

QCD Corrections to LHC Cross Sections

Robin Roth | 24.02.2016

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

Overview

Calculation of LHC cross sections

Precise Predictions

- Next-to-leading order
- Beyond NLO: LoopSim
- Physics beyond the Standard Model
 Effective Field Theory

- Diboson production
- Dynamical jet vetos

The Standard Model of Particle Physics

Hadron collision

Stefan Gieseke, Monte Carlo lectures

Cross sections

Measurements

- rates of specific event types
- $\dot{N} = \underbrace{L}_{\text{Luminosity}} \cdot \underbrace{\sigma}_{\text{cross section}}$
- process: set of final state particles
- differential cross section $d\sigma$: dependence on kinematics, p_T , η , φ

Calculation

$$\mathrm{d}\sigma = \frac{1}{2\hat{\mathrm{s}}} \mathrm{d}\Phi_{\mathrm{X}} \, |\mathcal{M}|^2$$

- ignored for this presentation: connecting partons to hadrons
- $d\Phi_X$: integration of final state momenta
- $\bullet~\mathcal{M}:$ amplitude, transition from initial- to final state particles
- Feynman diagrams visualize contributions to amplitude

Perturbation Theory Language

Perturbation Theory

- exact solution of interacting theory not know
- start from free particles and consider interactions as perturbations
- couplings ($\alpha = \frac{g^2}{4\pi}$) small
- expand in powers of the couplings
- Leading Order (= Born), NLO, ...

LO NLO virtual real

NLO contributions

$$\propto rac{1}{
ho_g \cdot
ho_q} \propto rac{1}{E_q E_g (1 - \cos heta)}$$

KLN Theorem: Divergences cancel

Canceling Divergences

- infra-red (IR) divergences not physical
- IR-safe observables: don't depend on the IR details

Total cross section

- integral over final state phase space
- parametrize using a regulator
- cancel divergences analytically

Differential cross section

- not integrated
- analytical structure depends on observable/cuts ⇒ complicated
- divergences process-independent
- cancel them with subtraction terms ⇒ Catani-Seymour, Antenna, ...

$$\sigma_{\mathsf{NLO}} = \int \mathrm{d}\varPhi_{\mathsf{X}+\mathsf{jet}} \left[\widetilde{\sigma}_{\mathsf{real}} - \sigma_{\mathsf{A}} \right] + \int \mathrm{d}\varPhi_{\mathsf{X}} \left[\widetilde{\sigma}_{\mathsf{virt}} + \int \sigma_{\mathsf{A}} \right]$$

$$\mathrm{d}\sigma = rac{1}{2\hat{\mathrm{s}}}\sum_{\mathrm{k}}\mathrm{d}\varPhi_{\mathrm{X}+\mathrm{k}}\left|\sum_{\mathrm{l}}\mathcal{M}^{(\mathrm{l})}_{\mathrm{X}+\mathrm{k}}
ight|^{2}$$

- k: number of additional external legs
- I: number of loops
- k + l: order in α
- leading order (LO): (k, l) = (0, 0)
- next-to-leading order (NLO):
 (k, l) = {(0, 0), (0, 1), (1, 0)}

s)	2	$\sigma_{0}^{(2)}$	$\sigma_1^{(2)}$				
/ (loop	1	$\sigma_0^{(1)}$	$\sigma_1^{(1)}$	$\sigma_2^{(1)}$			
	0	$\sigma_0^{(0)}$	$\sigma_1^{(0)}$	$\sigma_{2}^{(0)}$	$\sigma_2^{(0)}$		
		0	1	2	3		
	k (legs)						

÷.

$$\mathrm{d}\sigma = rac{1}{2\hat{\mathrm{s}}}\sum_{\mathrm{k}}\mathrm{d}\varPhi_{\mathrm{X}+\mathrm{k}}\left|\sum_{\mathrm{l}}\mathcal{M}^{(\mathrm{l})}_{\mathrm{X}+\mathrm{k}}
ight|^{2}$$

- k: number of additional external legs
- I: number of loops
- k + l: order in α
- leading order (LO): (k, l) = (0, 0)
- next-to-leading order (NLO):
 (k, l) = {(0, 0), (0, 1), (1, 0)}

2	$\sigma_{0}^{(2)}$	$\sigma_1^{(2)}$					
1	$\sigma_0^{(1)}$	$\sigma_1^{(1)}$	$\sigma_2^{(1)}$				
0	$\sigma_0^{(0)}$	$\sigma_1^{(0)}$	$\sigma_2^{(0)}$	$\sigma_2^{(0)}$			
	0	1	2	3			
k (legs)							
LO							

ı.

(loops)

$$\mathrm{d}\sigma = rac{1}{2\hat{\mathrm{s}}}\sum_{\mathrm{k}}\mathrm{d}\varPhi_{\mathrm{X}+\mathrm{k}}\left|\sum_{\mathrm{l}}\mathcal{M}^{(\mathrm{l})}_{\mathrm{X}+\mathrm{k}}
ight|^{2}$$

- k: number of additional external legs
- I: number of loops
- k + l: order in α
- leading order (LO): (k, l) = (0, 0)
- next-to-leading order (NLO):
 (k, l) = {(0, 0), (0, 1), (1, 0)}

ı.

(loops)

$$\mathrm{d}\sigma = rac{1}{2\hat{\mathrm{s}}}\sum_{k}\mathrm{d}\varPhi_{\mathrm{X}+k}\left|\sum_{l}\mathcal{M}^{(l)}_{\mathrm{X}+k}
ight|^{2}$$

- k: number of additional external legs
- I: number of loops
- k + l: order in α
- leading order (LO): (k, l) = (0, 0)
- next-to-leading order (NLO):
 (k, l) = {(0, 0), (0, 1), (1, 0)}

2	$\sigma_0^{(2)}$	$\sigma_1^{(2)}$					
1	$\sigma_0^{(1)}$	$\sigma_1^{(1)}$	$\sigma_2^{(1)}$				
0	$\sigma_0^{(0)}$	$\sigma_1^{(0)}$	$\sigma_2^{(0)}$	$\sigma_{2}^{(0)}$			
	0	1	2	3			
k (legs)							
NNLO							

(loops)

Idea [1006.2144]

- approximate NNLO without calculating 2-loop-diagrams
- divergences of 2-loop-terms must cancel
 - \Rightarrow cancel them numerically
- use existing NLO monte carlos

Accuracy

- misses finite 2-loop contributions
- includes log enhanced terms
- preserves total NLO cross section
- nearly NNLO in high-p_T tails

Idea [1006.2144]

- approximate NNLO without calculating 2-loop-diagrams
- divergences of 2-loop-terms must cancel
 - \Rightarrow cancel them numerically
- use existing NLO monte carlos

Accuracy

- misses finite 2-loop contributions
- includes log enhanced terms
- preserves total NLO cross section
- nearly NNLO in high-p_T tails

s)	2	$\sigma_{0}^{(2)}$	$\sigma_1^{(2)}$			
dool) /	1	$\sigma_0^{(1)}$	$\sigma_1^{(1)}$	$\sigma_2^{(1)}$		
	0	$\sigma_0^{(0)}$	$\sigma_1^{(0)}$	$\sigma_2^{(0)}$	$\sigma_2^{(0)}$	
		0	1	2	3	
	k (legs)					

X@NNLO

Idea [1006.2144]

- approximate NNLO without calculating 2-loop-diagrams
- divergences of 2-loop-terms must cancel
 - \Rightarrow cancel them numerically
- use existing NLO monte carlos

Accuracy

- misses finite 2-loop contributions
- includes log enhanced terms
- preserves total NLO cross section
- nearly NNLO in high-p_T tails

X@NLO

Idea [1006.2144]

- approximate NNLO without calculating 2-loop-diagrams
- divergences of 2-loop-terms must cancel
 - \Rightarrow cancel them numerically
- use existing NLO monte carlos

Accuracy

- misses finite 2-loop contributions
- includes log enhanced terms
- preserves total NLO cross section
- nearly NNLO in high-p_T tails

s)	2	$\sigma_{0}^{(2)}$	$\sigma_1^{(2)}$			
/ (loop	1	$\sigma_0^{(1)}$	$\sigma_1^{(1)}$	$\sigma_2^{(1)}$		
	0	$\sigma_0^{(0)}$	$\sigma_1^{(0)}$	$\sigma_2^{(0)}$	$\sigma_2^{(0)}$	
		0	1	2	3	

k (legs)

X+jet@NLO

Idea [1006.2144]

- approximate NNLO without calculating 2-loop-diagrams
- divergences of 2-loop-terms must cancel
 - \Rightarrow cancel them numerically
- use existing NLO monte carlos

Accuracy

- misses finite 2-loop contributions
- includes log enhanced terms
- preserves total NLO cross section
- nearly NNLO in high-p_T tails

s)	2	$\sigma_{0}^{(2)}$	$\sigma_{1}^{(2)}$			
/ (loop	1	$\sigma_0^{(1)}$	$\sigma_1^{(1)}$	$\sigma_2^{(1)}$		
	0	$\sigma_0^{(0)}$	$\sigma_1^{(0)}$	$\sigma_2^{(0)}$	$\sigma_2^{(0)}$	
		0	1	2	3	
			k (le	egs)		

X@nNLO

Physics beyond the SM

Motivation: Dark Matter, unification of forces, hierarchy problem

Concrete models

- additional particles (=fields)
- new gauge groups, Supersymmetry

SM as Effective Field Theory

- only use SM fields and symmetries
- add higher-dimensional terms to Lagrangian (dim 6, 8) $\mathcal{L}_{\mathsf{EFT}} = rac{f_i}{\Lambda^2} \mathcal{O}_i$

Limited Validity EFT

- Iow-energy expansion of unknown higher-energy model
- only valid if expansion parameter small validity depends on phase space region

Anomalous Couplings

VBFNLO

VBFNLO [0811.4559, 1107.4038, 1404.3940]

K. Arnold,J. Baglio, J. Bellm, G. Bozzi, M. Brieg, F. Campanario, C. Englert, B. Feigl,
J. Frank, T. Figy, F. Geyer, N. Greiner, C. Hackstein, V. Hankele, B. Jäger, N. Kaiser,
M. Kerner, G. Klämke, M. Kubocz, M. Löschner, L.D. Ninh, C. Oleari, S. Palmer,
S. Plätzer, S. Prestel, M. Rauch, R. Roth, H. Rzehak, F. Schissler, O. Schlimpert,
M. Spannowsky, M. Worek, D. Zeppenfeld

- Monte Carlo program for hadron collider cross sections at NLO QCD
- focus on processes with EW bosons: VBF, VV, VVV (+jets)
- includes leptonic decay of vector bosons with full off-shell effects
- anomalous triple/quartic gauge couplings
- efficient by reusing electroweak part of diagrams in terms of leptonic tensors
- BLHA interface to event generators: NLO event output

Diboson production at the LHC

Why Diboson

- leptonic decays: "easy" to tag, precise knowledge of final state
- access to triple gauge couplings, deviations in EW sector

Observables

- *m_{VV}*: new resonances? AC?
- θ^* : angular/spin information

nNLO for diboson production

AC for diboson production

AC for diboson production

AC for diboson production

Jet vetos

Traditional (fixed) jet veto

- don't allow any jets above a p_T threshold
- introduces large logs log p_{Tveto}/m_{VV}
- cuts away relevant phase space: $m_{VV} \approx 1 \text{ TeV} \leftrightarrow pt_{\text{jet}} = 50/300 \text{ GeV}$

Dynamical veto

- scale veto depending on overall scale \Rightarrow no logs
- allow more QCD radiation in tails of EW distributions

$$x_{\text{jet}} = \frac{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i}}{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i} + \mathsf{E}_{\mathsf{T},W} + \mathsf{E}_{\mathsf{T},Z}}$$

Observable: *x*_{jet}

Observable: *x*_{jet}

Dynamical veto to improve AC sensitivity

Dynamical veto to improve AC sensitivity

Conclusion

Pushing the SM Frontier

- current default: NLO QCD, O(10%) theory uncertainty
- higher order in perturbation theory (NNLO, N³LO)
- matching parton shower to fixed order
- improving non-perturbative physics

Beyond the Standard Model

- concrete models: SUSY, 2HDM, W', ...
- Effective Field Theory parametrize deviations from Standard Model ⇒ Poster Genessis Perez: Effective Lagrangian for Vector Boson Scattering

Interplay between precision and new physics

- higher orders might look similar to anomalous couplings
- increase sensitive to new physics \Rightarrow dynamical jet veto

Cuts

$p_{ m TI}>15 m GeV$	$p_{\mathrm{T}j}>$ 30 GeV	$p\!\!\!/_{ m T}>$ 30 GeV
$ \eta_j <$ 4.5	$ \eta_I <$ 2.5	$R_{l,j)} > 0.4$
$60\mathrm{GeV} < m_{\!/\!/} < 120\mathrm{GeV}$		
boosted: $p_{TZ} > 200 \text{GeV}$		

Input values

- EW constants: VBFNLO default
- PDF: NNPDF23

PS effects on x_{jet}

PS effects on x_{jet}

x_{jet} **n**NLO corrections

Validity of EFT approach

Best way to check validity: Do expansion of UV theory, but:

- don't know UV theory/explicit expansion
- don't even know scale/couplings

EFT assumptions

- all NP scales are well above our observables, no resonances at measurable scales
- coupling α_{NP} < 4π could be small ≈ α_{QED} or large O(1)
- *f*/Λ² "small"

Potential pitfalls

- is dim 6 the leading term? What about dim-8?
- consider only AC-SM-interference or also AC²?
- are tree-level AC predictions sufficient?

Validity of EFT approach

Power counting in A

$$\mathcal{M} = \mathcal{M}_{SM} + \underbrace{\mathcal{M}_{AC6}}_{1/\Lambda^2} + \underbrace{\mathcal{M}_{AC8}}_{1/\Lambda^4}$$
$$\mathcal{M}|^2 = \underbrace{\mathcal{M}_{SM}^2}_{1/\Lambda^0} + \underbrace{\frac{2\text{Re}\mathcal{M}_{AC6}^*\mathcal{M}\mathcal{M}_{SM}}_{1/\Lambda^2} + \underbrace{\mathcal{M}_{AC6}^2}_{1/\Lambda^4} + \underbrace{\frac{2\text{Re}\mathcal{M}_{AC8}^*\mathcal{M}\mathcal{M}_{SM}}_{1/\Lambda^4} + \underbrace{\mathcal{M}_{AC8}^2}_{1/\Lambda^8}$$

power-counting
$$\Lambda^{-4}$$
: \mathcal{M}^2_{AC6} , $\mathcal{M}^*_{AC8}\mathcal{M}_{SM}$?

- \blacksquare conservative: experimental fit only in range where $\mathcal{M}^2_{AC} \ll \mathcal{M}_{AC} \mathcal{M}_{SM}$
- but: \mathcal{M}_{SM} accidentally small (phase space, weak coupling compared to \mathcal{M}_{AC}) $\Rightarrow \mathcal{M}_{AC}^* \mathcal{M}_{SM}$ suppressed, \mathcal{M}_{AC6}^2 leading term

Limitation of dim 6 operators for anomalous couplings

- no neutral triple gauge couplings (come at dim. 8)
- only some (linear combinations) of quartic gauge couplings

Effective Field Theory

- top-down: take a theory at a high scale, integrate out heavy degrees of freedom, get description of low-scale physics with less degrees of freedom weak interaction → Fermi theory / four-fermion-vertices Soft-Collinear Effective Theory
- bottom-up: make minimal assumptions about high scale physics, consider all allowed low-scale effects and measure them anomalous couplings

Predictions for processes at the LHC

Observable: x_{jet}, x_Z

Motivation

- 3 particle final state (WZj)
- the transverse momenta can be parametrized using only two variables
 6 d.o.f. (*pt*_W, *pt*_Z, *pt*_{jet}) 2 (total *p*_T = 0) 1 (no φ dependence) 1 (rescaling at high *p*_T)
- dalitz-like construction

$$\begin{split} x_{\text{jet}} &= \frac{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i}}{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i} + \mathsf{E}_{\mathsf{T},W} + \mathsf{E}_{\mathsf{T},Z}}, \quad x_V = \frac{E_{TV}}{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i} + \mathsf{E}_{\mathsf{T},W} + \mathsf{E}_{\mathsf{T},Z}}\\ x_{\text{jet}} + x_W + x_Z = 1\\ x_i &\leq 0.5 \quad (\text{at LO only}) \end{split}$$

other choices: p_T instead of E_T , partons instead of jets, ... Careful not to be (too) infrared-sensitive

The LoopSim Method – "Looping"

- cluster by distance to get emission sequence (C/A algorithm)
- captures soft/collinear divergences
- subtract divergences by generating looped diagrams with negative weight
- Catani-Seymour like generation of looped kinematics
- Clustering radius R_{LS} gives estimate of dependence on merging
- Scale dependence preserved for additional emissions, overestimates the NNLO scale dependence

LoopSim with **VBFNLO**

Interfacing with LoopSim

- VBFNLO produces event sample
- LoopSim generates looped events from sample
- run analysis on those final events

Issues

- no flavour information from VBFNLO (summed over)
- need very inclusive sample (no jet cut) to fill all of phase space
- Consistent scale choice over all samples needed

practical LoopSim

LoopSim slower than bare VBFNLO run by a factor 8

interest not in phase space region with highest cross section but tails

Previous LoopSim results

[Campanario, Rauch, Sapeta, 1309.7293]