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HTCondor
•  Open	source	so?ware	for	distributed	high	
throughput	compu)ng	

•  More	specifically,	it	is:	
–  a	job	scheduler	
–  a	resource	manager	
–  a	workflow	management	system	



HTC vs HPC
•  High	Performance	Compu)ng	

(HPC)	
–  Run	parallel	so?ware	over	many	

processes	simultaneously	
–  Generally	small	numbers	of	jobs	

but	large	amounts	of	compu)ng	
power	required	

–  Short	periods	of	)me	
•  High	Throughput	Compu)ng	

(HTC)	
–  Running	mul)ple	independent	

instances	of	so?ware	on	mul)ple	
processors	at	the	same	)me	

–  Long	)me	periods	
–  Generally	runs	on	clusters	of	

commodity	hardware	



An example of HTC
•  Consider	the	CERN	Large	Hadron	Collider	

	

Interes)ng	collisions	are	recorded:	these	are	called	“events”	

Millions	of	protons	collide	every	second	
in	each	experiment	

	

Protons	accelerated	to	very	high	energies	



An example of HTC
•  Many	billions	of	independent	events	are	stored	

–  Understanding	what	happened	in	each	event	can	take	
minutes	of	CPU	)me	

Billions	of	events	where	each	takes	minutes	to	process	=	HTC	



History
•  HTCondor	was	developed	at	the	University	of	Wisconsin	

Madison	in	the	1980’s	
•  Mo)va)on	

–  many	worksta)ons	have	idle	cycles	wasted	
–  some	users	need	more	processing	power	than	their	worksta)on	
can	provide	

•  Designed	to	maximize	the	u)liza)on	of	desktop	
worksta)ons	
–  iden)fy	idle	worksta)ons	
–  run	background	jobs	on	them	without	impac)ng	the	owners	of	
the	worksta)ons	

–  when	worksta)on	owner	resumes	ac)vity,	remote	jobs	are	
checkpointed	&	moved	to	another	worksta)on	



Architecture of a HTCondor pool
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ClassAds
•  Lists	of	informa)on	stored	about	each	job	and	
worker	node	(&	also	all	daemons)	
–  collector	stores	details	about	worker	nodes	
–  schedd	stores	details	about	each	job	

•  This	informa)on	is	stored	as	a	“ClassAd”	which	have	
the	format	
A_ributeName	=	Value	

				or	
A_ributeName	=	Expression	

ClassAds	are	an	important	&	powerful	feature	of	HTCondor	



ClassAds
•  ClassAds	can	state	facts	

–  the	job’s	executable	is	“cmsRun”	
–  the	machine’s	current	load	is	2.3	

•  ClassAds	can	state	requirements	
–  this	job	requires	a	machine	running	SL6	
–  this	machine	will	only	run	jobs	needing	8	CPUs	

•  ClassAds	can	state	preferences	
–  this	job	prefers	to	run	on	a	machine	with	low	CPU	load	
–  this	machine	prefers	to	run	jobs	from	the	physics	
department	



Job ClassAd
•  Example	(extract):	

	
	
	



Machine ClassAd
•  Example	(extract):	

	
	

	



Daemon ClassAd
•  Example	from	a	schedd	(extract):	

	
	

	



Match making
•  The	nego)ator	matches	machines	and	jobs	

–  Obtains	list	of	startds	from	collector	
–  Obtains	list	of	jobs	from	schedd(s)	
–  Generates	a	list	of	matches	
–  Informs	the	relevant	schedd(s)	

•  Also	takes	into	account	priori)es:	users,	groups,	jobs	
•  Match-making	involves	two	sides	

–  jobs	can	specify	requirements	&	preferences	
–  machines	can	specify	requirements	&	preferences	



Match making
•  When	a	job	has	been	matched	to	a	machine	

–  schedd	spawns	a	shadow	
•  Shadow	takes	ownership	of	the	running	job	

–  startd	spawns	a	starter	
•  Starter	takes	ownership	of	the	claimed	slot	

schedd	 startd	

shadow	 starter	

submit	machine	 execute	machine	

A	shadow	&	starter	are	created	for	every	running	job	



Scalability
•  A	condor_shadow	process	for	every	running	job	–	does	

this	scale?	
–  Lots	of	effort	in	recent	years	in	reducing	the	memory	footprint	
of	the	shadow	process	

–  Tests	have	demonstrated	over	40,000	running	jobs	on	a	single	
schedd	

–  Can	run	mul)ple	schedds	
•  Also	useful	for	redundancy	

•  Collector	scaling	
–  Can	run	mul)ple	secondary	collectors	

•  Startds	send	ClassAds	to	the	secondary	collectors	
•  Secondary	collectors	forward	the	updates	to	the	top-level	collector	



Running jobs
•  Simple	example	

Submit	descrip)on	file	



Running jobs
•  Simple	example	

Submit	job	



Running jobs
•  Simple	example	

Check	status	of	jobs	



Queues
•  Tradi)onal	batch	systems	have	the	concept	of	
“queues”	
–  when	you	submit	a	job	you	need	to	specify	a	queue	
–  queues	for	different	job	lengths,	different	memory	
requirements,	serial	or	parallel	jobs,	...	

•  With	HTCondor	you	don’t	do	this	
–  jobs	should	specify	what	resources	they	require	

•  CPUs,	memory,	disk,	GPUs,	...	

–  can	configure	jobs	to	be	killed	a?er	specified	CPU	&	wall	
)me	limits	



Running jobs
•  A	more	advanced	submit	descrip)on	file	



Running jobs

Job	requires	4	CPUs	&	8	GB	memory	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Copy	file	input.dat	to	worker	node	
(important	if	no	shared	storage)	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Set	names	of	files	to	contain	stdout/err	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Transfer	output	files	from	worker	node	
back	to	submit	host	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Run	job	on	specific	worker	node	

•  A	more	advanced	submit	descrip)on	file	



Running jobs

Remove	job	if	it	has	been	running	
for	more	than	24	hours	

•  A	more	advanced	submit	descrip)on	file	



Workflow management
•  Some)mes	you	need	to	run	more	than	just	
lots	of	independent	jobs	

•  DAGMan:	Directed	Acyclic	Graph	Manager	
–  A	DAG	can	represent	a	set	of	computa)ons	
–  Input,	output	or	execu)on	of	one	or	more	of	
the	computa)ons	depends	on	other	
computa)ons	

•  Submit	a	DAGMan	job	to	HTCondor	
–  HTCondor	then	submits	the	individual	jobs	&	
enforces	the	dependencies	

A	

B	 C	

D	

E	



Universes
•  A	universe	specifies	a	HTCondor	run)me	
environment	

Universe	

Vanilla	 run	any	executable	

Standard	 run	executables	linked	to	HTCondor	libraries,	supports	
checkpoin)ng	

Parallel	 jobs	that	span	mul)ple	machines	(e.g.	MPI)	

Docker	 executable	run	inside	a	Docker	container	

VM	 instan)ate	a	virtual	machine	on	a	worker	node	

Grid	 run	jobs	on	another	HTCondor	pool	or	the	grid,	or	
instan)ate	a	virtual	machine	on	a	cloud	

Local	 a	job	which	runs	immediately	on	the	submit	machine,		
useful	for	meta-schedulers	



Grid universe
•  Also	known	as	HTCondor-G	
•  Example	



Grid universe
•  Checking	status	of	job:	

Running	a	job	on	a	remote	site	is	just	as	easy	as	running	a	job	locally	



Grid universe
•  Can	instan)ate	cloud	VMs	using	EC2	
•  Submit	descrip)on	file:	



Grid universe
•  Submit	job	as	normal	

•  Query	status	

In	HTCondor	a	“job”	can	be	a	virtual	machine	on	a	remote	cloud	



Job router
•  Job	router	is	a	HTCondor	daemon	which	transforms	
jobs	according	to	a	configurable	policy	
–  Edits	job	ClassAds	
–  Can	specify	mul)ple	policies	with	job	requirements	for	
each	

–  Can	specify	how	to	detect	failed	jobs	
–  Black	hole	detec)on	

•  Simple	example	
–  If	user	X’s	jobs	have	been	idle	for	more	than	2	hours,	
convert	to	Grid	universe	



Dynamic environments
•  Unlike	many	other	batch	systems,	the	central	
manager	doesn’t	require	a	list	of	worker	nodes	
–  It	is	the	responsibility	of	worker	nodes	to	adver)se	
themselves	to	the	collector	

–  The	collector	maintains	a	list	of	worker	nodes	
–  If	a	worker	node	goes	away,	it	will	eventually	disappear	
from	the	collector	&	no	longer	be	matched	to	jobs	

•  This	makes	HTCondor	an	ideal	choice	for	situa)ons	
where	there	are	dynamic	resources	
–  Dynamically	create	worker	nodes	on	demand	



Dynamic environments
•  Allows	for	possibili)es	including:	

–  Elas)c	HTCondor	pool	on	a	cloud	
•  all	worker	nodes	are	on	cloud	VMs	
•  (third-party)	mechanism	to	create	worker	node	VMs	as	needed	
•  size	of	HTCondor	pool	depends	on	number	of	jobs	

–  Burs)ng	a	HTCondor	pool	into	a	cloud	
•  dedicated	HTCondor	pool	on-premises	
•  when	local	pool	runs	out	of	resources,	worker	nodes	are	created	
on	cloud	VMs	(private	and/or	public	clouds)	

•  example:	at	the	RAL	Tier-1	we	do	this	to	make	use	of	idle	
resources	in	our	private	cloud	

Can	use	HTCondor	to	aggregate	mul)ple	clouds	(&	local	resources)	



Flocking
•  Federa)on	of	HTCondor	pools	

–  idle	jobs	from	one	HTCondor	pool	can	“flock”	to	another	
pool	which	has	free	resources	
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startd	

collector	 nego)ator	
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GlideinWMS
•  Aggrega)on	of	many	unrelated	HTC	systems	into	a	
single	overlay	HTCondor	pool	
–  	Submit	jobs,	which	themselves	are	HTCondor	worker	
nodes,	to	external	resources	

•  Main	func)on	of	GlideinWMS	is	resource	
provisioning	
–  decides	when	more	resources	are	needed	
–  decides	where	to	get	the	resources	from	
–  validates	&	configures	them	

Users	see	just	a	standard	HTCondor	pool,	but	the	worker	nodes	could	be	
all	over	the	world	



GlideinWMS
•  GlideinWMS	composed	of	

–  User	pool	
•  A	HTCondor	pool	which	users	submit	jobs	to	

–  VO	frontend	
•  matches	idle	jobs	to	entries	(queues	at	sites)	
•  instructs	the	glidein	factory	to	increase	or	decrease	the	number	of	
glideins	in	each	entry	

–  Glidein	factory	
•  submits	glideins	to	grid	sites	using	HTCondor-G	
•  instan)ates	VMs	on	clouds	using	HTCondor-G	

A	glidein	is	a	properly-configured	HTCondor	execu)on	node	submi_ed	as	a	grid	job	



GlideinWMS architecture
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HTCondor & the LHC
•  HTCondor	plays	many	important	roles	in	compu)ng	
for	the	Large	Hadron	Collider	

•  It’s	used	
–  as	a	batch	system	
–  as	a	grid	compu)ng	element	
–  as	an	overlay	batch	system	
–  to	provision	resources	
–  as	a	cloud	batch	system	
–  to	manage	workflows	



LHC computing
•  Not	just	a	single	site,	but	many	sites	

–  need	to	be	able	to	efficiently	make	use	of	all	these	
distributed	resources	

Tier-0	(CERN)	
•  custodial	storage	
•  first-pass	reconstruc)on	
Tier-1s	
•  custodial	storage	
•  reprocessing	
Tier-2s	
•  event	simula)on	
•  end-user	analysis	
Tier-3s	
•  smaller	facili)es		
		



HTCondor as a batch system
•  Used	as	a	batch	system	at	many	US	sites	for	a	long	)me	
•  In	recent	years	also	being	adopted	by	European	sites	

–  Started	with	the	RAL	Tier-1	(UK)	in	2013	
•  pool	currently	contains	~20,000	cores	

–  Many	European	Tier-2s	have	since	migrated	
–  CERN	currently	migra)ng	to	HTCondor	

•  Reasons	for	moving	to	HTCondor	
–  Scalability	
–  Stability	
–  Ability	to	handle	dynamic	resources	



HTCondor as a grid compute element

•  Compute	Element:	grid	job	gateway	to	a	site	
–  Provide	a	single	interface	to	different	batch	system	
technologies	(HTCondor,	LSF,	GE,	SLURM,	PBS)	

•  Several	types	of	CE	
–  CREAM,	ARC,	recently	HTCondor-CE	

Submit	host	

schedd	

HTCondor-CE	

Job	 Grid	job	

Routed	job	
Job	router	transform	

schedd	

PBS	job	 PBS	

HTCondor-CE	uses	
only	exis?ng	HTCondor	
func?onality	

Experiment	



HTCondor as an overlay pool
•  CMS	(Compact	Muon	Solenoid)	is	one	of	the	main	4	
LHC	par)cle	physics	experiments	at	CERN	

•  Uses	a	single	HTCondor	pool	with	glideinWMS	

Over	150,000	simultaneous	running	jobs	
(each	colour	is	a	different	site)	

Priori?za?on	of	global	resources	



HTCondor managing workflows
•  CRAB3	–	CMS	Remote	Analysis	Builder	
•  Tool	used	by	CMS	physicists	to	carry	out	analysis	

	
•  HTCondor	DAGMan	used	to	manage	tasks	

–  Handles	failures	
– Manages	transfer	of	output	to	remote	site	

code	

config	

input	dataset	

split	into	
jobs	

job	

job	

job	

remote	
storage	

physicist	



Summary
•  HTCondor	as	a	batch	system	

–  Powerful	
–  Very	scalable	
–  Ideal	for	dynamic	environments	

•  HTCondor	beyond	a	“standard”	batch	system	
–  Can	provision	resources	
–  Can	aggregate	compute	resources	around	the	world	

•  HTCondor	plays	a	crucial	role	in	compu)ng	for	the	
Large	Hadron	Collider	


