Overview of y-ray related activities

Stefan Ohm (DESY, Zeuthen) HAP workshop, Erlangen, 21/09/2016

Major instruments for the detection of γ rays (2011)

The γ-ray sky in 2011 (at the ICRC in Beijing)

Fermi-LAT

> Highlights

- Catalogues (2FGL, AGN)
- New source classes (e.g. Novae, Globular clusters, Starburst galaxies)
- Large γ-ray PSR population
- Crab flares
- High-energy GRBs

Credit: NASA/DDE/Fermi/LAT Collaboration

Fermi two-year all-sky map

IACTs

> Highlights

- Source populations increase (e.g. AGN, SNRs, PWNe)
 - Detailed source analyses including MWL information
 - Extragalactic background light measurements
 - Crab pulsation up to 400 GeV (MAGIC)
 - IACT cooperations increase (binaries, radio galaxies)

Crab - MAGIC

M87 - all IACTs

Stefan Ohm | HAP workshop, Erlangen | 21/09/16 | Page 3

Major instruments for the detection of γ rays (2016)

The γ-ray sky in 2016 (at the Gamma in Heidelberg)

Fermi-LAT

> Highlights

- More catalogues (3FGL, 3FHL, 1FIG)
- Transient monitoring, rapid variability, multi-messenger searches
- Fermi triggering IACTs
- Galactic Centre (line, excess)
- Fornax A, LMC, high-z AGN (EBL)

HESS J0632 - all IACTs

IACTs

- Highlights
 - More sources
 - Better measurements of existing sources
 - More multi-messenger and multi-wavelength studies
 - Regular IACT cooperations (+ HAWC)

Evolution of the field: Instruments and Analysis

Instruments

- New instruments (HAWC)
- New telescopes (MAGIC-II, HESS-II)
- New hardware (VERITAS PMT, and HESS-I camera upgrade)
- New trigger and readout schemes

Analysis

- Improvements on all fronts
- → up to factor ~2 in sensitivity
- Pushing to lower and higher energies
- Operation at the sensitivity limit
- → Systematics becomes more of an issue

Evolution of the field: Observation strategies

Key science

Deep exposures

Precision measurements

Surveys
Population studies

Initial discoveries (first years of operation)

Time-domain
Transients
Multi-messenger
Multi-wavelength

Surveys: The H.E.S.S. Galactic Plane Survey

- > 10-year survey
- > 78 VHE sources
- Many objects extended
- > Publication in preparation
- Data release to the public in the form of maps

Surveys: The northern hemisphere (Cygnus)

- HAWC perfect for surveys
 - ~95% duty cycle, ~2 sr FoV
- Cygnus region
 - close, massive star-forming region
 - full of potential particle accelerators
 - very complex region
- VERITAS Cygnus survey
 - Deep observations (>300 hrs)
 - Reveals PWNe and SNR
 - No emission from Cygnus cocoon
 - MWL studies underway

Surveys: Large Magellanic Cloud

- > 1st extragalactic detection of stellar-type objects at VHE
 - Independent probe of Galactic accelerators
 - Extreme environment (SFR, radiation fields, CR densities)
- New TeV source class discovery: superbubble 30 DorC
- VHE survey continues
- Also Fermi finds stellar-type objects in LMC:
 - PSR
 - PWN
 - SNR
 - γ-ray binary
 - + diffuse emission

H.E.S.S., Science 2015

Population studies: PWNe and SNRs

- > PWNe population to study
 - particle properties
 - PWN evolution (e.g. B-fields, NT particles)
 - importance of environment
- Spectra of γ-ray SNRs probe
 - ambient medium
 - particle acceleration, interaction and escape
 - underlying particle population

tefan Ohm | HAP workshop, Erlangen | 21/09/16 | Page 11

Precision Measurements: Young SNRs

- > RX J1713-3946
 - ~2000 yr old SNR
 - One of the most important sources at VHE
 - first resolved shell of a SNR in γ rays (2005)
- > By now (Abdallah et al., 2016 subm.)
 - More data, much more sensitive analyses
 - Probing particle properties (B-fields, E_{max})
 - TeV shell more extended than X-ray shell
 - → Prove of particles leaving the shock region!

Precision Measurements: Middle-aged SNRs

- Origin of Galactic CRs
 - Characteristic π⁰-decay cutoff seen in IC 443 and W44
 - Hard to detect in VHE γ rays
 - Prove of proton acceleration to high energies in SNRs
- W51C (Jogler & Funk 2016)
 - ~30kyr old SNR interacting with molecular cloud
 - Break at ~300 MeV indicative of π⁰-decay
 - Connection between Fermi and MAGIC hints at single particle population (i.e. protons)

Long-term monitoring: γ-ray binary HESS J0632+057

- > HESS J0632+057
 - γ-ray binary (massive star + compact object)
 - nearby (1.1 1.7 kpc), eccentric (e ~ 0.8) system in 315-day orbit
- More than 10 years of IACT observations
- Search for (intra-)orbit variability and study of particle acceleration and interaction in extreme environment

Schlenstedt, Maier (VERITAS), 2016

Stefan Ohm | HAP workshop, Erlangen | 21/09/16 | Page 14

Fundamental physics: Dark Matter searches

- Ongoing efforts to search for DM in dwarf galaxies, Galactic Centre, Galaxy clusters
- Different approaches
 - Stacking, Combination of data sets
 - New likelihood techniques
- > Examples
 - Fermi-LAT + MAGIC observations of Segue 1 dwarf → improve in overlap region between instruments
 - A decade of HESS Galactic Centre observations → First time probing thermal relic cross section

Fermi-LAT stacking + MAGIC (Ahnen et al. (JCAP, 2016) 039

HESS, (Abdallah et al., PRL, 117, 111301)

Fundamental physics: Lorentz Invariance Violation (LIV)

- > Quantum structure of space-time can produce energy dependence of speed of light: $v = c \left(1 \pm \xi \left(\frac{E}{M_P}\right) \pm \zeta \left(\frac{E}{M_P}\right)^2 \pm ...\right)$
 - Access to Planck scale via large distances and/or high energies
 - GRBs, AGN flares or PSRs provide good test-bed
 - Different objects probe different phase space

Source	d	\mathbf{E}	δt	Expected limits	
family	[pc]	[GeV]	[s]	$\mathrm{E}_{\mathrm{QG1}}$ [GeV]	${ m E_{QG2}}$ [GeV]
GRB	1010	10 ¹	$10^0 - 10^2$	$10^{17} - 10^{19}$	$10^9 - 10^{10}$
AGN	10^{8}	10^{4}	$10^2 - 10^5$	$10^{15} - 10^{18}$	$10^9 - 10^{11}$
Pulsar	10^{3}	10^2	10^{-4} 10^{-2}	$10^{17} - 10^{19}$	$10^{10} - 10^{11}$

- Global efforts
 - MAGIC, VERITAS and HESS are teaming up for global LIV search
 - → Improve sensitivity, combine different source types, reduce systematics
 - Agreement signed by all parties, groups established, work started

The future: Time domain and multi-messenger prospects

- Importance of the time domain
 - ~20% of Fermi 3FGL sources variable (+ GRBs, short transients, novae, periodic sources)
 - Transient sources are among the ones with the highest scientific impact
- Compact objects and physics under the most extreme conditions in the universe
 - Crab flares probe particle acceleration mechanisms
 - GRBs and AGN flares probe fundamental physics (e.g. LIV)
 - AGN flares probe emission site, probe cosmology and star-formation history
- Origin of astrophysical neutrinos (steady vs. flaring sources)
- Electromagnetic counterparts to gravitational wave events (e.g. GRBs)
- (Not to forget UHECRs that probe the very local universe)

The future: Time domain and multi-messenger prospects

- ~half-sky
- > ~0.1 10 deg ang. res.
- modest sensitivity

- > ~15% duty cycle
- > ~5 deg FoV
- > ~0.1 deg ang. res.
- excellent sensitivity

> ~10 triggers per year

 \sim 1 – 100 deg ang. res.

>90% duty cycle

~half-sky

→ Communication, event filtering and fast response are key!

Summary and Outlook

- γ-ray astronomy made a huge leap forward in the past decade
- > Shift from initial source discoveries to key science
 - Deep exposures, precision measurements, surveys, catalogues, population studies
 - Reaching the limits for current instruments in core energy range (for steady sources)
 - Still room for improvements at high energies (recent PeVatron discovery)
 - new instruments (e.g. TAIGA) operating at high energies being commissioned
- Multi-messenger and time-domain astroparticle physics era started
 - Communication is key
 - Next decade will see explosion of triggers (optical surveys, radio, etc.)
- Next generation CTA for ground-based γ-ray astronomy on the horizon

