From experimental software to research infrastructure maturity

Carsten Thiel, CESSDA

Earlier this year...

EURISE Workshop: Software Quality through Automation and Testing

26 Mar 2020 Utrecht (The Netherlands)

OPERAS

or so we thought ...

Image: CDC, public domain

instead

digitisation hit the world

Although... have you tried ordering a laptop or a webcam in 2020?

Bottleneck for U.S. Coronavirus Response: The Fax Machine

https://www.nytimes.com/2020/07/13/upshot/coronavirus-response-fax-machines.html

But wait... RSE?

Pandemic modelling

neil_ferguson 📀 @neil_ferguson

I'm conscious that lots of people would like to see and run the pandemic simulation code we are using to model control measures against COVID-19. To explain the background - I wrote the code (thousands of lines of undocumented C) 13+ years ago to model flu pandemics...

10:13 PM · Mar 22, 2020 · Twitter for iPhone

2.1K Retweets and comments 5K Likes

้ครรศล

https://twitter.com/neil_ferguson/status/1241835454707699713

Open source

Peer review

Model verification

Extensive manual verification

Image: Pixabay: OpenClipart-Vectors

Not really new

- Academic recognition only for the publication.
- The model is the result, the code only secondary.

 \Rightarrow The RSE community has been discussing this for years.

Scalability

- Did you ever get your webcam? \bigodot
- Where are all the cruise ships?
- The Wikipedia article on Zoombombing was created on March 28, 2020 \bigcirc
- Works on my machine...

»Beware of bugs in the above code; I have only proved it correct, not tried it.«

Donald Knuth, Stanford University Author "The Art of Computer Programming"

What to do?

Good practices

if only it were that simple ...

Just do it ... ?

- Computer Science *≠* Software Engineering \mathbf{O}
- Learning by doing on your own doesn't always work
- Targeted training opportunities exist \bigcirc

https://software-carpentry.org

Where we come in

The research software spectrum

* positions along the axes serve demonstrative purposes

Software Engineer

📀 cessda

So what?

- Research software solves research questions.
- Infrastructures provide reliable services.
- \Rightarrow But these are not separate issues!

Technological Maturity

Technology Readiness Levels

- TRL 9 actual system proven in operational environment
- TRL 8 system complete and qualified
- TRL 7 system prototype demonstration in operational environment
- TRL 6 technology demonstrated in relevant environment
- TRL 5 technology validated in relevant environment
- TRL 4 technology validated in lab
- TRL 3 experimental proof of concept
- TRL 2 technology concept formulated
- TRL 1 basic principles observed

EUROPEAN OPEN SCIENCE CLOUD

EC Horizon 2020 work programme https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

You can't expect everything to be TRL-9

- Research is often experimental for good reasons
- You wouldn't send an astronaut to space using a PhD candidate's prototype rocket
- You wouldn't invest in technology without more than a single laboratory testing it

Horizon 2020 deliverable types

- \circ R document, report
- demonstrator, pilot, prototype, plan designs DEM \mathbf{O}
- websites, patents filing, press & media actions, videos, etc. \diamond DEC
- ◇ OTHER software, technical diagram, etc.
- \Rightarrow Standard question: where's the PDF?

At CESSDA

Social Science Study Data

• Central Catalogue

Data access at our national institutions

- European Language Social Sciences Thesaurus
- Controlled Vocabularies
- Question Bank (soon)
- Data Management Expert Guide
- Training

 \Rightarrow https://www.cessda.eu/Tools-Services

Services are more than just software

- Documentation
- User Support
- ◇ Terms of Use / SLAs
- Sustainability & Reliability

Services powered by Products

- Internally developed solutions tailored to the use cases. \mathbf{O}
- Standard software where it exists. \mathbf{O}
- Reliable cloud infrastructure. \mathbf{O}
- Built with: Kubernetes, Docker, Jenkins, SonarQube, Java, Python ... \bigodot

CESSDA Projects

- Work awarded to our national archives to carry out for the infrastructure.
- Including deliverables, reporting and everything. \mathbf{O}
- Now includes the deliverable type "Software Release" \bigcirc

CESSDA's Software Release Deliverable

Link to the git release tag inside a git repository that includes the **updated changelog** for the **version** referencing the **relevant issues** in the repository.

Releases require manual QA, supported by automation. \bigodot That's also what you'd publish to Zenodo. \mathbf{O}

https://docs.tech.cessda.eu/software/releases.html

Software QA Requirements

- Software Maturity Level "Expected" * \bigcirc
- Code Test Coverage of at least 80.0% \mathbf{O}
- Duplicated Code Lines is less than 3.0% \mathbf{O}
- Maintainability, Reliability & Security Rating⁺ of A \bigodot

* https://doi.org/10.5281/zenodo.2614050 https://docs.tech.cessda.eu/

+ SonarQube measurement

User engagement

- User representative and development leader must agree. \bigcirc
- Functionality must meet the pre-agreed requirements. \bigcirc
- \Rightarrow But quality is checked first. \Rightarrow We run internal trainings.

Good practices

Manual QA on release, tooling provided

CI/CD Pipelines with full automation

Unit and integration tests during deployment

Coding guidelines* and static analysis

* https://technical-reference.readthedocs.io/en/latest/

Solved it!?

But wait, you say

»My research software doesn't have to be as robust as the rockets sending astronauts to space!«

Maybe not! But what's your response to

»Help me Oh-my-wise Researcher, you're my only hope!«

imaginary researcher

your government's friendly envoy

So what now?

- Quality is crucial, when ensured wisely!
- Everything has a certain value and too often that isn't clear in advance!
- \Rightarrow Incentives & rewards and proper requirements needed on all levels!

carsten.thiel@cessda.eu

