

Commissioning Measurements at the KATRIN Main Spectrometer

3rd KSETA Plenary Workshop, 24th February 2016

Fabian Harms, Institute for Experimental Nuclear Physics (IEKP), Karlsruhe Institute of Technology (KIT)

Outline

- The KATRIN Experiment
- Commissioning of the Main Spectrometer
- Transmission Studies
- The Background Model
- Summary and Outlook

The KATRIN Experiment

Theory

The KATRIN Experiment

Experimental Overview

The KATRIN Experiment

MAC-E Filter

Experimental Setup

Experimental Setup

Experimental Setup

Overview

• 05/2013 – 09/2013 SDS-I measurement phase

Improvements in vacuum system, baffle system, inner-electrode, HV, detector, electron gun, ...

10/2014 – 09/2015 SDS-II measurement phase

- → Characterize performance of MAC-E filter
- → Investigate background processes in the spectrometer

Electron Gun

Measurements

Measurements

Measurements

KATRIN design: **10 mcps** During SDS-I: **≈1000 mcps**

(depends on operating parameters)

Potential Sources:

- Intrinsic detector background
- Field-electron emission
- Penning traps

not observed

< 5 mcps

in standard configuration

Radioactive decays in the spectrometer volume (radon, tritium)

- Secondary electron emission
- Neutral messenger particles (Rydberg model)

Radioactive Decays in the Spectrometer Volume

Storage of keV-electrons emitted in radioactive decays

Radioactive Decays in the Spectrometer Volume

• Artificially elevate pressure in the spectrometer to reduce cool-down times.

Karlsruhe Institute of Technology

Radioactive Decays in the Spectrometer Volume

- Artificially elevate pressure in the spectrometer to reduce cool-down times.
- Identify single radon decays as spike in the background rate.

Radioactive Decays in the Spectrometer Volume

- Artificially elevate pressure in the spectrometer to reduce cool-down times.
- Identify single radon decays as spike in the background rate.
- Determine efficiency of LN₂-baffle system as Rn countermeasure.

Secondary Electron Emission

- 690 m² stainless steel surface.
- 75 000 muons / second
- Secondary electrons emitted from inner vessel surface are potential source of background
- For decades expected as main background source in large-scale MAC-E filter spectr.

Secondary Electron Emission

- Background depends ٠ on magnetic field in spectrometer:
- 3.8 G \rightarrow 890 mcps
- 5 G \rightarrow 645 mcps
- 9 G \rightarrow 349 mcps

Secondary Electron Emission

- Background depends on magnetic field in spectrometer:
- 3.8 G → 890 mcps
- 5 G → 645 mcps
- 9 G → 349 mcps
- → Turns out to be a volume effect!

→ Use volume normalized representation!

Secondary Electron Emission

Secondary Electron Emission

Neutral Messenger Particles

Neutral Messenger Particles

How to combine volume dependent background with surface conditions and ΔU -dependence?

→ Neutral messenger particles (Hydrogen Rydberg atoms)

Neutral Messenger Particles

- → Neutral messenger particles (Hydrogen Rydberg atoms)
- \rightarrow Explains volume dependence.

28

The Background Model

Neutral Messenger Particles

- → Neutral messenger particles (Hydrogen Rydberg atoms)
- \rightarrow Explains volume dependence.
- \rightarrow Explains impact of electric shielding.

Karlsruhe Institute of Technology

The Background Model

Neutral Messenger Particles

- → Neutral messenger particles (Hydrogen Rydberg atoms)
- \rightarrow Explains volume dependence.
- \rightarrow Explains impact of electric shielding.
- \rightarrow Explains impact of bake-out.

30

The Background Model

Neutral Messenger Particles

- → Neutral messenger particles (Hydrogen Rydberg atoms)
- \rightarrow Explains volume dependence.
- \rightarrow Explains impact of bake-out.
- \rightarrow Explains impact of electric shielding.
- → Generation mechanism?

31

The Background Model

Neutral Messenger Particles

- → Neutral messenger particles (Hydrogen Rydberg atoms)
- \rightarrow Explains volume dependence.
- \rightarrow Explains impact of bake-out.
- \rightarrow Explains impact of electric shielding
- → Generation mechanism?
- → Possible source: Radioactive decays on or close to spectrometer surface.

Summary and Outlook

- Background: ≈ 400 mcps
- Derived background model
- Currently: Test model, establish reduction techniques

Summary and Outlook

Summary and Outlook

- All components on site since summer 2015
- Currently being commissioned
- Start of commissioning measurements of full beam line: Autumn 2016

- Used in past as test facility
- Combined operation with main spectrometer starts in summer 2016
- Successfully commissioned
- Works as MAC-E filter
- Background: ≈ 400 mcps
- Derived background model
- Currently: Test model, establish reduction techniques

Thank you for your attention!

Backup Slides

Secondary Electron Emission

- 690 m² stainless steel surface.
- Secondary electrons emitted from inner vessel surface are potential source of background
- For decades, expected as main background source in large-scale MAC-E filter spectrometers

Muon-induced background

- 75 000 muons / second
- Use muon veto to correlate flux to electron rate

J. Linek, master thesis

Muon-induced background

→ Only small fraction of secondary electrons are caused by muons!

- Measurements with water shielding showed no significant background reduction.
- Characteristic clustering of secondary emission observed
 - \rightarrow Use artificial γ -source to check for clustering of events.

²¹⁰Pb Traces

→ Found small traces of ²¹⁰Pb contamination in main spectrometer (≈1Bq / m²).

→ ²¹⁰Pb must have been deposited in spectrometer over the course of commissioning.

²¹⁰Pb Traces

- \rightarrow ²¹⁰Pb is part of uranium decay series.
- \rightarrow ²²²Rn is present in ambient air.
- → Radon progeny will deposit on surfaces.
- → ²¹⁴Po decay gives ²¹⁰Pb recoil energy of ≈146 keV.
- → Implantation of small traces of ²¹⁰Pb in stainless steel walls.
- → Decay of ²¹⁰Po releases 103 keV of recoil energy for ²⁰⁶Pb atom.

²¹⁰Pb Traces

- → Idea: Event clusters are due to ²⁰⁶Pb atoms passing surface of vessel.
- \rightarrow Could be related to Rydberg production.
- \rightarrow Currently further investigated:
 - 1. Relate event clusters to ²⁰⁶Pb recoils.
 - 2. Relate event clusters to Rydberg background.
 - 3. Establish minimal invasive methods for cleaning the inner spectrometer surface.

ഹ്

40

30

. سرسین

50

Energy (keV)

60

