The ATCA Based Compute Node And

Its Application in the Belle II PXD Data Aquisition

and Reduction System

<u>Björn Spruck</u>¹, Thomas Geβler¹, Wolfgang Kühn¹, Jens Sören Lange¹, Haichuan Lin², Zhen'An Liu², David Münchow¹, Hao Xu³, Jingzhou Zhao²
1) University Giessen, Germany
2) Institute for High Energy Physics, Beijing, China for the Belle II and DEPFET Pixel Collaborations

Motivation

- Hardware platform
- Implementation
- Test results
- PANDA

Institute of High Energy Physics Chinese Academy of Sciences

Motivation

- Belle II @ SuperKEKB Tsukuba/Japan
- e⁺e⁻ asymmetric collider, up to 11 GeV center of mass energy
- Belle and KEKB upgrade
 - Luminosity L= 8×10^{35} cm⁻² s⁻¹, 40 times of Belle @ KEKB
 - 30 kHz trigger rate
- Physics program
 - Continuation of successful Belle program
 - CP violation at the intensity frontier
 - Decays of B and D mesons
 - Rare and forbidden decays
 - Exotic hadrons
 - New physics beyond standard model
- Start data taking in 2015

Belle II Detector Setup

KL and muon detector: **EM Calorimeter: Resistive Plate Counter (barrel)** CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps) Scintillator + WLSF + MPPC (end-caps) Particle Identification electron Time-of-Propagation counter (barrel) (7GeV) Prox. focusing Aerogel RICH (fwd) Beryllium beam pipe 2cm diameter positron **Vertex Detector** (4GeV) 2 layers DEPFET + 4 layers DSSD Higher PID sensitivity Impact parameter res. $\sigma z = 20 \mu m$ (pion/kaon) **Central Drift Chamber CDC** Better secondary vertex He(50%):C2H6(50%), Small cells, resolution (factor 2) long lever arm, fast electronics • Improved K⁰ detection Björn Spruck, Jülich 3/4.12.12, p. 3

Vertex Detectors

SVD Silicon Strip Vertex Detector

Björn Spruck, Jülich 3/4.12.12, p. 4

PLEC

DEPFET Pixel Sensor

αate

DCD Chips

DHP Chips

flex cable

connection

- 2 layers at 14 and 22mm radii
- 8 inner (12 outer) ladders \rightarrow 40 modules
- Monolithic all-silicon sensors, no need for support structures
- DEPFET Depleted Field Effect Transistor
- Pixel size 50μm*50μm (outer: 50μm*75μm)
- Thinned to 75µm thickness to reduce multiple scattering
- Continuous readout; line by line (rolling shutter mode)
- Readout rate 50kHz (full detector)

Pixel Detector DAQ Scheme

(*) Talk by

Michael Schnell

- Expected data rate ≤22 GB/s for whole PXD detector
 - Corresponds to 3% pixel occupancy, <u>dominated by background</u>
- 10 times more than all other detectors together! Reduction of <u>factor 30</u> needed.
- Pixel detector readout differs from other detector sub systems:

- Buffered in ATCA/ONSEN until HLT decision (unordered, latency up to 5 s)
- Selection of pixels inside regions of interest (ROI)

ROIs calculated by HLT, additional sources foreseen (SVD)

- No way to decide what is relevant from PXD alone
- Regions of Interest from tracking needed

PXD Readout Chain

 DHH & DHHC (I. Konorov, TU Munich): Framing, Loadbalancing, ATCA/uTCA, Virtex 6

Clusterfinder (DCE) "addon", ASIC -> (A. Wassatsch, MPI Munich)

- High Performance Computing
- 5 Virtex-4 FX60 FPGA
 - (new: Virtex-5 FX70T)
- 5×2GB DDR2 RAM
 - (new: 2*2GB/FPGA)
- Interconnected by RocketIO
- 8 Optical Link (3Gbps each)
 - (new: 6.5Gbps)
- 5× Gigabit Ethernet
- 16× RocketIO to backplane (full mesh)
- Embedded PowerPC in each FPGA for slow control
- ATCA compliant (Advanced Telecommunications Computing Architecture)

Compute Node, 2nd Revision

IPMI remote control

- Small piggy-back board
- Functions: power on/off, power negotiation, health monitoring, board reset, bitstream selection, global addressing

Compute Node 3rd Revision

- 1 xTCA carrier + 4 AMCs (Advanced Mezzanine Cards)
- Computing and switching part are separated
- Connectivity similar to version 2
- Full mesh on the carrier and full mesh on the backplane
- Each AMC has
 - 4* LVDS to MB
 - 2* LVDS to AMC
 - 1* RocketIO to AMC
 - 3* RocketIO to RTM
 - 2* LVDS to RTM

Advantages of 3rd Version

• AMC can be updated independently, no redesign of whole board required

- Different AMCs can be used on same carrier board
 - Adapt to special purpose

Example:

- AMC with 4 optical links (same board design)
- More powerful or cheaper FPGAs
- AMCs can also work standalone in μ TCA shelf.

Data Flow for the PXD Data

Region of Interest Selection

- Selecting pixel/cluster data inside rectangular regions
- One pixel is processed against all ROIs in parallel
- Two modes:
 - Pixel mode: Each pixel is checked separately
 - Cluster mode: If at least one pixel is inside a region, keep full cluster

Cluster analysis - dE/dx hit rescue

- Low momentum pions important for several Ds* decays
- Large energy loss (dE/dx), will not reach CDC driftchamber
 - High level trigger will miss them.
- Rescue pixel information by cluster analysis
- Cluster charge, size, shape etc.

Optical Links

- Tested with different speeds (2, 3, 6.25 Gbit/s) between CN2 and CN2/CN3 with Aurora protocol
- Realistic test:
 - Memory \rightarrow Optical Link on FPGA 1
 - Optical Link \rightarrow Memory on FPGA 2
 - Including Aurora
 - Including buffer manager
- At 20 kB (expected PXD event size per module) data rate is >600 MB/s, well above requirements
- Corresponds to a event rate of 30 kHz

Ethernet

work by Griegori Ko

- (Linux) Software Stack is slow, even so some "offload" is done in hardware
- For high data rates, FPGA implementation mandatory

■ SiTCP⁽¹⁾

- >100 MB/s achieved (reading data from memory)
- Limit: Only one TCP connection, not usable with an event builder <u>farm</u>
- UDP implementation
 - >120 MB/s send out (test packets), 60 MB/s data from memory
 - Copper and optical Gbit Ethernet (by optical link)
 - No package drop detection (yet)
 - Evaluation of packet losses and receiving in hardware is ongoing
 - Optional input/output tunnel to OS (for TCP/IP, slowcontrol)

Requirements of 32 MB/s are met.

(1) T. Uchida, Hardware-Based TCP Processor for Gigabit Ethernet, IEEE Trans. Nucl. Sci., vol. 55, no. 3, 2008.

- Compute Node is a flexible system, foreseen for $\overline{P}ANDA DAQ$
 - Several CN v2 have been distributed within the collaboration
- Gain experience with CNs for $\overline{P}ANDA$ with a smaller system
- Belle II DEPFET pixel detector delivers 22GB/s data (already zero suppressed)
 - Data processed on 10 Compute Nodes (1 ATCA crate)
 - 10% of PANDA
- PANDA is triggerless
 - Not always FIFO stream processing
 - Matching: Data to be buffered until a second data input is ready
 - Random access (and bookkeeping) of memory resources necessary
 - Data switching & event building

- Belle II DEPFET pixel detector requires data reduction by a factor of 30
 - Selecting only data which corresponds to a track found by HLT or SVD
 - Using ATCA compliant Compute Node
- Implementation
 - Complete system implemented in VHDL
 - Optical link receiving, buffer management, event look-up tables, region-ofinterest selection, Ethernet
 - Initialization, slow control and error handling on PowerPC
- Prototype working (input, buffering, processing, output)
- Critical requirements fulfilled (data throughput)
- Ongoing work:
 - Transition to μ TCA based Compute Node revision 3, Virtex 4 \rightarrow Virtex 5
 - Ethernet (speed improvements)
 - Full readout chain test (2013)

Backups

DEPFET Pixel sensor

- pixel size 50um*50um (outer: 50um*75um)
- thickness 75um
- continuous readout; line by line (rolling shutter mode)
- readout rate 50kHz (full detector), deadtime 20us
- designed for 10MRad, >5 years operation.
- 2*90W power
- \odot CO₂ two phase evaporation cooling at -15°C and 23bar

PXD Readout Chain

- PXD: (8+12)*2=40 half ladders
- Each half ladder readout by two optical links
- ATCA/ONSEN sends data to Event Builder #2 (Gbit Ethernet)

Compute Node 3th generation

- PC as data source (random data and ROIs) and receiver
- Send in data and delayed high level trigger by Ethernet (PowerPC Linux stack)
- Anything else in VHDL/hardware
 - Processing core
 - Memory and buffer management
 - UDP sender
- PC crosschecks results
- No error has been observed in more than 4×10¹⁰ processed pixels

ATCA Shelf

- Improvements: Low pT tracks
 - Pions from $D^*(2010)^{\pm} \rightarrow D^0 \pi^{\pm}$ have low momentum (pT<80MeV) but are important for B-tagging
 - below minimal ionizing, large dE/dx
 - Track loses energy, might not be seen by HLT (no CDC track)
 - Find pixels/clusters with a very high energy deposition and keep them as additional ROIs
 - But: Keep <10% of pixel data; Efficiency \leftrightarrow Purity
- Single photon / single pixel rejection
 - Isolated fired pixels
 - Saves bandwidth if removed before stored to RAM
 - Isolated pixels possible for real tracks, too. Simulation needed.

Occupancy of PXD dominated by background

- physics <1% occupancy</p>
- background up to 2%
- Beam related background by
 - Synchrotron radiation
 - Beam gas reactions
 - Touschek effect:
 - Intra-beam scattering because of high particle density
 - exchange of transversal to longitudinal momentum
 - loss of beam particles
 - simulation of full storage ring needed!
- Interaction background
 - Radiative QED