Highlights of the updated hadronic interaction models DPMJET-III and SIBYLL

HAP Workshop | Non-Thermal Universe

Anatoli Fedynitch, DESY Zeuthen
Felix Riehn, Bartol Research Institute, Delaware
Ralph Engel, KIT

together with Thomas K. Gaisser and Todor Stanev

Hadronic interaction models

Limited experimental coverage of cosmic ray relevant physics

The nuclear Monte Carlo event generator DPMJET-III

> DPMJET-III

- supports hadron-hadron, photon-hadron, photon-photon, hadron-nucleus and nucleus-nucleus
- from few GeV (lab) up to UHECR energies
- light and heavy nuclei (>235U) via Glauber, intra-nuclear cascade,...
- is the main hadronic model for high energies and nucleus-nucleus interactions in FLUKA
- Individual hadron-/photon-nucleon interaction modeled with recently updated PHOJET minimum-bias model
- Under test in upcoming versions of FLUKA, CORSIKA, MCEq
- ... soon available as standalone at https://dpmjetiii.hepforge.org

DPMJET-III cascade mode

- Accepts most of the hadrons as projectiles
- Initialization in run-time, on demand
- Projectiles without known cross sections mapped to closest related particle combination (with valence exchange)
- Low minimal energy (no low-E model necessary)
- Relatively fast (wrt. EPOS-LHC or QGSJET-II-04)

Interaction cross sections

Modern parton distribution functions

> Significantly improved description of LHC distributions

Improvement at LHC energies

..also for many other measurements

DPMJET at fixed-target energies

 x_F

Inclusive lepton fluxes with DPMJET-III and SIBYLL

atmospheric muons

- Just the beginning of CR studies with DPMJET
- No air-shower predictions, yet

Explore energy extrapolation via CR "beam"

IceCube, Astropart. Phys. 78, 1 (2016)

Relation between primary nucleon energy and inclusive lepton energy

LHC energy probed by μ & ν around 100 TeV

Muon flux measurement by IceCube

Forward particle physics beyond reach of current detectors at accelerators

Improvements in SIBYLL 2.3 at a glance

F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser and T. Stanev. PoS ICRC 2015, 1129 (2015), 1510.00568

- Charm production
- Leading particles
- Baryon production
- **>** ..

By Felix Riehn & Ralph Engel!

The "muon mystery"

muon number in inclined showers $\theta > 60^{\circ}$

Combination of information on mean X_{max} and muon number at ground

Something is really inconsistent [hadronic interaction models]

More (low-energy) muons?

Pion interactions!

$$\pi^{\pm} + \text{Air} \to \rho^0$$

 $\pi^{\pm} + \text{Air} \to \pi^0$

More (low-energy) muons?

Leading vector mesons

Incorrect leading meson!

New degrees of needed in microscopic model

Sibyll 2.1:

$$R_{\rho^0}/R_{\pi^0} = 0.3$$

$$R_{\rho^0}/R_{\pi^0} = f(x_{\rm F})$$

Leading vector mesons

Significantly improved description!

Impact on number of muons

20-30% more muons

New predictions

Deeper showers with more muons

Conclusion

- > Significant improvements in the description of hadronic interactions in both models DPMJET-III and SIBYLL 2.3
- > DPMJET-III is technically ready for cosmic ray physics, first calculations with inclusive leptons show promising performance
- > SIBYLL 2.3 changes notably air-shower predictions in muon number and X_{max}
- It also includes a new model for charm production/prompt neutrinos (not mentioned in this talk)

What's next?

- Extrapolation of non-perturbative models to high energies?
- Re-iteration expected after deeper analysis of CR data with new models
- Nucleus-nucleus interactions, pions, kaons and baryons at fixed target energies need more attention in DPMJET-III

Deeper X_{max}

Impact on X_{max}

