Overview of Pillar-1: Technology

Detector Portfolio General Assembly meeting 19-21 November 2012; Karlsruhe Heinz Graafsma (DESY) / Michael Fiederle (KIT)

Pillar-1

Reminder of Structure:

- > WP-1: 3D-ASICs
- > WP-2: 2D-Mixed signal ASICs
- > WP-3: High-Z and edgeless sensors
- > WP-4: Packaging
- > WP-5 Advanced Materials

Meetings:

- > Portfolio Kick-off Meeting in Karlsruhe: 21+22 Feb 2012
- > Face-to-face meeting Pillar-1: 13+14 June 2012 in Hamburg
- > Face-to-face meeting WP-1 & WP-2 (ASICs) 10+11 Oct 2012 in Heidelberg (increased participation and interest of Universities)

3D-ASICs: technology at a glance (U.Trunk / DESY)

- based on GF 130nm CMOS Low Power
- 1.5 V core, 3.3V IO
- including ARM-provided SC library
- 1 poly, 5+1 metals per Tier
- (Metal 6 is used as bond interface)

- 2 tiers, Face-to-Face coupling
- "Via-middle process" (TSVs etched before BEOL)
- Cu-Cu bonding (both for mechanical and electrical contact)
- upper tier thinned down ~ 6um ; whole stack has ~ordinary wafer thickness

3D ASIC submission: an AGIPD evolution hypothesis

3D-ASICs X-ray tomography on an "inherited" project

M³APS MPW, via CMP submitted end 2009 delivered 2011 & 2012 (courtesy of INFN-Perugia)

2D-ASICs: Important decisions (C. Schmitt / GSI)

During the face-to-face meeting of the ASIC designer in Heidelberg; it was decided:

- > to investigate the possibility to use TSMC 65 nm (low power) as the common technology.
- > to create a repository/library of building blocks in order to share designs amongst Helmholtz centers (hosted by DESY).
- > to design a common analogue-digital readout chip, that will also be used as a vehicle for evolution towards 3D-integration (using Through Silicon Vias; TSV).
- > to consider to create a full-chip simulation tool (together with universities).
- To hold the next face-to-face meeting in January 2013 to decide on the mixed-signal readout chip to be designed.

First version of the Helmholtz-Cube ready!

> 6 by 2 chips (1536 by 512 pixels)

- Large Si sensor from 6" wafer
 - 300µm Si sensor here
- 2 x "Hexa" high-Z sensors
- > Ceramic circuit board (LTCC)
 - 14 layer board
 - Good match to germanium CTE
 - Cooling through thermal vias
- > 500-pin connector on board
 - Full parallel readout (8 LVDS data outputs per chip)
 - ~150 LVDS pairs total

High-speed readout system

- Previously developed prototype system (USB2 readout only)
- > High-speed readout with common DESY mezzanine card
 - Virtex-5 FPGA with PowerPC
 - 4 * 10 Gigabit Ethernet links
 - DDR2 RAM (8GB)
- Signal distribution board connects to det. head
 - Space for vacuum barrier with germanium detector
- > Currently working on high-speed readout firmware

10GBE links

Connector to det. head

Test results with Si module

> First full Si module assembled (300µm thick sensor from Canberra)

- Solder bonding at IZM
- All 12 chips successfully bonded and functional
- Small no. of bad pixels on chips and bad bumps on test module

Test results with Si module

> First full Si module assembled (300µm thick sensor from Canberra)

- Solder bonding at IZM
- All 12 chips successfully bonded and functional
- Small no. of bad pixels on chips and bad bumps on test module

- > Processing of High-Z semiconductors: CdTe and GaAs
- > Development of monolithic sensors with 165 / 110 / 55 µm pixels
- > Active area 28 x 43 mm² => maximum size of available material
- > Tasks:
 - Wafer level: metallization, passivation, UBM, bump deposition, dicing
 - Sensor level: flip-chip bonding, assembling, wire bonding
- > Photon Counting Chip: Medipix3 Version 3RX (latest):
 - Full functionality: Single Pixel Mode SPM, Charge Summing Mode CPM, Color Mode with Super Pixels 110 µm => 8 (eight) energy tresholds
- > First assemblies: CdTe 3RX 55 µm and CdTe 3RX 110 µm

> X-ray images with CdTe 55 µm 3RX: lowest energy < 3keV

CSM low SPM CSM high MPX3RX 55µm SHGM CdTe 1mm -360V X-ray 30 kVp

> X-ray images with CdTe 110 µm 3RX:

> CdTe Hexa 28x43 mm² with Medipix 3RX

- > Assembling on HGF-Cube boards:
 - One hexa in the first step
 - Adjustment of back-side contact (gold wire glued to CdTe)
 - Tests in the next two weeks
 - First Cube with one Hexa in December 2012

- > GaAs Medipix2/3 assemblies: good performance for energies < 40 keV</p>
- > GaAs assemblies processed by FMF (first Hexa 1Q 2013)

TPX 55µm GaAs 500µm Bias: -230V 8x5 tiles, width 34mm

> 3D sensors structures:

- Medipix3 layout in collaboration with CNM Barcelona
- Silicon assemblies with 55 and 110 µm pixels in 2Q 2013
- Experiments with GaAs and CdTe in 2014

Packaging (Th. Blank /IPE/KIT)

The wire is snapped off after the ball is initially connected to the die

No UBM is required No chemical process

Wire Diameter	Capillary	Bump diameter
30um	Standard	67um
15um	414FE-S108-R35 414FF-V208-R33	37 um
12.5um (Tanaka)	PI-15038-181F- ZP34T	25um

Bump diameter comparable with the traditional bump-bonding processes

Packaging (Th. Blank /IPE/KIT)

First results...

- Sensor wafer: FZ200N-W4 (new)
- Gold wire diameter 30 um & standard capillary

37 μm 37 μm

First small gold bumps ...

- 15µm diameter gold wire
- Shear test (mean) = 8.54 ± 1.12 gr/bump

<u>Preliminary results</u> (12.5um wire)

- Bump diameter 25um
- Shear test → on-going

Packaging (Th. Blank /IPE/KIT)

Infrastructure

Installation of ISO 6 (Class 1000) Clean Room Area for FC-Processes at the end of December

Flip-chip Bonding process in IPE

Finetech's automated fineplacer FEMTO

- ✓ accuracy < 1 µm</p>
- ✓ Wide-range of the bonding parameters:
- ✓ Several metals bumps (SnPb, In, SAC, gold, ..)
- ✓ Heating chamber with formic-acid atmophere for bumps reflow
- FC-bonding machine ordered, will be installed at the end of this year

Under investigation an blade upgrade:

-> cut in the range of 30um -> reduction of the scratch area

Wafer dicing machine DAD 320 Maximum wafer size: 6 inch (15.2 cm) Maximum Spindle Speed: 40.000 RPM Wide available Disco Diamond Blades: silicon, GaAs, GaP, LiTaO3, glass, quartz, crystal, ceramics, etc.

Evaluation of Screen & Stencil Printing Processes 4 50μm Lines/ 50 μm Space on Al2O3

Advanced Materials (A. Mussgiller / DESY)

Special requirement from particle physics: light weight detectors

- Minimize multiple scattering for increased precision
- Good thermal conductivity
- Good dimensional stability

Example: high-tech foil for mechanical stability combined with excellent thermal conductivity.

1.6 mm

- graphite foil laminated into carbon fibre (CFRP) structure
 - pyrolytic graphite sheet (PGS) has very high thermal conductivity (~700 W/m/K)
 - adhesive bonding PGS sheets to structural elements is challenging
 - shear stress could result in delamination either at glue to foil interface or inside foil

Advanced Materials (A. Mussgiller / DESY)

Special requirement from particle physics: light weight detectors

- •Minimize multiple scattering for increased precision
- •Good thermal conductivity
- •Good dimensional stability

Example: carbon fibre laminate for mechanical stability combined with foil with excellent thermal conductivity.

- graphite foil laminated into carbon fibre (CFRP)
 structure
- pyrolytic graphite sheet (PGS) has very high in-plane thermal conductivity (~700 W/m/K)
- adhesive bonding PGS sheets to structural elements is challenging
- shear stress could result in delamination either at glue to foil interface or inside foil
- ي glue to foil interface or inside foil د thermal and mechanical characteristics of samples will be tested
- effect of irradiation will be investigated

Advanced Materials (A. Mussgiller / DESY)

- > Market survey produced a few promising material solutions for HEP
 - foams, carbon fibres and resin systems, and glues
- > e.g. novel resin system by TenCate
 - on the market since 2008 the standard in satellite structures
 - Iow moisture uptake
 - radiation tolerance will be tested
 - details will be discussed during this meeting

- next interviews scheduled for early December
- hope to fill position by February

What is next?

- > Hybridization of CdTe to current HGF-Cube.
- > Distribute more HGF-cubes to centers for testing.
- > Come to decisions on ASIC:
 - Common technology; joint readout ASIC; simulation package
- Discuss whether to merge WP-1/3D-asic and mixed WP-2/mixed signal ASIC (discuss in Pillar meeting; decide in EB-meeting).
- > See how WP-4/packaging can contribute to next version of HGF-cube. Increase interaction between WP-4 and WP-1,2,3.
- > Discuss with Pillar-2 if/how to integrate high-speed I/O into HGF-cube.

