momentum of the softest jet from decay of H

Number of b-tagged jets among the two jets from decay of H

Boolean variable that equals 1 if the b-quark jet from decay of t is b-tagged, 0 otherwise

Relative H_{T} , $(p_T(t) + p_T(H))/H_T$

tt input variables

Difference of electric charges of b-quark jets from decays of t_{had} and $t_{lep\prime}$ multiplied by lepton's charge

 ΔR between the two light-flavor jets from decay of t_{had}

 ΔR between b-quark jet and W boson from decay $t_{had} \rightarrow bW$

 ΔR between b-quark jet and W boson from decay $t_{lep} \rightarrow bW$

Difference between masses of thad and W from decay of thad

Pseudorapidity of thad

Invariant mass of b-quark jet from decay of tlep and charged lepton

Mass of W from decay of thad

Number of b-tagged jets among the two light-flavor jets from decay of thad

Boolean variable that equals 1 if the b-quark jet from decay of $t_{had}\xspace$ is b-tagged, 0 otherwise

Boolean variable that equals 1 if the b-quark jet from decay of $t_{\rm lep}$ is b-tagged, 0 otherwise

Transverse momentum of thad

Transverse momentum of tlep

Relative H_{T} , $(p_T(t_{had}) + p_T(t_{lep}))/H_T$

Sum of electric charges of the two light-flavor jets from decay of $t_{had\prime}$ multiplied by lepton's charge

MVA input variables

Electric charge of the lepton

Pseudorapidity of the recoil jet

Number of b-tagged jets among the two jets from the Higgs boson decay

Transverse momentum of the Higgs boson

Transverse momentum of the recoil jet

 ΔR between the two light-flavor jets from the decay of t_{had}

Mass of thad

Number of b-tagged jets among the two light-flavor jets from the decay of \mathbf{t}_{had}

impact of systematic sources

Courses	Туре	impact as exclusive	improvement of final limit
Source		source on final limit [%]	after removal [%]
JES	shape	17	3
JER	shape	< 1	< 1
BTag light flavor	shape	13	< 1
BTag heavy flavor	shape	17	< 1
Pile up	normalization	< 1	< 1
Unclustered energy	shape	3	1
Lepton efficiency	normalization	5	< 1
Luminosity	normalization	10	< 1
Cross section (PDF)	normalization	8	< 1
Cross section (Scale)	normalization	9	< 1
MC Bin-by-Bin unc.	shape	< 1	< 1
Q^2 scale ($tHq + t\bar{t}$)	shape	20	4
Matching	shape	2	2
Top p_T reweighting	shape	19	2
$t\bar{t}$ HF rates (b)	normalization	13	< 1
$t\bar{t}$ HF rates ($b\bar{b}$)	normalization	15	< 1
<i>tī</i> HF rates (<i>c / cī</i>)	normalization	13	1

post-fit electron channel

How objects behave at 13 TeV

Harder p_T spectra, objects tend to fly more often in forward directions than at 8 TeV

How objects behave at 13 TeV

- Light quark is particularly relevant in discriminating against backgrounds
- Will be even more important because it is much more forward at 13 TeV
- But why only focus on $C_t = -1$?

Differential distributions for different Ct

Kinematics differs for different hypotheses. Expect different performances in BDTs

Cross section differences might not translate linearly into exclusion limit differences

tt modelling: Powheg vs. FxFx

- In variables sensitive to additional radiation the FxFx provides a more accurate description, since more jets are modelled at NLO
- But statistical uncertainties are huge due to negative event weights

Another new thing in Run-II: tWH

We finally also now consider tWH. Will not train tWH against backgrounds, but just plug it into the analysis optimized for tHq. Notably, tWH has the same interference patterns as tHq!

Phenomenological studies on interference with ttH at NLO still ongoing. For this reason, samples have been produced at 5F LO (= no overlap).

tHq vs. tWH

Monte Carlo Samples

/THW_Hincl_13TeV-madgraph-pythia8_TuneCUETP8M1/RunIISpring15Mini&ODv2-74X_mcRun2_asymptotic_v2-v2 /THQ_Hincl_13TeV-madgraph-pythia8_TuneCUETP8M1/RunIISpring15Mini&ODv2-74X_mcRun2_asymptotic_v2-v1

/ST.t-channel.top.4f_leptonDecays.13TeV-powheg-pythia8.TuneCUETP8M1/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic.v2-v1 /ST.t-channel.antitop.4f_leptonDecays.13TeV-powheg-pythia8.TuneCUETP8M1/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic.v2-v1 /ST.tW.top.5f_inclusiveDecays.13TeV-powheg-pythia8.TuneCUETP8M1/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic.v2-v2 /ST.tW.antitop.5f_inclusiveDecays.13TeV-powheg-pythia8.TuneCUETP8M1/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic.v2-v1

/TT_UneCUETP8M1_13TeV-powheg-pythia8/kunIISpring15MiniAODv2-74X_mcRun2_asymptotic.v2-v1 /TT_TuneCUETP8M1_13TeV-powheg-pythia8/kunIISpring15MiniAODv2-74X_mcRun2_asymptotic.v2_ext3-v1 /TTets_TuneCUETP8M1_13TeV-amcatloFXFx-pythia8/kunIISpring15MiniAODv2-74X_mcRun2_asymptotic.v2-v3 (cross check)

/ttHTobb_M125_13TeV_powheg_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1//

/TTWJetsToQQ_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1 /TTWJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1

/WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1

/Ww.TuneCUETP8M1.13TeV-pythia8/RunIISpring15MiniAODv2-74X.mcRun2.asymptotic.v2-v1 /WZ.TuneCUETP8M1.13TeV-pythia8/RunIISpring15MiniAODv2-74X.mcRun2.asymptotic.v2-v1 /ZZ.TuneCUETP8M1.13TeV-pythia8/RunIISpring15MiniAODv2-74X.mcRun2.asymptotic.v2-v1

/QCD.Pt+*_EMEmriched.TuneCUETP8M1.13TeV_pythia8/RunIISpring15DR74-Asympt25ns.MCRUN2.74.V9-v* /QCD.Pt.*_bcToc_TuneCUETP8M1.13TeV_pythia8/RunIISpring15DR74-Asympt25ns.MCRUN2.74.V9-v* /QCD.Pt-*_MUEnrichedPt5.TuneCUETP8M1.13TeV_pythia8/RunIISpring15DR74-Asympt25ns.MCRUN2.74.V9-v*

*(QCD not in plots due to very limited statistics, possible data-driven QCD background in the future)

Data Samples

/SingleElectron/Run2015D-050ct2015-v1/MINIAOD /SingleElectron/Run2015D-PromptReco-v4/MINIAOD

/SingleMuon/Run2015D-050ct2015-v1/MINIAOD /SingleMuon/Run2015D-PromptReco-v4/MINIAOD

JSON : Cert_246908-260627_13TeV_PromptReco_Collisions15_25ns_JSON.txt

- delivered Luminosity: 2.2907 fb⁻¹
- recorded Luminosity: 2.2152 fb⁻¹

actual recorded lumi a little bit lower due wrong run range

Couplings

Couplings

Object Selection - Leptons

Electrons

- $p_{
 m T}>$ 30 GeV
- $\bullet \ |\eta| < 2.5$
- isolation ≤ 0.15
- tight Non-Triggering MVA ID WP80 (will change to triggering)

Muon

- $p_{
 m T}>$ 26 GeV
- |η| < 2.1</p>
- isolation < 0.15</p>
- tight MuonPOG ID
- Object selections are based on ttH(bb) analysis' objects

Jet Definition and Selection

Jets

- AK4 jets ("slimmedJets")
- pt > 20 GeV
- |η| < 4.7</p>
- Lepton cleaning in dR < 0.4</p>
- ak4PFchsL1L2L3 corrections

Selection:

- exactly one muon or electron
- three or four b-tagged jets
- at least one untagged jet
- at least four jets with > 30 GeV

Setup details

Global tags:

- 74X_mcRun2_asymptotic_v4
- 74X_dataRun2_v5
- CMSSW_7_4_15_patch1
- Triggers
 - MC:
 - HLT_Ele27_WP85_Gsf_v*
 - HLT_lsoMu17_eta2p1_v*

Data:

- HLT_Ele27_eta2p1_WPLoose_Gsf_v*
- HLT_lsoMu18_v*

Implemented Weights

- LHE event weights
- CSV reweighting (as done by ttH groups)
 - fixes shape of CSV output, not limited to working points
- PU reweighting

Impact of PU and CSV weights

TTbar control Region

- exactly one charged lepton (electron/muon)
- exactly two tight btags (CSVv2T WP ightarrow 0.97)

tHq reconstruction

- One reconstruction BDT is trained per available point in the (C_t,C_V) plane
 - \Rightarrow 51 BDT's with possible 51 different jet assignments

tHq reconstruction II

- Are 51 BDTs really necessary?
- \blacksquare In \sim 30% of events all (51) BDTs or all but one (50) choose the same jet assignment
- In ~ 70% different BDT are necessary!

TTbar reconstruction

- One reconstruction BDT is trained
- assign jets under hypothesis of a ttbar event
- concept same as in 8 TeV analysis

Input variables – TTbar CR

- almost same set as in 8 TeV analysis, but using full CSV shape now, instead of number of b-tags
- tHq-reco dependent variables differ for the 51 coupling points
- train 51 different classification BDTs

Input variables II – TTbar CR

Forward jet problem

- problem in MC with HF
- $|\eta_{\text{light jet}}|$ is the most discriminating variable against background
- appears to be fixed in 76x samples

Input variables – 3 Tag Region

Input variables II – 3 Tag Region

Input variables – 4 Tag Region

Input variables II – 4 Tag Region

Classification

- Still only one reconstruction BDT is trained
- assign jets under hypothesis of a ttbar event

Classification

- As expected, tWH looks a bit more like tt
- Room for improvement: dedicated training tWH vs. tt
Systematics

- Consider not only shape but also normalization difference for scale systematics
- CSV reweighting brings large b tag systematics

Systematics

Classification

- Pre-fit distributions from which the limit will be derived
- Of course, still blinded at high BDT scores
- tH includes tHq and tWH

Expected Limits

Simon Fink Hot TopHiggs @ LHC