

Linux containers and Docker

Elvin Sindrilaru
IT Storage Group - CERN

GridKa School 2016

Outline

Understanding Linux containers
« Linux namespaces
« Linux cgroups

« Docker containers
« Containers orchestration

- Security considerations

« Benefits

What is a container?

"Cmglee Container City 2" by Cmglee - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons

Linux containers

- Based on two technologies

« Linux namespaces

« Linux control groups (cgroups)

Linux namespaces (1)

The purpose of a namespace is to wrap a particular
global system resource in an abstraction that makes
It appear to the process within the namespace that they

have their own isolated instance of the global
resource.

Linux namespaces (2)

- Currently there are 6 namespaces implemented in the Linux
Kernel:

« Mount namespaces — isolate the set of file-system mount points
seen by a group of processes (Linux 2.6.19)

« UTS namespaces — isolate two system identifiers — nodename
and domainname. (UNIX Time-sharing System)

« IPC namespaces — isolate inter-process communication
resources e.g. POSIX message queues

Linux namespaces (3)

« Network namespaces — provides isolation of system resources
associated with networking. Each network namespace has its
own network devices, IP addresses, port numbers etc.

« PID namespaces — isolate process ID number space. Processes
in different PID namespaces can have the same PID number.

« User namespace — isolates the process user and group 1D
number spaces. A process’s UID and GID can be different inside
and outside a user namespace i.e a process can have full root
privileges inside a user namespace, but is unprivileged for
operations outside the namespace. (Linux 3.8)

Linux cgroups (1)

- Cgroups allow allocating resources to user-defined groups of
processes running on the system

- Cgroup subsystems (resources controllers) = kernel modules
aware of cgroups which allocate varying levels of system resources
to cgroups

- Everything is exposed through a virtual filesystem:

- [cgroups, /sys/fs/cgroup ... - mountpoint may vary

« Currently up to 10 subsystems:

« blkio — set limits on input/output access to/from block devices such as
physical drives

« cpuset — assign individual CPUs and memory nodes to tasks in a cgroup
« memory — set limits on memory used by tasks in a cgroup

- etc...

Linux cgroups (2)

- libcgroup package provides command line utilities for
manipulating cgroups.

- |ssubsys — list available subsystems
- |Iscgroup — list defined cgroups

- cgget — get parameters of cgroup

. cset — set parameters of cgroup

- cgexec — start a process in a particular cgroup

- cgclassify — move running task to one or more
cgroups

Linux containers a.k.a LXC

Containers
« tool for lightweight virtualization

« provides a group of processes the illusion that they are
the only processes on the system

- Advantages in comparison to traditional VM:
« [Fast to deploy - seconds
« Small memory footprint - MBs
« Complete isolation without a hypervisor

Namespaces + Cgroups => Linux containers

Linux containers — CLI

IXCc package contains tools to manipulate containers

IXC-create

 Setup a container (rootfs and configuration)
IXc-start

 Boot a container

IXc-console

« Attach a console if started in background
IXxc-attach

- Start a process inside a container
IXCc-stop

« Shutdown a container

IXc-destroy

 Destroy the container created with Ixc-create

\

Docker containers

- “Acontainer Is a basic tool, consisting of any device
creating a partially or fully enclosed space that can be
used to contain, store and transport objects or materials.”

http://en.wikipedia.org/wiki/Container

- “Open-source project to easily create light-weight,
portable, self-sufficient containers from any application”

https://www.docker.com/whatisdocker/

- Docker motto: “Build, Ship and Run Any App, Anywhere”

=

N/ S

http://en.wikipedia.org/wiki/Container
https://www.docker.com/whatisdocker/

Docker interaction

« Client-server model

« Docker daemon
- Process that manages the containers

- Creates files systems, assigns |IP addresses,
routes packages, manages processes
=> needs root privileges

- RESTful API

« Docker client
« Same binary as the daemon
- Makes GET and POST request to the daemon

Docker client-server interaction

-

Docker

$ sudo docker -d

Client

$ docker top

The client can run on the same host or on a different one
from the daemon

VMs vs. Docker containers

Virtual machine Docker Containers
4 N 4)
_ App2 App2 |
Bin/Lib | Bin/Lib | . App2 |_m_d
| Binib_| Bintib |
GuestOS | GuestOS :
]_L | Docker engine ‘
| Hypervisor | osos
‘ HostOS | | Server ‘
‘ Server |
o J o J

- VMs are fully virtualized

- Containers are optimized for single applications,
but can also run a full system

&)

N/ S

Docker filesystem

- Typical Linux system needs two filesystems:
. Boot file system (bootfs)
. Root file system (rootfs) - /dev, /etc, /bin, /lib ...

v

© Docker Inc.

- Docker can use Another Unionfs (AUFS) which is copy-on-write
« AUFS

. Helps sharing common portions of the fs among containers
. Layers are read-only and the merger of these layers is visible to the processes
. Any changes go into the rd/wr layer

Docker Images

- Image

references

Never changes

Stack of read-only fs layers
Changes go in the topmost
writable layer created when the container starts

Changes are discarded by default when the container is
destroyed

© Docker Inc.

- Where to get Docker Images from?

https://reqistry.hub.docker.com/

Similar to what GitHub is for Git - think “git repository for
Images”

Use your own private registry e.g. pull the docker registry
Image and run it in a container

https://registry.hub.docker.com/

Docker Containers

Container

« Read-write layer

 Information about Parent Image (RO layers)

« Unique id + network configuration + resource limits
Containers have state: running / exited

Exited container
« preserves file system state
« does NOT preserve memory state

Containers can be promoted to an Image by using “docker
commit”

=>» Takes a snapshot of the whole filesystem (RW+RO)

Docker paradigm shift

- Motto: “write-once-run-anywhere”

- Developers:
« Concentrate on building applications
« Run them inside containers
« Avoid the all too common: “But it works fine on my machine ...” ©

- Sysadmins/operations/DevOps:
« Keep containers running in production
« No more “dependency hell” ... almost ... at least not traditional ones ©

= Clean separation of roles

= Single underlying tool which (hopefully) simplifies:
= code management
= deployment process

Docker workflow automation

- Dockerfile
« Repeatable method to build Docker images — makefile equivalent

. DSL(Domain Specific Language) representing instructions on setting up
an image

. Used together with the context by the “docker build” command to create a
new image

Use the fedora base image
FROM fedora:20
MAINTAINER Elvin Sindrilaru, esindril@cern.ch, CERN 2016

Add a file from the host to the container
ADD testfile.dat /tmp/testfile

Install some packages

RUN yum -y --nogpg install screen emacs

Command executed when container started
CMD /bin/bash

Contalners orchestration

Orchestration describes the automated
arrangement, coordination and management of
complex systems, middleware and services.

Library dependencies “sort of” become
container dependencies

Container data management

- Docker volume
« Directory separated from the container’s root filesystem

« Managed by the docker daemon and can be shared
among containers

« Changes to the volume are not captured by the image

« Used to mount a directory of the host system inside the
container

- Data-only containers
« EXpose a volume to other data-accessing containers

« Prevents volumes from being destroyed if containers stop
or crash

Port binding and linking containers

Bind container ports to host ports using the “-p” flag

Not all containers need to bind internal ports to host ports
« E.g. only front-end applications need to connect to backend services

Linking within the same host

. Profit from the unified view that the docker daemon has over all
running containers

e Use the --link option: docker run --link CONTAINER _ID:ALIAS ...
« Effectively alters the /etc/hosts file

Cross host linking
« Requires a distributed, consistent discovery service

« Needs a distributed key-value store to keep info about running
containers e.g. etcd

« Application must be aware of the discovery service

Orchestration tools/frameworks

« Docker Machine, Compose and Swarm

« Kubernetes
o https://github.com/GooqgleCloudPlatform/kubernetes

« Shipyard
e https://qithub.com/shipyard/shipyard

« LXC/LXD/CGManage
« https://linuxcontainers.orq/

https://github.com/GoogleCloudPlatform/kubernetes
https://github.com/shipyard/shipyard
https://linuxcontainers.org/

Security considerations

Docker containers are started with a reduced capability
set which restricts:

« Mount/unmount devices
« Managing raw sockets
« Some fs operations

- Fine-grained control of capabilities using the docker --
cap-add --cap-drop options

- End-goal is to run even the Docker daemon as a non-root
user and delegate operations to dedicated subprocesses

- Keep the host Kernel updated with the latest security
patches

Docker — Benefits

- Portable deployment across machines — overcomes machine specific
configuration issues

- Application-centric — optimized for deployment of applications and not
machines

- Automatic build — can use any configuration management system
(puppet, chef, ansible etc.) to automate the build of containers

- Versioning - git like capabilities to track container versions

- Component reuse — any container can become a base image

- Sharing — use the public registry to distribute container images, just like a
git repository

www.cern.ch

	Slide Number 1
	Linux containers and Docker
	Outline
	What is a container?
	Linux containers
	Linux namespaces (1)
	Linux namespaces (2)
	Linux namespaces (3)
	Linux cgroups (1)
	Linux cgroups (2)
	Linux containers a.k.a LXC
	Linux containers – CLI
	Docker containers
	Docker interaction
	Docker client-server interaction
	VMs vs. Docker containers
	Docker filesystem
	Docker Images
	Docker Containers
	Docker paradigm shift
	Docker workflow automation
	Containers orchestration
	Container data management
	Port binding and linking containers
	Orchestration tools/frameworks
	Security considerations
	Docker – Benefits
	Slide Number 28

