Science & Technology
@ Facilities Council

Andrew Lahiff

Distributed Computing Infrastructure Group,

Rutherford Appleton Laboratory

GridKa School 2016, Karlsruhe

Outline

Introduction

HTCondor as a batch system

Expanding a HTCondor pool across the grid & clouds
LHC usage of HTCondor

HTCondor

* Open source software for distributed high
throughput computing

* More specifically, it is:
— a job scheduler

— aresource manager
— a workflow management system

HIConddr

High Throughput Computing

HTC vs HPC

* High Performance Computing
(HPC)

— Run parallel software over many
processes simultaneously

— Generally small numbers of jobs
but large amounts of computing
power required

— Short periods of time
* High Throughput Computing
(HTC)

— Running multiple independent
instances of software on multiple
processors at the same time

— Long time periods

— Generally runs on clusters of
commodity hardware

An example of HTC

* Consider the CERN Large Hadron Collider

Protons accelerated to very high energies

Millions of protons collide every second
in each experiment

Interesting collisions are recorded: these are called “events”

An example of HTC

 Many billions of independent events are stored

— Understanding what happened in each event can take
minutes of CPU time

. %l oM Experiment & the LHC, CERN

N\ \ Wi
Datagsorded: 2010—)L|1}9\0<sg5:58.83911 GMT(04:25:68 GEST,
“Run/ EVSR 39779/49941&3&_\ i J
A\

Billions of events where each takes minutes to process = HTC

History

HTCondor was developed at the University of Wisconsin
Madison in the 1980’s

Motivation
— many workstations have idle cycles wasted
— some users need more processing power than their workstation
can provide
Designed to maximize the utilization of desktop
workstations
— identify idle workstations

— run background jobs on them without impacting the owners of
the workstations

— when workstation owner resumes activity, remote jobs are
checkpointed & moved to another workstation

Condor - A Hunter of Idle Workstations

Michael J. Litzkow, Miron Livny, and Matt W. Mutka

Architecture of a HTCondor pool

central manager

collector negotiator

Can run 2 central managers
for high-availability
users schedd

submit machine

execute machines
(worker nodes)

ClassAds

* Lists of information stored about each job and
worker node (& also all daemons)
— collector stores details about worker nodes
— schedd stores details about each job

 This information is stored as a “ClassAd” which have
the format —

AttributeName = Value Q}‘&;&}%{@

or
AttributeName = Expression

ClassAds are an important & powerful feature of HTCondor

ClassAds

e (ClassAds can state facts
— the job’s executable is “cmsRun”
— the machine’s current load is 2.3

* ClassAds can state requirements

— this job requires a machine running SL6

— this machine will only run jobs needing 8 CPUs
e ClassAds can state preferences

— this job prefers to run on a machine with low CPU load

— this machine prefers to run jobs from the physics
department

Job ClassAo

 Example (extract):

Cmd = "/home/tierl/alahiff/tutorial/basic.sh"

Arguments = ""

Err = "jo0b.92537.0.err"

OQut = "job.92537.0.out"

UserLog = "/home/tierl/alahiff/tutorial/job.92537.0. log"
RequestCpus = 1
RequestMemory =
TransferInput =
JobUniverse = 5
Owner = "alahiff"

JobDescription = "testjobl"
WhenToTransferOQutput = "ON_EXIT"
ShouldTransferFiles = "YES"

500
"input.dat, inputl.dat”

Machine ClassAo

 Example (extract):

CondorVersion = "$CondorVersion: 8.4.6 Apr 20 2016 BuildID: 364106 %"
MyType = "Machine"

OpSys = "LINUX"

OpSysAndVer = "SL&6"

TotalMemory = 174150

TotalCpus = 32.0

TotalDisk = 3388883196

Name = "slotl@lcgl986.gridpp.rl.ac.uk"
Machine = "1cg1986.gridpp.rl.ac.uk"
Start = true

TotalLoadAvg = 23.85

Activity = "Idle”

EnteredCurrentState = 1470818572

Daemon ClassAo

 Example from a schedd (extract):

JobsExecFailed = 0
RecentJobsExitedNormally = 258
TotalHeldJobs = @
JobsRestartReconnectsFailed = 5
FileTransferDownloadBytesPerSecond_1d = 519425.6784118257
JobsCompleted = 639744
RecentJobsShouldHold = 0
RecentStatsLifetime = 1200
FileTransferMBWaitingToUpload = 0.0
RecentJobsSubmitted = 195

MyType = "Scheduler"

TotalldleJdobs = 219

MyCurrentTime = 1472380803
TotalFlockedJobs = 0
JobsExitedNormally = 639744
Machine = "arc-ce@2.gridpp.rl.ac.uk"
RecentJobsCompleted = 258
JobsStarted = 648016
RecentJobsKilled = 8

MaxJobsRunning = 10000
ShadowsStarted = 499631

\Vatch making

* The negotiator matches machines and jobs
— Obtains list of startds from collector
— Obtains list of jobs from schedd(s)
— Generates a list of matches
— Informs the relevant schedd(s)

* Also takes into account priorities: users, groups, jobs
 Match-making involves two sides

— jobs can specify requirements & preferences
— machines can specify requirements & preferences

\Vatch making

* When a job has been matched to a machine
— schedd spawns a shadow
* Shadow takes ownership of the running job

— startd spawns a starter
 Starter takes ownership of the claimed slot

submit machine execute machine

- ——————————— - — - -
|

A shadow & starter are created for every running job

Scalapility

A condor_shadow process for every running job — does

this scale?
— Lots of effort in recent years in reducing the memory footprint
of the shadow process
— Tests have demonstrated over 40,000 running jobs on a single
schedd

— Can run multiple schedds
e Also useful for redundancy

* Collector scaling

— Can run multiple secondary collectors
e Startds send ClassAds to the secondary collectors
» Secondary collectors forward the updates to the top-level collector

 Simple example

-bash-4.1% cat job.sub
universe = vanilla
executable = /bin/sleep <

arguments = 300
queue 5

-bash-4.1% condor_submit job.sub
Submitting job(s).....

5 job(s) submitted to cluster 92689.

-bash-4.1% condor_q 92689

—— Schedd: lcqui@3.gridpp.rl.ac.uk :

ID OWNER SUBMITTED
92689.0 alahiff 8/28 13:12
92689.1 alahiff 8/28 13:12
92689.2 alahiff 8/28 13:12
92689.3 alahiff 8/28 13:12
92689.4 alahiff 8/28 13:12

5 jobs; @ completed, @ removed, 0

<130.246.180.41:96187...

RuNNINg jolbs

RUN_TIME ST PRI SIZE
0+00:00:17 R

0+00:00:
0+00:00:
0+00:00:
0+00:00:

1

1
1
1

7R
6 R
7R
6 R

SRS RS I RS

0.0

(SRS IS I
(SRS IS I

Submit description file

CMD
sleep 300
sleep 300
sleep 300
sleep 300
sleep 300

idle, 5 running, @ held, @ suspended

 Simple example

-bash-4.1% cat job.sub
universe = vanilla
executable = /bin/sleep
arguments = 300

queue 5

-bash-4.1%$ condor_submit job.sub
Submitting job(s).....

5 job(s) submitted to cluster 92689.

-bash-4.1% condor_q 92689

—— Schedd: lcqui@3.gridpp.rl.ac.uk : <130.246.180.41:96187...

ID OWNER SUBMITTED
92689.0 alahiff 8/28 13:12
92689.1 alahiff 8/28 13:12
92689.2 alahiff 8/28 13:12
92689.3 alahiff 8/28 13:12
92689.4 alahiff 8/28 13:12

5 jobs; @ completed, @ removed, 0

RuNNINg jolbs

Submit job

RUN_TIME ST PRI SIZE
0+00:00:17 R

0+00:00:
0+00:00:
0+00:00:
0+00:00:

1

1
1
1

7R
6 R
7R
6 R

SRS RS I RS

0.0

(SRS IS I
(SRS IS I

CMD
sleep 300
sleep 300
sleep 300
sleep 300
sleep 300

idle, 5 running, @ held, @ suspended

RuNNINg jolbs

 Simple example

-bash-4.1% cat job.sub
universe = vanilla
executable = /bin/sleep
arguments = 300

queue 5

-bash-4.1% condor_submit job.sub

Submitting job(s).....

5 job(s) submitted to cluster 92689.

-bash-4.1$%$ condor_q 92689

—— Schedd: lcgui@3.gridpp.

ID OWNER
92689.0 alahiff
92689.1 alahiff
92689.2 alahiff
92689.3 alahiff
92689.4 alahiff

rl.ac.uk :
SUBMITTED
8/28 13:12
8/28 13:12
8/28 13:12
8/28 13:12
8/28 13:12

Check status of jobs

<130.246.180.41:96187...
RUN_TIME ST PRI SIZE
0+00:00:17 R

0+00:00:
0+00:00:
0+00:00:
0+00:00:

1

1
1
1

7R
6 R
7R
6 R

0

0
0
0
0

0.0

CMD
sleep 300
sleep 300
sleep 300
sleep 300
sleep 300

5 jobs; @ completed, @ removed, @ idle, 5 running, @ held, @ suspended

Queues

* Traditional batch systems have the concept of
“gqueues”
— when you submit a job you need to specify a queue

— queues for different job lengths, different memory
requirements, serial or parallel jobs, ...

 With HTCondor you don’t do this

— jobs should specify what resources they require
* CPUs, memory, disk, GPUs, ...

— can configure jobs to be killed after specified CPU & wall
time limits

RuNNINg jolbs

A more advanced submit description file

universe = vanilla
executable = run.sh

request_cpus

=4
request_memory =

8000
transfer_input_files = input.dat

output = job.$(cluster).$(process).out
error = job.$(cluster).$(process).err

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

requirements = Machine =7?= "1cgllll.gridpp.rl.ac.uk"
periodic_remove = JobStatus == 2 && (CurrentTime - EnteredCurrentStatus > 24%60%60)

queue 1

RuNNINg jolbs

A more advanced submit description file

universe = vanilla
executable = run.sh

request_cpus = 4 <
request_memory = 8000

Job requires 4 CPUs & 8 GB memory

transfer_input_files = input.dat

output = job.$(cluster).$(process).out
error = job.$(cluster).$(process).err

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

requirements = Machine =7?= "1cgllll.gridpp.rl.ac.uk"

periodic_remove = JobStatus == 2 && (CurrentTime - EnteredCurrentStatus > 24%60%60)

queue 1

RuNNINg jolbs

A more advanced submit description file

universe = vanilla
executable = run.sh

request_cpus = 4
request_memory = 8000 Copy file input.dat to worker node

/ (important if no shared storage)
transfer_input_files = input.dat

output = job.$(cluster).$(process).out
error = job.$(cluster).$(process).err

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

requirements = Machine =7= "lcgllll.gridpp.rl.ac.uk"
periodic_remove = JobStatus == 2 && (CurrentTime - EnteredCurrentStatus > 24%60x%60)

queue 1

RuNNINg jolbs

A more advanced submit description file

universe = vanilla
executable = run.sh

request_cpus = 4
request_memory = 8000
transfer_input_files = input.dat Set names of files to contain stdout/err

output = job.$(cluster).$(process).out
error = job.$(cluster).$(process).err

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

requirements = Machine =7= "1cgllll.gridpp.rl.ac.uk"
periodic_remove = JobStatus == 2 && (CurrentTime - EnteredCurrentStatus > 24%60x%60)

queue 1

RuNNINg jolbs

A more advanced submit description file

universe = vanilla
executable = run.sh

request_cpus = 4
request_memory = 8000

transfer_input_files = input.dat

output = job.$(cluster).$(process).out
error = job.$(cluster).$(process).err

should_transfer_files = YES » Transfer output files from worker node
when_to_transfer_output = ON_EXIT back to submit host

requirements = Machine =7?= "1cgllll.gridpp.rl.ac.uk"
periodic_remove = JobStatus == 2 && (CurrentTime - EnteredCurrentStatus > 24%60x%60)

queue 1

RuNNINg jolbs

A more advanced submit description file

universe = vanilla
executable = run.sh

request_cpus = 4
request_memory = 8000

transfer_input_files = input.dat

output = job.$(cluster).$(process).out

error = job.$(cluster).$(process).err Run job on specific worker node

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

requirements = Machine =?= "1lcgllll.gridpp.rl.ac.uk"
periodic_remove = JobStatus == 2 && (CurrentTime - EnteredCurrentStatus > 24%60x%60)

queue 1

RuNNINg jolbs

A more advanced submit description file

universe = vanilla
executable = run.sh

request_cpus = 4
request_memory = 8000

transfer_input_files = input.dat

output = job.$(cluster).$(process).out

error = job.$(cluster).$(process).err o .
Remove job if it has been running

should_transfer_files = YES for more than 24 hours
when_to_transfer_output = ON_EXIT

requirements = Machine =7= "lcgllll.gridpp.rl.ac.uk"
periodic_remove = JobStatus == 2 && (CurrentTime - EnteredCurrentStatus > 24%60x60)

queue 1

VWorkflow management

e Sometimes you need to run more than just
lots of independent jobs

e DAGMan: Directed Acyclic Graph Manager
— A DAG can represent a set of computations

— Input, output or execution of one or more of
the computations depends on other
computations

 Submit a DAGMan job to HTCondor

— HTCondor then submits the individual jobs &
enforces the dependencies

Jniverses

* A universe specifies a HTCondor runtime

environment

Vanilla

Standard

Parallel
Docker
VM
Grid

Local

run any executable

run executables linked to HTCondor libraries, supports
checkpointing

jobs that span multiple machines (e.g. MPI)
executable run inside a Docker container
instantiate a virtual machine on a worker node

run jobs on another HTCondor pool or the grid, or
instantiate a virtual machine on a cloud

a job which runs immediately on the submit machine,
useful for meta-schedulers

GGrid universe

 Also known as HTCondor-G

 Example

-bash-4.1% cat grid.sub

universe = grid

grid_resource = nordugrid t2arc@l.physics.ox.ac.uk
executable = test.sh

Log = log.$(Cluster).$(Process)

Output = out.$(Cluster).$(Process)

Error = err.$(Cluster).$(Process)
should_transfer_files = YES

when_to_transfer_output = ON_EXIT
queue 1

-bash-4.1%$ condor_submit grid.sub
Submitting job(s).

1 job(s) submitted to cluster 16240.

GGrid universe

* Checking status of job:

-bash-4.1%$ condor_q

—— Submitter: lcgui@3.gridpp.rl.ac.uk : <130.246.180.41:45033> : lcgui@3.gridpp.rl.ac.uk
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

16240.0 alahiff 5/30 15:42 0+00:00:00 I © 0.0 test.sh

1 jobs; @ completed, @ removed, 1 idle, @ running, @ held, @ suspended

-bash-4.1% condor_q —-grid
—— Submitter: lcgui@3.gridpp.rl.ac.uk : <130.246.180.41:45033> : lcgui@3.gridpp.rl.ac.uk

ID OWNER STATUS GRID->MANAGER HOST GRID_JOB_ID
16240.0 alahiff INLRMS:R nordugrid->[?] t2arc@l.phys N84MDm8BdAknDOVB

Running a job on a remote site is just as easy as running a job locally

GGrid universe

* Can instantiate cloud VMs using EC2
e Submit description file:

universe = grid

grid_resource = ec2 http://cloud.mydomain:4567
executable = $(ec2_ami_id)

log = $(executable).$(cluster).$(Process).log
ec2_access_key_id = /home/alahiff/AccessKeyID
ec2_secret_access_key = /home/alahiff/SecretAccessKey
ec2_ami_id = ami-00000067

ec2_instance_type = ml.large

ec2_keypair_file = $(executable).$(cluster).$(Process).pem
ec2_user_data_file = /home/alahiff/my_user_data

queue 5

GGrid universe

* Submit job as normal

-bash-3.2% condor_submit vms.sub
Submitting job(s).u...
5 job(s) submitted to cluster 86.

* Query status

-bash-3.2% condor_q -af EC2InstanceName EC2RemoteVirtualMachineName
1-00003557 130.246.223.217
1-00003559 130.246.223.243
1-00003555 130.246.223.208
1-00003558 130.246.223.219
1-00003556 130.246.223.211

In HTCondor a “job” can be a virtual machine on a remote cloud

Job router

e Job router is a HTCondor daemon which transforms
jobs according to a configurable policy
— Edits job ClassAds

— Can specify multiple policies with job requirements for
each

— Can specify how to detect failed jobs
— Black hole detection

* Simple example

— If user X’s jobs have been idle for more than 2 hours,
convert to Grid universe

Dynamic environments

* Unlike many other batch systems, the central
manager doesn’t require a list of worker nodes

— It is the responsibility of worker nodes to advertise
themselves to the collector

— The collector maintains a list of worker nodes

— If a worker node goes away, it will eventually disappear
from the collector & no longer be matched to jobs

* This makes HTCondor an ideal choice for situations
where there are dynamic resources

— Dynamically create worker nodes on demand

Dynamic environments

* Allows for possibilities including:
— Elastic HTCondor pool on a cloud

 all worker nodes are on cloud VMs
* (third-party) mechanism to create worker node VMs as needed
 size of HTCondor pool depends on number of jobs

— Bursting a HTCondor pool into a cloud
* dedicated HTCondor pool on-premises

* when local pool runs out of resources, worker nodes are created
on cloud VMs (private and/or public clouds)

e example: at the RAL Tier-1 we do this to make use of idle
resources in our private cloud

Can use HTCondor to aggregate multiple clouds (& local resources)

-locking

* Federation of HTCondor pools
— idle jobs from one HTCondor pool can “flock” to another

user

Site A

pool which has free resources

collector negotiator

collector negotiator

GlideinWMS

e Aggregation of many unrelated HTC systems into a
single overlay HTCondor pool

— Submit jobs, which themselves are HTCondor worker
nodes, to external resources

e Main function of GlideinWMS is resource
provisioning
— decides when more resources are needed

— decides where to get the resources from
— validates & configures them

Users see just a standard HTCondor pool, but the worker nodes could be
all over the world

GlideinWMS

e GlideinWMS composed of

— User pool

* A HTCondor pool which users submit jobs to

— VO frontend

* matches idle jobs to entries (queues at sites)

* instructs the glidein factory to increase or decrease the number of
glideins in each entry

— Glidein factory
* submits glideins to grid sites using HTCondor-G
 instantiates VMs on clouds using HTCondor-G

A glidein is a properly-configured HTCondor execution node submitted as a grid job

GlideinWMS architecture

glideinWMS

collector negotiator

central manager

job

schedd

schedd submit machine

S
grid/cloud
sites

HTCondor & the LHC

 HTCondor plays many important roles in computing
for the Large Hadron Collider

* It's used
— as a batch system

— as a grid computing element

P

— as an overlay batch system
— to provision resources

— as a cloud batch system

— to manage workflows

L HC computing

Not just a single site, but many sites

— need to be able to efficiently make use of all these
distributed resources

Tier-2 sites

(about 140) R Tier-0 (CERN)

‘ f * custodial storage
* first-pass reconstruction
Tier-1s
* custodial storage
* reprocessing
Tier-2s
e event simulation
e end-user analysis
Tier-3s
* smaller facilities

HTCondor as a batch system

* Used as a batch system at many US sites for a long time

* Inrecent years also being adopted by European sites
— Started with the RAL Tier-1 (UK) in 2013

* pool currently contains ~20,000 cores
— Many European Tier-2s have since migrated
— CERN currently migrating to HTCondor

* Reasons for moving to HTCondor
— Scalability
— Stability
— Ability to handle dynamic resources

HTCondor as a grid compute element

Compute Element: grid job gateway to a site

— Provide a single interface to different batch system
technologies (HTCondor, LSF, GE, SLURM, PBS)

e Several types of CE P ——
— CREAM, ARC, recently HTCondor-CE Sl G e
functionality

Submit host
schedd

HTCondor-CE

schedd

) router transform

Experiment |}

HTCondor as an overlay pool

e CMS (Compact Muon Solenoid) is one of the main 4
LHC particle physics experiments at CERN

* Uses a single HTCondor pool with glideinWMS

faydashb e Running Job Cores
30 Days from 2016-01-29 to 2016-02-29
160.000 T T T T T L T

Prioritization of global resources

u
Running jobs
ours from 2015-02-03 00:00 to 2015-02-04 23:59

8 8 3 3 8 8
8] 8 8 8 8

Over 150,000 simultaneous running jobs 1)
. : - ow prio MC
(each colour is a different site)

Reprocessing

High prie MC

HTCondor managing workflows

* CRAB3 — CMS Remote Analysis Builder
* Tool used by CMS physicists to carry out analysis

storage

physicist

e HTCondor DAGMan used to manage tasks
— Handles failures

— Manages transfer of output to remote site

summary

e HTCondor as a batch system
— Powerful
— Very scalable
— ldeal for dynamic environments

e HTCondor beyond a “standard” batch system
— Can provision resources
— Can aggregate compute resources around the world

 HTCondor plays a crucial role in computing for the
Large Hadron Collider

