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E0 = 18.6 keV 

mv < 200 meV (90 % C.L.) 

t1/2 = 12.3 a 

The KATRIN Experiment 
Theory 
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The KATRIN Experiment 
Experimental Overview 
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The KATRIN Experiment 
MAC-E Filter 

µ =
E⊥
B

= 𝑐𝑜𝑛𝑠𝑡. 

𝐸𝑘𝑖𝑛 = 𝐸|| + 𝐸⊥ 

ΔE =
Bmin

Bmax
∙ 18.6 keV = 0.93 eV 
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Bmin = 0.3 mT 

Bmax = 6 T Be = 4.5 T 

SDS Commissioning 
Experimental Setup 
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Experimental Setup 
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• 05/2013 – 09/2013 SDS-I measurement phase 

 

 Improvements in vacuum system, baffle system,  

 inner-electrode, HV, detector, electron gun, … 

 

• 10/2014 – 09/2015 SDS-II measurement phase 

 

Characterize performance of MAC-E filter 

 

 Investigate background processes in the 

spectrometer 
 

SDS Commissioning 
Overview 
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Transmission Studies 
Electron Gun 

B θ 

B 

r 

Monoenergetic, angular (θ) and 

radial (r) selective electron source. 

Used in SDS commissioning 

to characterize MAC-E filter M. Erhard,  

Phd thesis in prep. 
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Transmission Studies 
Measurements 
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Transmission Studies 
Measurements 
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Transmission Studies 
Measurements 

Preliminary (M. Erhard, Phd 

thesis in prep.) 
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The Background Model 
Overview 

KATRIN design: 10 mcps  

During SDS-I: ≈1000 mcps (depends on operating parameters) 

 

Potential Sources:  
 

• Intrinsic detector background  < 5 mcps 
 

• Field-electron emission  not observed 
 

• Penning traps   in standard configuration 
 

• Radioactive decays in the spectrometer volume (radon, tritium) 
 

• Secondary electron emission 
 

• Neutral messenger particles (Rydberg model) 
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The Background Model 
Radioactive Decays in the Spectrometer Volume 

Storage of keV-electrons emitted in radioactive decays 
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The Background Model 
Radioactive Decays in the Spectrometer Volume 
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• Artificially elevate pressure in the spectrometer to reduce cool-down times. 
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The Background Model 
Radioactive Decays in the Spectrometer Volume 
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• Artificially elevate pressure in the spectrometer to reduce cool-down times. 

 

• Identify single radon decays as spike in the background rate. 

Baffle status: 



19 

The Background Model 
Radioactive Decays in the Spectrometer Volume 
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Rn-decay 

• Artificially elevate pressure in the spectrometer to reduce cool-down times. 

 

• Identify single radon decays as spike in the background rate. 

 

• Determine efficiency of LN2-baffle system as Rn countermeasure. 

95.1 ± 0.3 % 

Baffle status: 
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The Background Model 
Secondary Electron Emission 

• 690 m2 stainless steel surface. 

 

• 75 000 muons / second 

 

• Secondary electrons emitted from inner vessel 

surface are potential source of background 

 

• For decades expected as main background 

source in large-scale MAC-E filter spectr. 

Magnetic shielding Electrostatic shielding 

ΔU 

μ / γ μ / γ 
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The Background Model 
Secondary Electron Emission 

• Background depends 

on magnetic field in 

spectrometer: 

 

• 3.8 G  890 mcps 

 

• 5 G   645 mcps 

 

• 9 G   349 mcps 
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The Background Model 
Secondary Electron Emission 
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• Background depends 

on magnetic field in 

spectrometer: 

 

• 3.8 G  890 mcps 

 

• 5 G   645 mcps 

 

• 9 G   349 mcps 

 

 Turns out to be a 

volume effect! 

 

 Use volume 

normalized 

representation! 
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The Background Model 
Secondary Electron Emission 
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The Background Model 
Secondary Electron Emission 

after bakeout 

before bakeout 
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The Background Model 
Neutral Messenger Particles 

How to combine volume dependent background with surface conditions and 
 

ΔU-dependence? 
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The Background Model 
Neutral Messenger Particles 
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 Neutral messenger particles  

     (Hydrogen Rydberg atoms) 
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The Background Model 
Neutral Messenger Particles 
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The Background Model 
Neutral Messenger Particles 

How to combine volume dependent background with surface conditions and 
 

ΔU-dependence? 
 

 Neutral messenger particles  

     (Hydrogen Rydberg atoms) 

 

 Explains volume dependence. 
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 Explains impact of electric shielding. 

 

 Generation mechanism? 
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The Background Model 
Neutral Messenger Particles 

How to combine volume dependent background with surface conditions and 
 

ΔU-dependence? 
 

BBR 

ΔU 

H 

H* 

SFI 

e- 

e- 

H2O 

 Neutral messenger particles  

     (Hydrogen Rydberg atoms) 

 

 Explains volume dependence. 

 

 Explains impact of bake-out. 

 

 Explains impact of electric shielding 

 

 Generation mechanism? 

 

 Possible source: Radioactive decays on or  

     close to spectrometer surface.  

 

 

? 
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Summary and Outlook 

• Successfully commissioned 

 

• Works as MAC-E filter 

 

• Background: ≈ 400 mcps 

 

• Derived background model 

 

• Currently: Test model, 

establish reduction techniques 
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Summary and Outlook 

• Used in past 

as test facility 

 

• Combined 

operation with 

main 

spectrometer 

starts in 

summer 2016 

 

 

• All components on site 

since summer 2015 

 

• Currently being 

commissioned 

 

• Start of commissioning 

measurements of full 

beam line: Autumn 2016 

• Successfully commissioned 

 

• Works as MAC-E filter 

 

• Background: ≈ 400 mcps 

 

• Derived background model 

 

• Currently: Test model, 

establish reduction techniques 
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Thank you for your attention! 



36 

 

 

Backup Slides 



37 

The Background Model 
Secondary Electron Emission 

• 690 m2 stainless steel surface. 

 

• Secondary electrons emitted from 

inner vessel surface are potential 

source of background 

 

• For decades, expected as main 

background source in large-scale 

MAC-E filter spectrometers 

Magnetic shielding Electrostatic shielding 

ΔU 

μ / γ μ / γ 
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The Background Model 
Muon-induced background 

J. Linek, master thesis 

Main 

spectrometer 

• 75 000 muons / second 

 

• Use muon veto to 

correlate flux to electron 

rate 
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The Background Model 
Muon-induced background 

Re t = α ∙ Rµ t + C 

Re t

Re
 

= α ∙
Rµ

Re
 
∙
Rµ t

Rµ

+
C

Re
 

 

a 1-a 

a = 13.6 ± 0.8 % 

 Only small fraction of secondary 

     electrons are caused by muons! 
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The Background Model 
Environmental γ-radiation 

Rate (cps) 

Rate (cps) 
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The Background Model 
Environmental γ-radiation 

Rate (cps) 

Rate (cps) 
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55 - 70 Bq/kg 
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The Background Model 
Environmental γ-radiation 

Rate (cps) 

Rate (cps) 

≈500 Bq/kg 

55 - 70 Bq/kg 

γ 

γ 

γ γ 

γ 

γ 



43 

The Background Model 
Environmental γ-radiation 

Cluster size 
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te
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s
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• Measurements with water shielding showed no significant background 

reduction. 

 

• Characteristic clustering of secondary emission observed 
 

  Use artificial γ-source to check for clustering of events. 

60Co-source 
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The Background Model 
210Pb Traces 

 Found small traces of 210Pb contamination in main spectrometer 

(≈1Bq / m2). 

 

 

 

 

 

 

 

 

 

 

 
 


210Pb must have been deposited in spectrometer over the course of 

commissioning. 
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The Background Model 
210Pb Traces 


210Pb is part of uranium decay series. 

 


222Rn is present in ambient air.  

 

 Radon progeny will deposit on 

surfaces. 

 


214Po decay gives 210Pb recoil energy 

of ≈146 keV. 

 

 Implantation of small traces of 210Pb in 

stainless steel walls. 

 

 Decay of 210Po releases 103 keV of 

recoil energy for 206Pb atom. 
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The Background Model 
210Pb Traces 

 Idea: Event clusters are due to 206Pb atoms 

passing surface of vessel. 

 

 Could be related to Rydberg production. 

 

 Currently further investigated: 

 

1. Relate event clusters to 206Pb recoils. 

 

2. Relate event clusters to Rydberg 

background. 

 

3. Establish minimal invasive methods for 

cleaning the inner spectrometer surface. 

 

 



47 



48 



49 



50 



51 



52 



53 



54 



55 



56 



57 



58 



59 



60 



61 


