
Introduction to HTCondor

Andrew Lahiff
Distributed Computing Infrastructure Group,

Rutherford Appleton Laboratory






GridKa School 2016, Karlsruhe



Outline
•  Introduc)on	
•  HTCondor	as	a	batch	system	
•  Expanding	a	HTCondor	pool	across	the	grid	&	clouds	
•  LHC	usage	of	HTCondor	



HTCondor
•  Open	source	so?ware	for	distributed	high	
throughput	compu)ng	

•  More	specifically,	it	is:	
–  a	job	scheduler	
–  a	resource	manager	
–  a	workflow	management	system	



HTC vs HPC
•  High	Performance	Compu)ng	

(HPC)	
–  Run	parallel	so?ware	over	many	

processes	simultaneously	
–  Generally	small	numbers	of	jobs	

but	large	amounts	of	compu)ng	
power	required	

–  Short	periods	of	)me	
•  High	Throughput	Compu)ng	

(HTC)	
–  Running	mul)ple	independent	

instances	of	so?ware	on	mul)ple	
processors	at	the	same	)me	

–  Long	)me	periods	
–  Generally	runs	on	clusters	of	

commodity	hardware	



An example of HTC
•  Consider	the	CERN	Large	Hadron	Collider	

	

Interes)ng	collisions	are	recorded:	these	are	called	“events”	

Millions	of	protons	collide	every	second	
in	each	experiment	

	

Protons	accelerated	to	very	high	energies	



An example of HTC
•  Many	billions	of	independent	events	are	stored	

–  Understanding	what	happened	in	each	event	can	take	
minutes	of	CPU	)me	

Billions	of	events	where	each	takes	minutes	to	process	=	HTC	



History
•  HTCondor	was	developed	at	the	University	of	Wisconsin	

Madison	in	the	1980’s	
•  Mo)va)on	

–  many	worksta)ons	have	idle	cycles	wasted	
–  some	users	need	more	processing	power	than	their	worksta)on	
can	provide	

•  Designed	to	maximize	the	u)liza)on	of	desktop	
worksta)ons	
–  iden)fy	idle	worksta)ons	
–  run	background	jobs	on	them	without	impac)ng	the	owners	of	
the	worksta)ons	

–  when	worksta)on	owner	resumes	ac)vity,	remote	jobs	are	
checkpointed	&	moved	to	another	worksta)on	



Architecture of a HTCondor pool

collector	 nego)ator	

startd	

central	manager	

execute	machines	
(worker	nodes)	

startd	
startd	
startd	

startd	
startd	
startd	
startd	

startd	
startd	
startd	
startd	

startd	
startd	
startd	
startd	

schedd	users	

job	

submit	machine	job	

Can	run	2	central	managers	
for	high-availability	



ClassAds
•  Lists	of	informa)on	stored	about	each	job	and	
worker	node	(&	also	all	daemons)	
–  collector	stores	details	about	worker	nodes	
–  schedd	stores	details	about	each	job	

•  This	informa)on	is	stored	as	a	“ClassAd”	which	have	
the	format	
A_ributeName	=	Value	

				or	
A_ributeName	=	Expression	

ClassAds	are	an	important	&	powerful	feature	of	HTCondor	



ClassAds
•  ClassAds	can	state	facts	

–  the	job’s	executable	is	“cmsRun”	
–  the	machine’s	current	load	is	2.3	

•  ClassAds	can	state	requirements	
–  this	job	requires	a	machine	running	SL6	
–  this	machine	will	only	run	jobs	needing	8	CPUs	

•  ClassAds	can	state	preferences	
–  this	job	prefers	to	run	on	a	machine	with	low	CPU	load	
–  this	machine	prefers	to	run	jobs	from	the	physics	
department	



Job ClassAd
•  Example	(extract):	

	
	
	



Machine ClassAd
•  Example	(extract):	

	
	

	



Daemon ClassAd
•  Example	from	a	schedd	(extract):	

	
	

	



Match making
•  The	nego)ator	matches	machines	and	jobs	

–  Obtains	list	of	startds	from	collector	
–  Obtains	list	of	jobs	from	schedd(s)	
–  Generates	a	list	of	matches	
–  Informs	the	relevant	schedd(s)	

•  Also	takes	into	account	priori)es:	users,	groups,	jobs	
•  Match-making	involves	two	sides	

–  jobs	can	specify	requirements	&	preferences	
–  machines	can	specify	requirements	&	preferences	



Match making
•  When	a	job	has	been	matched	to	a	machine	

–  schedd	spawns	a	shadow	
•  Shadow	takes	ownership	of	the	running	job	

–  startd	spawns	a	starter	
•  Starter	takes	ownership	of	the	claimed	slot	

schedd	 startd	

shadow	 starter	

submit	machine	 execute	machine	

A	shadow	&	starter	are	created	for	every	running	job	



Scalability
•  A	condor_shadow	process	for	every	running	job	–	does	

this	scale?	
–  Lots	of	effort	in	recent	years	in	reducing	the	memory	footprint	
of	the	shadow	process	

–  Tests	have	demonstrated	over	40,000	running	jobs	on	a	single	
schedd	

–  Can	run	mul)ple	schedds	
•  Also	useful	for	redundancy	

•  Collector	scaling	
–  Can	run	mul)ple	secondary	collectors	

•  Startds	send	ClassAds	to	the	secondary	collectors	
•  Secondary	collectors	forward	the	updates	to	the	top-level	collector	



Running jobs
•  Simple	example	

Submit	descrip)on	file	



Running jobs
•  Simple	example	

Submit	job	



Running jobs
•  Simple	example	

Check	status	of	jobs	



Queues
•  Tradi)onal	batch	systems	have	the	concept	of	
“queues”	
–  when	you	submit	a	job	you	need	to	specify	a	queue	
–  queues	for	different	job	lengths,	different	memory	
requirements,	serial	or	parallel	jobs,	...	

•  With	HTCondor	you	don’t	do	this	
–  jobs	should	specify	what	resources	they	require	

•  CPUs,	memory,	disk,	GPUs,	...	

–  can	configure	jobs	to	be	killed	a?er	specified	CPU	&	wall	
)me	limits	



Running jobs
•  A	more	advanced	submit	descrip)on	file	



Running jobs

Job	requires	4	CPUs	&	8	GB	memory	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Copy	file	input.dat	to	worker	node	
(important	if	no	shared	storage)	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Set	names	of	files	to	contain	stdout/err	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Transfer	output	files	from	worker	node	
back	to	submit	host	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Run	job	on	specific	worker	node	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Remove	job	if	it	has	been	running	
for	more	than	24	hours	

•  A	more	advanced	submit	descrip)on	file	



Workflow management
•  Some)mes	you	need	to	run	more	than	just	
lots	of	independent	jobs	

•  DAGMan:	Directed	Acyclic	Graph	Manager	
–  A	DAG	can	represent	a	set	of	computa)ons	
–  Input,	output	or	execu)on	of	one	or	more	of	
the	computa)ons	depends	on	other	
computa)ons	

•  Submit	a	DAGMan	job	to	HTCondor	
–  HTCondor	then	submits	the	individual	jobs	&	
enforces	the	dependencies	

A	

B	 C	

D	

E	



Universes
•  A	universe	specifies	a	HTCondor	run)me	
environment	

Universe	

Vanilla	 run	any	executable	

Standard	 run	executables	linked	to	HTCondor	libraries,	supports	
checkpoin)ng	

Parallel	 jobs	that	span	mul)ple	machines	(e.g.	MPI)	

Docker	 executable	run	inside	a	Docker	container	

VM	 instan)ate	a	virtual	machine	on	a	worker	node	

Grid	 run	jobs	on	another	HTCondor	pool	or	the	grid,	or	
instan)ate	a	virtual	machine	on	a	cloud	

Local	 a	job	which	runs	immediately	on	the	submit	machine,		
useful	for	meta-schedulers	



Grid universe
•  Also	known	as	HTCondor-G	
•  Example	



Grid universe
•  Checking	status	of	job:	

Running	a	job	on	a	remote	site	is	just	as	easy	as	running	a	job	locally	



Grid universe
•  Can	instan)ate	cloud	VMs	using	EC2	
•  Submit	descrip)on	file:	



Grid universe
•  Submit	job	as	normal	

•  Query	status	

In	HTCondor	a	“job”	can	be	a	virtual	machine	on	a	remote	cloud	



Job router
•  Job	router	is	a	HTCondor	daemon	which	transforms	
jobs	according	to	a	configurable	policy	
–  Edits	job	ClassAds	
–  Can	specify	mul)ple	policies	with	job	requirements	for	
each	

–  Can	specify	how	to	detect	failed	jobs	
–  Black	hole	detec)on	

•  Simple	example	
–  If	user	X’s	jobs	have	been	idle	for	more	than	2	hours,	
convert	to	Grid	universe	



Dynamic environments
•  Unlike	many	other	batch	systems,	the	central	
manager	doesn’t	require	a	list	of	worker	nodes	
–  It	is	the	responsibility	of	worker	nodes	to	adver)se	
themselves	to	the	collector	

–  The	collector	maintains	a	list	of	worker	nodes	
–  If	a	worker	node	goes	away,	it	will	eventually	disappear	
from	the	collector	&	no	longer	be	matched	to	jobs	

•  This	makes	HTCondor	an	ideal	choice	for	situa)ons	
where	there	are	dynamic	resources	
–  Dynamically	create	worker	nodes	on	demand	



Dynamic environments
•  Allows	for	possibili)es	including:	

–  Elas)c	HTCondor	pool	on	a	cloud	
•  all	worker	nodes	are	on	cloud	VMs	
•  (third-party)	mechanism	to	create	worker	node	VMs	as	needed	
•  size	of	HTCondor	pool	depends	on	number	of	jobs	

–  Burs)ng	a	HTCondor	pool	into	a	cloud	
•  dedicated	HTCondor	pool	on-premises	
•  when	local	pool	runs	out	of	resources,	worker	nodes	are	created	
on	cloud	VMs	(private	and/or	public	clouds)	

•  example:	at	the	RAL	Tier-1	we	do	this	to	make	use	of	idle	
resources	in	our	private	cloud	

Can	use	HTCondor	to	aggregate	mul)ple	clouds	(&	local	resources)	



Flocking
•  Federa)on	of	HTCondor	pools	

–  idle	jobs	from	one	HTCondor	pool	can	“flock”	to	another	
pool	which	has	free	resources	

collector	 nego)ator	

startd	

schedd	

user	

job	

startd	
startd	
startd	
startd	

collector	 nego)ator	

startd	

schedd	

startd	
startd	
startd	
startd	

Site	A	 Site	B	



GlideinWMS
•  Aggrega)on	of	many	unrelated	HTC	systems	into	a	
single	overlay	HTCondor	pool	
–  	Submit	jobs,	which	themselves	are	HTCondor	worker	
nodes,	to	external	resources	

•  Main	func)on	of	GlideinWMS	is	resource	
provisioning	
–  decides	when	more	resources	are	needed	
–  decides	where	to	get	the	resources	from	
–  validates	&	configures	them	

Users	see	just	a	standard	HTCondor	pool,	but	the	worker	nodes	could	be	
all	over	the	world	



GlideinWMS
•  GlideinWMS	composed	of	

–  User	pool	
•  A	HTCondor	pool	which	users	submit	jobs	to	

–  VO	frontend	
•  matches	idle	jobs	to	entries	(queues	at	sites)	
•  instructs	the	glidein	factory	to	increase	or	decrease	the	number	of	
glideins	in	each	entry	

–  Glidein	factory	
•  submits	glideins	to	grid	sites	using	HTCondor-G	
•  instan)ates	VMs	on	clouds	using	HTCondor-G	

A	glidein	is	a	properly-configured	HTCondor	execu)on	node	submi_ed	as	a	grid	job	



GlideinWMS architecture

collector	 nego)ator	

central	manager	

schedd	
job	

submit	machine	

glidein	
factory	

VO	
frontend	

startd	

grid/cloud	
sites	

schedd	
job	

glideinWMS	

job	or	VM	

•  VO	frontend	matches	idles	jobs	
to	entries	

•  Glidein	factory	creates	startds	
•  Nego?ator	matches	jobs	to	

startds	



HTCondor & the LHC
•  HTCondor	plays	many	important	roles	in	compu)ng	
for	the	Large	Hadron	Collider	

•  It’s	used	
–  as	a	batch	system	
–  as	a	grid	compu)ng	element	
–  as	an	overlay	batch	system	
–  to	provision	resources	
–  as	a	cloud	batch	system	
–  to	manage	workflows	



LHC computing
•  Not	just	a	single	site,	but	many	sites	

–  need	to	be	able	to	efficiently	make	use	of	all	these	
distributed	resources	

Tier-0	(CERN)	
•  custodial	storage	
•  first-pass	reconstruc)on	
Tier-1s	
•  custodial	storage	
•  reprocessing	
Tier-2s	
•  event	simula)on	
•  end-user	analysis	
Tier-3s	
•  smaller	facili)es		
		



HTCondor as a batch system
•  Used	as	a	batch	system	at	many	US	sites	for	a	long	)me	
•  In	recent	years	also	being	adopted	by	European	sites	

–  Started	with	the	RAL	Tier-1	(UK)	in	2013	
•  pool	currently	contains	~20,000	cores	

–  Many	European	Tier-2s	have	since	migrated	
–  CERN	currently	migra)ng	to	HTCondor	

•  Reasons	for	moving	to	HTCondor	
–  Scalability	
–  Stability	
–  Ability	to	handle	dynamic	resources	



HTCondor as a grid compute element

•  Compute	Element:	grid	job	gateway	to	a	site	
–  Provide	a	single	interface	to	different	batch	system	
technologies	(HTCondor,	LSF,	GE,	SLURM,	PBS)	

•  Several	types	of	CE	
–  CREAM,	ARC,	recently	HTCondor-CE	

Submit	host	

schedd	

HTCondor-CE	

Job	 Grid	job	

Routed	job	
Job	router	transform	

schedd	

PBS	job	 PBS	

HTCondor-CE	uses	
only	exis?ng	HTCondor	
func?onality	

Experiment	



HTCondor as an overlay pool
•  CMS	(Compact	Muon	Solenoid)	is	one	of	the	main	4	
LHC	par)cle	physics	experiments	at	CERN	

•  Uses	a	single	HTCondor	pool	with	glideinWMS	

Over	150,000	simultaneous	running	jobs	
(each	colour	is	a	different	site)	

Priori?za?on	of	global	resources	



HTCondor managing workflows
•  CRAB3	–	CMS	Remote	Analysis	Builder	
•  Tool	used	by	CMS	physicists	to	carry	out	analysis	

	
•  HTCondor	DAGMan	used	to	manage	tasks	

–  Handles	failures	
– Manages	transfer	of	output	to	remote	site	

code	

config	

input	dataset	

split	into	
jobs	

job	

job	

job	

remote	
storage	

physicist	



Summary
•  HTCondor	as	a	batch	system	

–  Powerful	
–  Very	scalable	
–  Ideal	for	dynamic	environments	

•  HTCondor	beyond	a	“standard”	batch	system	
–  Can	provision	resources	
–  Can	aggregate	compute	resources	around	the	world	

•  HTCondor	plays	a	crucial	role	in	compu)ng	for	the	
Large	Hadron	Collider	


