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Content 

• Introduction of traditional and new processor architectures 
 

• Standard RISC processor ATOM 
• Standard DSP processor from Texas Instruments 
• Novel heterogeneous processor including RISC and DSP 

 
• Motivation of an adaptive processor concept 
 

• Requirements using the processor for detector application 
• Integration of the sensor data into the processor datapath 
• Description of the extended datapath 

 
• How to develop and simulate an adaptive processor 

 
• High level design flow for processors 
• Benchmarking and emulation 

 
• Conclusion and outlook 
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(Non) adaptive processor architectures RISC / CISC 

• Traditional processors are developed to support a huge bandwidth of 
application with a sufficient performance they are not adaptive  

 
• Example: Intel Atom Processor 
 

• 45nm technology, 25mm2 die, power consumption 0.65-2.4Watt 
• Was developed for mobile interface devices, Netbooks 

(here the power consumption plays a more important role as performance) 
• Superscalar 2-issue in order execution architecture, 16 pipeline stages 
 Lower performance, data dependencies more critical but 
 Less power consumption through the elimination of the reordering unit 
 
 

• Other processor architectures have other features…. See next slide! 

From: Taking a closer look at Intel's Atom multicore processor architecture, Stephen Blair-Chappell 
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(Non) adaptive processor architectures DSP 

• Traditional processor, developed for dataflow oriented applications 
 
• Example: Texas Instruments DSP Processor 
 

• Developed for data flow oriented applications 
(here the data throughput plays a important role, also power consumption) 

• VLIW architecture (256bit), deep pipeline stages (can be over 20) 
 Data dependencies are solved by the compiler during design time 
 Application scenario with low control flow (therefore parallelization during  
design time by compiler) but 
 every control flow, reduces the performance tremendously 
 
 
 

• So why not an adaptive processor, or at least providing a heterogeneous  
architecture 
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The hybrid way: C6A816x Integra™ DSP + ARM processor 

From: http://newscenter.ti.com/index.php?s=32902&item=632#Documents:86 

Cores 

• C674x™ Programmable, Floating/Fixed Point DSP 
Core up to 1.5 GHz 

• ARM Cortex A8™ (MPU) up to 1.5 GHz 
• 3D Graphics Engine – up to 27M polygons/s 

(C6A8168 only) 
• Display Subsystem – interface to multiple, 

simultaneous HD displays 
 

Memory 
• ARM: 32KB L1I-Cache, 32KB L1 D-Cache, 256K L2 
• DSP: 32KB L1I-Cache, 32KB L1 D-Cache, 256K L2 
• External Interfaces: Two DDR3-1600 Controllers and 

NAND 
 

Peripherals 

• Gigabit EMAC x2 
• USB 2.0 Ctlr/PHY x 2 
• PCIe 2.0 – x1; Supports 2 lanes 
• SATA 3.0Gbps supports 2 external drives 
• HDMI 1.3 Tx 
• SD/SDIO 
• McASP x3, McBSP 
• SPI, GPIO, I2C, UART, EMAC 

 
Power 

• Total Power – Typical  5-6W 
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The adaptive processor 

• Application depend on the “position” of the processor: e.g. ATLAS (trigger level) 
• …from billions of events to hundreds, from petabytes to hundreds of megabytes… 
• Different “requirements” of the application with different control / data flow overhead, 

or even both in separate phases of the application    

Application  
instruction 

Application  
data 

Processor 
Microarchitecture 
and Instruction Set 

Application 
behaviour 
monitoring 

Pr
oc

es
so

r c
on

tr
ol

 

Pipeline depth (3,5,16,20…) 
Out-of-Order / in Order execution 
RISC / VLIW architecture (!) 
Branch prediction (BHT, PT, PNT…) 
Speculative execution 
Cache size / coherency (direct, N-Way…) 
Instruction set (RISC to CISC) 
. 
. 
. 

„Feature modules“ 

• Jumps 
• Loops 
• Data access patterns 
… 
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The adaptive processor: Advantages 

• The adaptive processor is able to “react” to application requirements 
• It can be deployed without modification in many application (it starts as “general purpose 

processor and ends as application specific processor” 
• The monitoring can be adapted to many signatures, even a “history” can be stored and  

reused (keyword case based reasoning from AI) 
 

• And: it combines the methods of embedded computing with the 
ones from supercomputing (keyword multicore, power saving modes etc.) 
 

• BUT: How can a processor be as near as possible to the place, where data are produced? 
• E.g. ATLAS level 1: Tight coupling of the processor to the sensor 

Pixel detector 
47.000 pixel per 

module 

„pixel value“ N-bit 

Adaptive processor 
Trigger level 1 

 pixel value goes directly 
into the datapath 

Preprocessed pixel values 

Next stage 
adaptive processors 
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Data path of a processor 
Memory 

_______0_________ 
_______1_________ 
_______2_________ 
_______3_________ 
_______4_________ 
_______5_________ 
_______6_________ 
_______7_________ 
_______8_________ 
_______9_________ 
______10_________ 
______11_________ 
______12_________ 
______13_________ 
______14_________ 

15       

0 

1 

2 

3 

Word-Address ALU    Arithmetic Logic Unit 
CPP   Constant Pool Pointer 
H         Hold Register 
LV       Local Variable Pointer 
MAR   Memory Adress Register 
MBR   Memory Buffer Register 
MDR   Memory Data Register 
N        N=1 bei ALU-Inhalt <0 
OPC  Old Program Counter 
PC     Program Counter 
SP     Stack Pointer 
TOS  Top of Stack 
Z       Z=1 bei ALU-Inhalt =0 

SLL8 ( Shift Left Logical) 

SRA1 ( Shift Right Arithmetic) 

Instruction set 
of the ISA-Layer 
In main memory 

0 

Bildquelle: Tanenbaum, Structured Computer Organization 

Extended H 
Register 2x32 bit 

From pixel source 
and control sig. Specific ALU operations 
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Example pixel detector specific microarchitecture 

ALU    Arithmetic Logic Unit 
CPP   Basisadressregister Konstantenpool 
          (Constant Pool Pointer) 
H        Hold Register 
LV      Pointer für Basisadresse im Stack 
          (Local Variables) 
MAR   Memory Adress Register 
MBR   Memory Buffer Register 
MDR   Memory Data Register 
N         N=1 bei ALU-Inhalt <0 
OPC   Temporäres Register (=Arbeitsregister) 
           Old Program Counter 
PC      Program Counter 
SP      Pointer für höchste Adresse im Stack 
           (Stack Pointer) 
TOS   Top of Stack (enthält den Wert der 
           Zelle, auf die SP zeigt;  
           Sinn: schnellerer Zugriff) 
Z         Z=1 bei ALU-Inhalt =0 
 
 
 
MIR     Micro Instruction Register 
MPC   Micro Program Counter 

8 

Bildquelle: Tanenbaum, Structured Computer Organization 

Extension of microsequencer for controlling the 
pixel detector and processing of the pixel data directly in the data path 
 Specific instruction for pixel detector hardware 
 Very fast data reception from pixel sensor 
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(Modern) processor design 
Abstract 
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Application 
(C, C++) 
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Desinger 
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(e.g. 

Synopsys) 

Instr. Set 
Micro Arch. 
Cache 
Mem 

Generate 

Update 

Debugging, Profiling, Performance analysy 
RTL, System C 

To virtual plattform 
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(Modern) processor design 
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ASIC /FPGA Emulation 

Co-simulation 

• Fast simultation through virtual platform 
• Efficient HW / SW Codesign by fast update 

with new HW architectures 
• Usage of real physical interfaces 
 real measured data can be processed 
to test the hardware 
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Conclusion and outlook 
• Co-Description of processors as well as the other architecture from high level of 

abstraction (model based) 
• Fast simulation by using virtual prototyping platforms and FPGA based emulators 
• Processing real measured data 

ADL 
processor 

ADL 
interfaces 

ADL 
FPGA 

• Instruction set 
• Microarch. adaptivity 
• … 

• Businterface 
• Pipeline-integration 
• … 

• LUT-width 
• Routing channels 
• … 

MultiCoreWare 

Applicatio(s) 
C, UML, Matlab 

Co-Simulation 

Hybrid Prototyping 

Virtual Plattform 
(OVP, Virtualizer) 

ChipIT 



13 
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner 

Thanks for your interest! 
 

 
Contact:  
 
Prof Dr.-Ing. habil. Michael Hübner 
Chair for Embedded Systems in Information Technology (ESIT) 
Ruhr-University of Bochum (RUB) 
Building ID/1 Room 341 
Tel.: +49 234 32 25975 
Email: michael.huebner@rub.de 
 

Collaboration welcome! 
 

mailto:michael.huebner@rub.de
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Embedded Systems: Examples from daily life: „Ubiquitous Computing“ 

 Interaction with the environment and via network leads to the term  
Cyber Physical Systems 


	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Data path of a processor
	Example pixel detector specific microarchitecture
	(Modern) processor design
	(Modern) processor design
	Conclusion and outlook
	Foliennummer 13
	Foliennummer 14

