DARVIN The Low-Background Low-Threshold Observatory

DARV

DE LE

Marc Schumann U Freiburg

7. KAT-Strategietreffen, online, December 3, 2020 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de www.darwin-observatory.org

Dark Matter: (indirect) Evidence

The astrophysical evidence for the existence of dark matter is a clear indication for physics beyond the Standard Model

$\frac{1}{f}$ Direct Detection: Status

$\frac{1}{f}$ Direct Detection: Status

Dual-Phase LXe TPC

TPC = time projection chamber

Upcoming Projects

DARWIN

The ,ultimate' Limit

DARW

The ,ultimate' Limit

DARV

The ,ultimate' Limit

some results are missing ...

DARWIN

DARWIN

DARM

DARM

DARWIN Collaboration

 $\mathsf{D}\Delta\mathsf{R}\mathsf{V}$

TU Dresden U Freiburg U Hamburg U Heidelberg KIT U Mainz MPIK U Münster

- international collaboration, 33 groups, ~170 scientists
- most XENON plus new groups → continuously growing
- strong German role: co-spokesperson, exec positions, WG leaders

DARWIN Backgrounds

pp+⁷Be neutrinos → ER signature high-E neutrinos → CNNS bg → NR signature

Remaining background sources: – Neutrinos (\rightarrow ERs and NRs) – Detector materials (\rightarrow n) – Xe-intrinsic isotopes (\rightarrow e⁻) (assume negligible µ-induced background)

JCAP 10, 016 (2015)

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

only single scatters

Water Shield @ LNGS

Full MC Simulation for 3600 mwe

- external y, n background irrelevant after >2.5m
- critical: μ -induced neutrons of high energy
- studied several water shield geometries between XENON and Borexino tank
- -12m tank: ~0.4 n/(200 t×y) Borexino: <0.05 n/(200 t×y)
- Gd-loaded water further reduces numbers

Events inside FV

Fiducial volume

0.4

Vetoed inside FV

0.6

0.8

R² [mm²]

1.0

-500

-1000

-1500

-2000

0.0

0.2

0 25

Events outside FV

Vetoed outside FV

1.2

Sensitive LXe volume

1.4

1.6

Neutron Background Studies

- define material and design requirements

		Activity						
Material	Unit	²³⁸ U	226Ra	²³⁵ U	²³² Th	228 <mark>Th</mark>	Ref.	Start with realized radioactivity values → work on improvement
Titanium	mBq/kg	< 1.6	< 0.09	< 0.02	0.28	0.23	LZ	
PTFE	mBq/kg	< 5e-3	< 5e-3	< 2e-4	<1.4e-3	<1.4e-3	EXO	
Copper	mBq/kg	< 1	< 0.035	< 0.18	< 0.033	< 0.026	XENON	
PMT	mBq/unit	8	0.6	0.37	0.7	0.6	XENON	
PMT bases	mBq/unit	0.82	0.32	0.071	0.20	0.15	XENON	

Single scatters in TPC Origin of single scatter neutrons 0.00005 0.00005 1000 2000 0.00004 0.00004 500 003 0.00003 Rate _____ -500 0.00002 -1000-10000.00001 0.00001 -2000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 le6 R² [mm²] 0.0 0.5 1.0 1.5 2.0 2.5 R² [mm²] 1e6

→ Gd-based water Cherenkov neutron veto not yet considered

M. Schumann (Freiburg) – DARWIN

LXe: Radon Background

Strategy DARWIN

- avoid Rn emanation by
- \rightarrow optimal material production
- → material selection
- → surface treatment
- → optimized detector design
- active Rn removal via cryogenic distillation

XENON1T distillation column installed @ XENON100

- → demonstrated reduction factor >27 (@ 95% CL)
- → dedicated column developed for XENONnT

DARWIN: Science Channels

Nuclear Recoil Interactions

WIMP dark matter JCAP 10, 016 (2015)

- spin-independent (S1-S2, charge-only)
- spin-dependent Phys.Dark Univ. 9-10, 51 (2015)
 - \rightarrow complementary with LHC, indirect det.
- various inelastic models, most EFT couplings

DARWIN: Science Channels

Nuclear Recoil Interactions

- spin-independent (S1-S2, charge-only)

WIMP dark matter JCAP 10, 016 (2015)

- spin-dependent
 → complementary with LHC, indirect det.
- various inelastic models, most EFT couplings

Coherent neutrino-nucleon scattering (CNNS)

- ⁸B neutrinos (low E), atmospheric (high E)
 - supernova neutrinos
 JCAP 1611, 017 (2016)

PRD 89, 013011 (2014), PRD 94, 103009 (2016)

DARWIN ER Background

M. Schumann (Freiburg) - DARWIN

DARM

DARWIN: Science Channels

Nuclear Recoil Interactions

WIMP dark matter JCAP 10, 016 (2015)

- spin-independent (S1-S2, charge-only)
- spin-dependent
 - \rightarrow complementary with LHC, indirect det.
- various inelastic models, most EFT couplings

Coherent neutrino-nucleon scattering (CNNS)

- ⁸B neutrinos (low E), atmospheric (high E)
- Supernova neutrinos JCAP 1611, 017 (2016) PRD 89, 013011 (2014), PRD 94, 103009 (2016)

Electronic Recoil Interactions

Non-WIMP dark matter and neutrino physics

- axions, ALPs JCAP 1611, 017 (2016), XENON1T excess
- sterile neutrinos

- JCAP 01, 044 (2014) arXiv:2006.03114
- pp, ⁷Be: precision flux measurements ^{ar}
- CNO neutrinos with ¹³⁶Xe-depleted Xe PRD 99, 043006 (2019)

Rare nuclear events

- Ονββ (¹³⁶Xe), 2νEC (¹³⁴Xe), ... JCAP 01, 044 (2014) arXiv:2002.04239 EPJ C 80, 808 (2020)

Solar Neutrinos

- DARWIN's ER spectrum will be dominated by pp neutrinos (and $2\nu DEC+2\nu\beta\beta$)
- distinct features in ν spectra allow extracting neutrino fluxes
 - → full spectral fit of all components up to 3 MeV (possibility to enhance sensitivity by more sophisticated analysis)

 $D\Delta RW$

Solar Neutrinos

JCAP 01, 044 (2014) arXiv:2006.03114

DARWIN

M. Schumann (Freiburg) – DARWIN

136Xe: 0v double-beta Decay

• 40t DARWIN LXe target contains 3.5t of ¹³⁶Xe without any enrichment!

M. Schumann (Freiburg) – DARWIN

¹³⁶Xe: 0v double-beta Decay

EPJ C 80, 808 (2020)

sensitive expsure [mol_{iso} yr]

DARWIN: 40t LXe TPC JCAP 11, 017 (2016)

darwin-observatory.org

Challenges

• Size

- → electron drift (HV)
- → diameter (TPC electrodes)
- \rightarrow mass (LXe purification)
- → dimensions (radioactivity)
- → detector response (calibration, corrections)

• Backgrounds

- \rightarrow ²²²Rn: factor 100 required
- \rightarrow (α ,n) neutrons (PTFE, metal)

Photosensors

- \rightarrow high light yield (QE)
- → low radioactivity
- \rightarrow long-term stability
- etc etc

R&D needed

DARWIN LXe Testplatform in Freiburg:

DFG

schungsgemeinschaft

eutsche

- 2.7 m inner diameter
- up to ~15 cm height (~5 cm LXe)
- \rightarrow ~400 kg Xe gas
- → test horizontal components, real-scale electrodes etc.

DARWIN LXe Testplatform in **Zürich**:

- 16 cm inner diameter
- up to 2.6 m LXe height
- \rightarrow ~400 kg Xe gas
- → test vertical components,
 e⁻ drift, HV feedthrough etc.

DARWIN: R&D Examples

M. Schumann (Freiburg) - DARWIN

DARWIN

DARWIN: Exciting Opportunities

darwin-observatory.org

 $I) \Delta R$

DARWIN: much more than

The ultimate Dark Matter Detector

→ The low-background, low-threshold Astroparticle Physics Observatory

DARWIN: Exciting Opportunities

darwin-observatory.org

DARWIN: much more than

The ultimate (LXe) Dark Matter Detector

→ A low-background, low-threshold Astroparticle Physics Observatory

- DARWIN at LNGS/Italy?
 → need ≥12m water shield
- Timeline: R&D and construction parallel to XENONnT data taking

Backup

M. Schumann (Freiburg) – DARWIN

Dependence of Sensitivity

5.0-20.5 keVnr, CES 8PE, Rej=99.98%, Acc=30%

Reference WIMP mass = 40 GeV/c^2

1.40200 t × y, X-20.5 keVnr, CES 8PE, Rej=99.98%, Acc=30% 1.35 E 1.30Threshold 1.25 .20 1.15 1.10

M. Schumann (Freiburg) - DARWIN

1.4

1.3Ē

1.2Ē

JCAP 10, 016 (2015)

DARW