
Adaptive processor architectures for detector applications

Prof. Dr.-Ing. habil. Michael Hübner
Chair for Embedded Systems in Information Technology (ESIT)
Faculty of Electrical Engineering and Information Technology, Ruhr-University of Bochum, Germany

2
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

Content

• Introduction of traditional and new processor architectures

• Standard RISC processor ATOM
• Standard DSP processor from Texas Instruments
• Novel heterogeneous processor including RISC and DSP

• Motivation of an adaptive processor concept

• Requirements using the processor for detector application
• Integration of the sensor data into the processor datapath
• Description of the extended datapath

• How to develop and simulate an adaptive processor

• High level design flow for processors
• Benchmarking and emulation

• Conclusion and outlook

3
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

(Non) adaptive processor architectures RISC / CISC

• Traditional processors are developed to support a huge bandwidth of
application with a sufficient performance they are not adaptive

• Example: Intel Atom Processor

• 45nm technology, 25mm2 die, power consumption 0.65-2.4Watt
• Was developed for mobile interface devices, Netbooks

(here the power consumption plays a more important role as performance)
• Superscalar 2-issue in order execution architecture, 16 pipeline stages
 Lower performance, data dependencies more critical but
 Less power consumption through the elimination of the reordering unit

• Other processor architectures have other features…. See next slide!

From: Taking a closer look at Intel's Atom multicore processor architecture, Stephen Blair-Chappell

4
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

(Non) adaptive processor architectures DSP

• Traditional processor, developed for dataflow oriented applications

• Example: Texas Instruments DSP Processor

• Developed for data flow oriented applications
(here the data throughput plays a important role, also power consumption)

• VLIW architecture (256bit), deep pipeline stages (can be over 20)
 Data dependencies are solved by the compiler during design time
 Application scenario with low control flow (therefore parallelization during
design time by compiler) but
 every control flow, reduces the performance tremendously

• So why not an adaptive processor, or at least providing a heterogeneous
architecture

5
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

The hybrid way: C6A816x Integra™ DSP + ARM processor

From: http://newscenter.ti.com/index.php?s=32902&item=632#Documents:86

Cores

• C674x™ Programmable, Floating/Fixed Point DSP
Core up to 1.5 GHz

• ARM Cortex A8™ (MPU) up to 1.5 GHz
• 3D Graphics Engine – up to 27M polygons/s

(C6A8168 only)
• Display Subsystem – interface to multiple,

simultaneous HD displays

Memory
• ARM: 32KB L1I-Cache, 32KB L1 D-Cache, 256K L2
• DSP: 32KB L1I-Cache, 32KB L1 D-Cache, 256K L2
• External Interfaces: Two DDR3-1600 Controllers and

NAND

Peripherals

• Gigabit EMAC x2
• USB 2.0 Ctlr/PHY x 2
• PCIe 2.0 – x1; Supports 2 lanes
• SATA 3.0Gbps supports 2 external drives
• HDMI 1.3 Tx
• SD/SDIO
• McASP x3, McBSP
• SPI, GPIO, I2C, UART, EMAC

Power

• Total Power – Typical 5-6W

Switched Central Resource (SCR)

Peripherals

Memory Interfaces

C6A8168

USB
2.0
x2

GPIO
GMII
EMAC

x2

PCIe
2

lanes

McASP
x3

SPDIF
McBSP

I2C
x2

UART
x3 SPI

DDR3
x2

SDIO
/SD

Async
EMIF/
NAND

SATA2
x2

ARM
micro-
processor

Fixed/
Floating
point DSP

ARM
Cortex A8
TM

C674x
DSP
 Core

Display

3D Graphics
Engine

Video I/O
SD DAC
(x3)

HD DAC
(x3)

HDMI PHY

HD Video I/O (x2)

On-Screen
Display

Resizer

6
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

The adaptive processor

• Application depend on the “position” of the processor: e.g. ATLAS (trigger level)
• …from billions of events to hundreds, from petabytes to hundreds of megabytes…
• Different “requirements” of the application with different control / data flow overhead,

or even both in separate phases of the application

Application
instruction

Application
data

Processor
Microarchitecture
and Instruction Set

Application
behaviour
monitoring

Pr
oc

es
so

r c
on

tr
ol

Pipeline depth (3,5,16,20…)
Out-of-Order / in Order execution
RISC / VLIW architecture (!)
Branch prediction (BHT, PT, PNT…)
Speculative execution
Cache size / coherency (direct, N-Way…)
Instruction set (RISC to CISC)
.
.
.

„Feature modules“

• Jumps
• Loops
• Data access patterns
…

7
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

The adaptive processor: Advantages

• The adaptive processor is able to “react” to application requirements
• It can be deployed without modification in many application (it starts as “general purpose

processor and ends as application specific processor”
• The monitoring can be adapted to many signatures, even a “history” can be stored and

reused (keyword case based reasoning from AI)

• And: it combines the methods of embedded computing with the
ones from supercomputing (keyword multicore, power saving modes etc.)

• BUT: How can a processor be as near as possible to the place, where data are produced?
• E.g. ATLAS level 1: Tight coupling of the processor to the sensor

Pixel detector
47.000 pixel per

module

„pixel value“ N-bit

Adaptive processor
Trigger level 1

 pixel value goes directly
into the datapath

Preprocessed pixel values

Next stage
adaptive processors

8
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

Data path of a processor
Memory

_______0_________
_______1_________
_______2_________
_______3_________
_______4_________
_______5_________
_______6_________
_______7_________
_______8_________
_______9_________
______10_________
______11_________
______12_________
______13_________
______14_________

15

0

1

2

3

Word-Address ALU Arithmetic Logic Unit
CPP Constant Pool Pointer
H Hold Register
LV Local Variable Pointer
MAR Memory Adress Register
MBR Memory Buffer Register
MDR Memory Data Register
N N=1 bei ALU-Inhalt <0
OPC Old Program Counter
PC Program Counter
SP Stack Pointer
TOS Top of Stack
Z Z=1 bei ALU-Inhalt =0

SLL8 (Shift Left Logical)

SRA1 (Shift Right Arithmetic)

Instruction set
of the ISA-Layer
In main memory

0

Bildquelle: Tanenbaum, Structured Computer Organization

Extended H
Register 2x32 bit

From pixel source
and control sig. Specific ALU operations

9
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

Example pixel detector specific microarchitecture

ALU Arithmetic Logic Unit
CPP Basisadressregister Konstantenpool
 (Constant Pool Pointer)
H Hold Register
LV Pointer für Basisadresse im Stack
 (Local Variables)
MAR Memory Adress Register
MBR Memory Buffer Register
MDR Memory Data Register
N N=1 bei ALU-Inhalt <0
OPC Temporäres Register (=Arbeitsregister)
 Old Program Counter
PC Program Counter
SP Pointer für höchste Adresse im Stack
 (Stack Pointer)
TOS Top of Stack (enthält den Wert der
 Zelle, auf die SP zeigt;
 Sinn: schnellerer Zugriff)
Z Z=1 bei ALU-Inhalt =0

MIR Micro Instruction Register
MPC Micro Program Counter

8

Bildquelle: Tanenbaum, Structured Computer Organization

Extension of microsequencer for controlling the
pixel detector and processing of the pixel data directly in the data path
 Specific instruction for pixel detector hardware
 Very fast data reception from pixel sensor

10
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

(Modern) processor design
Abstract

architecture
description
langauge
(e.g. LISA)

Application
(C, C++)

Compiler

Assembler

Linker

Simulator

Processor
Desinger

Tool
(e.g.

Synopsys)

Instr. Set
Micro Arch.
Cache
Mem

Generate

Update

Debugging, Profiling, Performance analysy
RTL, System C

To virtual plattform

11
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

(Modern) processor design

SystemC model
of new

processor

Library with
other

processors
and

peripherals

DSP

RISC
HW

accelerator
(reconf. HW)

Fast I/O
Interfaces

$

S
ha

re
d

M
em

or
y

Network on Chip

Pl
at

fo
rm

 d
ev

el
op

m
en

t

ASIC /FPGA Emulation

Co-simulation

• Fast simultation through virtual platform
• Efficient HW / SW Codesign by fast update

with new HW architectures
• Usage of real physical interfaces
 real measured data can be processed
to test the hardware

12
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

Conclusion and outlook
• Co-Description of processors as well as the other architecture from high level of

abstraction (model based)
• Fast simulation by using virtual prototyping platforms and FPGA based emulators
• Processing real measured data

ADL
processor

ADL
interfaces

ADL
FPGA

• Instruction set
• Microarch. adaptivity
• …

• Businterface
• Pipeline-integration
• …

• LUT-width
• Routing channels
• …

MultiCoreWare

Applicatio(s)
C, UML, Matlab

Co-Simulation

Hybrid Prototyping

Virtual Plattform
(OVP, Virtualizer)

ChipIT

13
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

Thanks for your interest!

Contact:

Prof Dr.-Ing. habil. Michael Hübner
Chair for Embedded Systems in Information Technology (ESIT)
Ruhr-University of Bochum (RUB)
Building ID/1 Room 341
Tel.: +49 234 32 25975
Email: michael.huebner@rub.de

Collaboration welcome!

mailto:michael.huebner@rub.de

14
Copyright ESIT, RUB, Prof. Dr.-Ing. Michael Hübner

Embedded Systems: Examples from daily life: „Ubiquitous Computing“

 Interaction with the environment and via network leads to the term
Cyber Physical Systems

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Data path of a processor
	Example pixel detector specific microarchitecture
	(Modern) processor design
	(Modern) processor design
	Conclusion and outlook
	Foliennummer 13
	Foliennummer 14

