

Erdbeobachtungssysteme

Dynamische Re - Konfiguration eines FPGAs mittels internem Kontroller

FPGA Workshop Dezember 2012

Quelle: Bild: ESA - Erprobungssatelliten im Weltall

04.12.2012

Markus Dick, M. Eng. m.dick@fz-juelich.de

Überblick

- Vorstellung der Abteilung EOS
- Randbedingungen (z.B. Strahlungseinflüsse im Weltraum)
- Realisierung und Messergebnisse
 - Dynamische Re Konfiguration des FPGAs
 - SelectMAP
 - ICAP

Zusammenfassung

EOS (Erdbeobachtungssysteme)

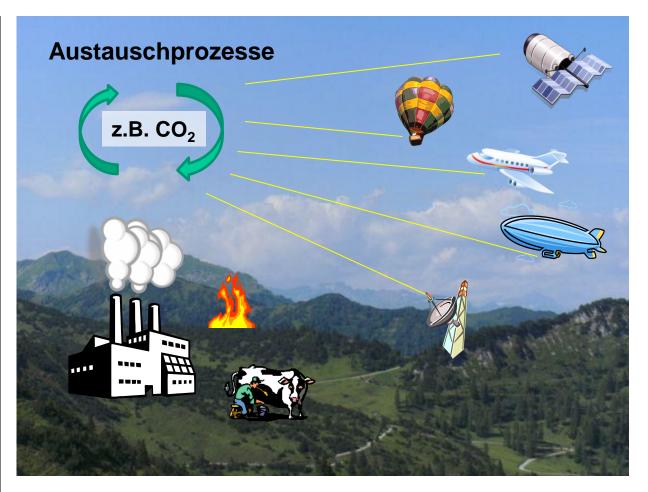
Was?

Austausch von Spurengasen, Schadstoffaustausch, chemische Umwandlungen

Wie?

IR-Spektroskopie der Luftschichten

Warum?


weitergehende Ansätze zum Klimaschutz finden

Wer?

Forschungszentrum Jülich (FZJ) und Projektpartner des KIT

Wo?

Troposphäre (0 bis 17km) Stratosphäre (bis zu 50km)

Von welchem Ausgangspunkt kann gemessen werden?

EOS (Erdbeobachtungssysteme)

<u>Flugzeug</u>

1. GLORIA

Flughöhe: ca. 15-18 km
Flugzeit: ca. 8-10 Std.
Wartung: nach dem Flug

bzw. Fernwartung

Randbedingungen:

Vibrationen, Kälte

Wetterballon

Flughöhe: bis 40 km Flugzeit: < 30 Std.

Wartung: nach dem Flug

bzw. Fernwartung

Randbedingungen:

Kälte, Vakuum

Satellit

Flughöhe: 500 – 800 km (LEO)

<u>Flugzeit:</u> > 4 Jahre <u>Wartung:</u> Fernwartung

Randbedingungen:

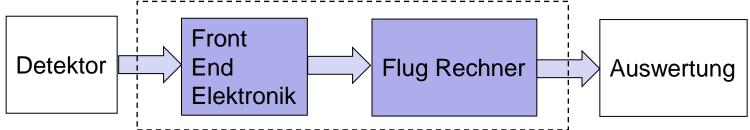
Starke Kräfte beim Start, Temperaturzyklen, Vakuum, Kosmische Strahlung

EOS (Erdbeobachtungssysteme)

Wir entwickeln und erstellen umfassende elektronische Systeme und Lösungen für wissenschaftliche Instrumente, wobei Signal- und Bildgebende Systeme auf fliegenden Trägern im Vordergrund stehen.

Projekte:

Kompsat-3A: Entwicklung einer Infrarot Detektor


Ausleseelektronik zum Einsatz auf einem **Satelliten**. (Abgeschlossen)

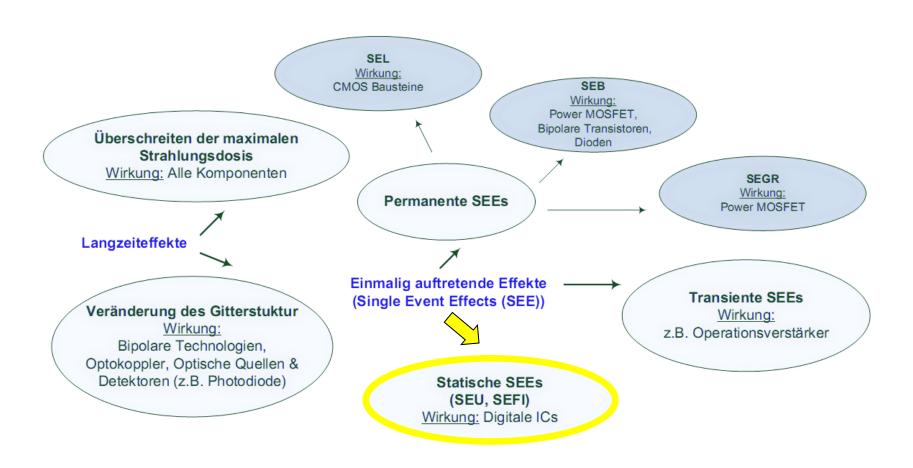
GLORIA: Ziel ist es erstmals ein detailliertes

globales Bild des Tropopausen-

bereichs zu liefern.

Was muss beachtet werden um Elektronik im Weltraum einzusetzen?

Quelle: EOS – Homepage: www.fz-juelich.de/zel


Randbedingungen und Störeinflüsse im Weltraum

- Vibrationen und Beschleunigungen bei der Startphase der Trägerrakete
- Temperaturschwankungen (120°C bis -80°C) aufgrund von Sonnen- und Schattenzyklen im Orbit
- Vakuum (Problem: z.B. Aufplatzen von Kondensatoren, Abführen von thermischer Energie)
- 100%ige Funktion → eingeschränkter Zugriff von der Bodenstation
- Höhere Strahlungsmengen im Vergleich zu Erde (hoch energetische Teilchenstrahlung)

Wie wirkt die Teilchenstrahlung auf die Elektronik?

Effekte durch Teilchenstrahlung

Wie oft tritt ein SEU auf?

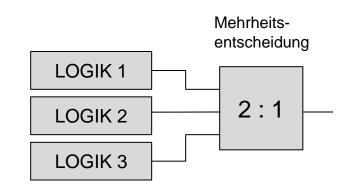
Quelle: Joshua D. Engel, Michael J. Wirthlin, Keith S. Morgan, Paul S. Graham, ed., Predicting On-Orbit Static Single event Upset rates in Xilinx Virtex FPGAs, Los Alamos National Laboratory, 2006. LA-UR-06-8178.

Auftrittswahrscheinlichkeit von SEUs

Beispiel eines Virtex-II (2V6000) FPGAs

Orbit	Altitude (km)	Inclination (degrees)	Upset Rate (SEU/device/day)	MTBF (Time/Event)
LEO	400	51.6°	0.67	1.5 days
LEO	800	22.0°	9	2.7 hrs
Polar	833	98.7°	6	4 hrs
Const.	1,200	65.0°	25	58 min
GEO	36,000	0.0°	0.47	2.1 days

Was wird gegen die Strahlungseinflüsse unternommen?


Stand der Technik

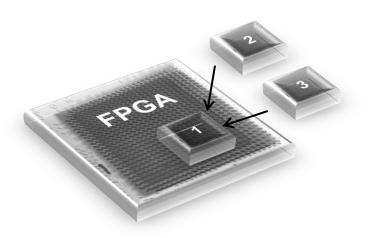
- Einsatz von strahlungsfesten Bauteilen
 - Teuer
 - Evtl. Qualifikation von Bauteilen erforderlich
 - Entwicklung spezieller Gehäuse
- TMR Triple Module Redundancy
 - Dreifache Implementierung der FPGA Logik
 - Mehrheitsentscheider an den Ausgängen
 - Fängt nur ein SEU auf

Aktuelle Lösungsansätze:

- Sicherung der FPGA Konfiguration
 - → Periodisches Auffrischen der Konfiguration

Realisierung

Realisierung: Dynamische Re - Konfiguration


Was gibt es für Re – Konfigurationstechniken?

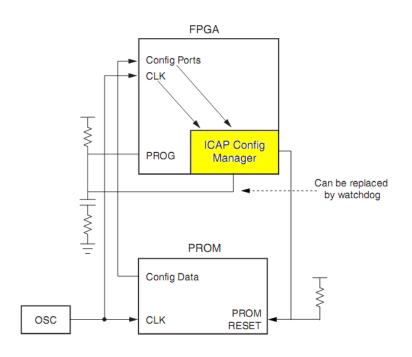
Partielle dynamische Re - Konfiguration

Re - Konfiguration

=> Komplette dynamische Re - Konfiguration

Realisierung: Externe / Interner Konfigurationskontroller

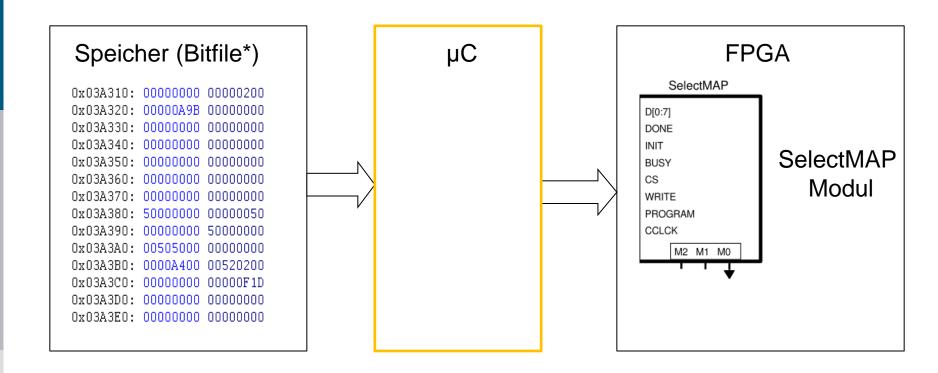
Mögliche Schnittstelle


SelectMAP Schnittstelle

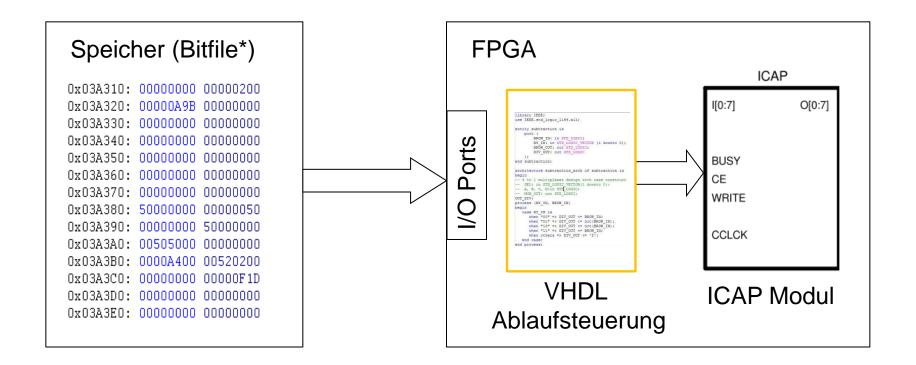
ICAP Schnittstelle

Externe Konfiguration (ext. µC)

Xilinx XQR18V04 Xilinx QPro Radiation-Tolerant Virtex-II FPGA **XQR17V16** DATA[0:7] Radiation-Hardened DATA[0:7] Configuration **CCLK CCLK** Controller CF PROG B CE RDWR B OE/RESET_B CS B DONE INIT_B BUSY

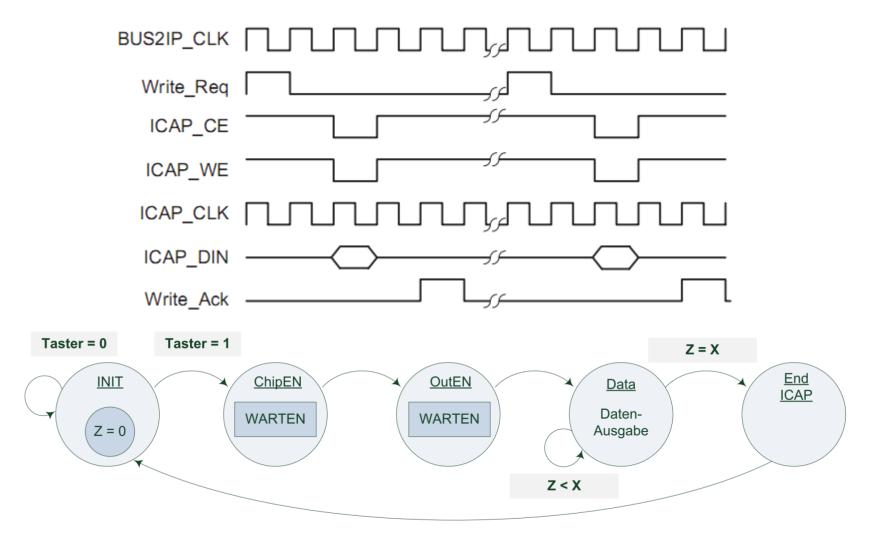

Interner Konfigurationskontroller

Quelle: XILINX- Carl Carmichael, Chen Wei Tseng - XAPP989 - Correcting Single-Event Upsets with a Self-Hosting Configuration Management Core 04.12.2012 Folie 12



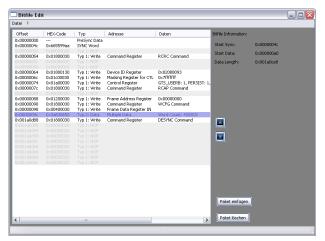
Nachteil:

externer µC → Anfällig gegen Störeinflüsse


Realisierung: VHDL Statemachine fürs ICAP

Realisierung: VHDL Statemachine fürs ICAP

Quelle Bild (oben): XILINX - Vince Eck, Punit Kalra, Rick LeBlanc, and Jim McManus – XAPP662 - In-Circuit Partial Reconfiguration of RocketIO Attributes


Realisierung: Bearbeitung der Binärdatei


<u>Binärdatei</u>

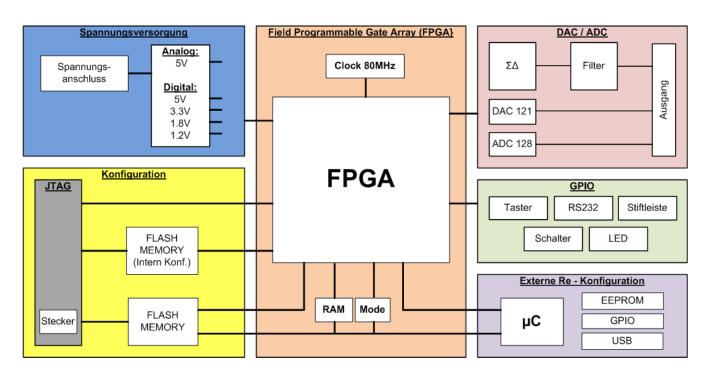
Bearbeitung

Binärdatei*

Realisierung: Vorbereitung der SEU Tests

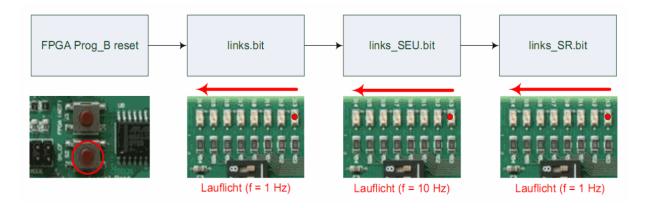
Texteditor

0x03A410: 00000000 00000000 50000000 00000000

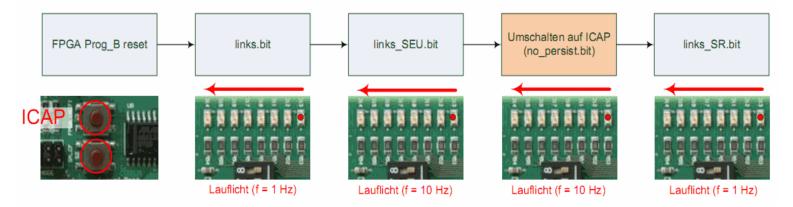

0x03A310: 00000000 00000200 00000000 20000000 1. Binärdatei (Lauflicht "links.bit") 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000 00000000 000000000 00 5000 00000000 2. Binärdatei* 00000050 (Für die Re – Konfiguration 50000000 00040000 00000000 00000000 "links SR.bit") ..¤..R..@....". 40000000 0000A400 00520200 00000F1D 00000000 00000000 00000000 0x03A3D0: 00000000 00000000 00000000 00000000 0x03A3E0: 00000000 00000000 00000000 00000000 0x03A3F0: 00000000 00000000 00000000 00000000 3. Binärdatei_SEU ("links_SEU") 00000000 00000000 0x03A400: 00000000 00000000

Testumgebung

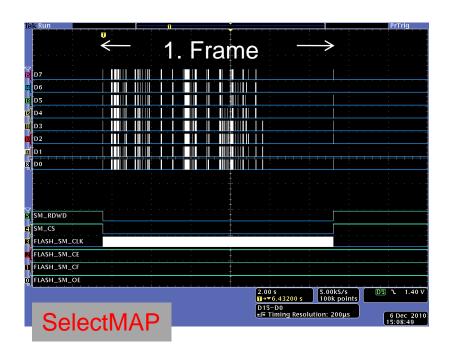
Aufbau der Testumgebung

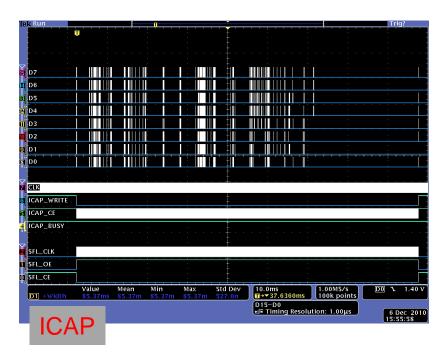


Messergebnisse


Messergebnisse: Test "LAUFLICHT"

SelectMAP:




ICAP:

Messergebnisse: Dynamische Re - Konfigurierung

<u>SelectMAP Schnittstelle:</u>

Externer Mikrokontroller → Speicher Beschränkung → Übertragung von mehreren Paketen → Übertragung im Bereich von mehreren Sekunden

ICAP Schnittstelle:

Interner Ablaufsteuerung → Re - Konfiguration im Bereich von 85ms

Zusammenfassung

Zusammenfassung und Ausblick:

Neue Sicherungstechnologien zum Einsatz eines FPGA im Weltraum wurden erarbeitet:

- > Re Konfiguration mittels ICAP
 - → Ablaufsteuerung für die ICAP Schnittstelle
 - → Softwareoberfläche zur Bearbeitung der Binärdateien
 - → Kein externer Mikrocontroller notwendig
 - → Dynamische Re Konfiguration in ca. 85ms

Vielen Dank für Ihre Aufmerksamkeit!

Haben Sie noch Fragen?

m.dick@fz-juelich.de