

AUGER

Pierre Auger Observatory: new results on the spectrum of high-energy cosmic rays

Markus Roth for the Auger collaboration Karlsruhe Institute of Technology (KIT)

AUGER

OBSERVATORY

Pierre Auger new results o of high-energ

Observatory:
n the spectrum
gy cosmic rays

Markus Roth for the Auger collaboration Karlsruhe Institute of Technology (KIT)

PHYSICAL REVIEW LETTERS 125, 121106 (2020) **Editors' Suggestion** Featured in Physics Features of the Energy Spectrum of Cosmic Rays above 2.5×10^{18} eV Using the Pierre Auger Observatory A. Aab,¹ P. Abreu,² M. Aglietta,^{3,4} J. M. Albury,⁵ I. Allekotte,⁶ A. Almela,^{7,8} J. Alvarez Castillo,⁹ J. Alvarez-Muñiz,¹⁰ R. Alves Batista,¹ G. A. Anastasi,^{11,4} L. Anchordoqui,¹² B. Andrada,⁷ S. Andringa,² C. Aramo,¹³ P. R. Araújo Ferreira,¹⁴

Ultra-high energy cosmic rays above 1018 eV

Physics questions

- What are the sources?
- How are they accelerated?
- How do they propagate?
- How do they interact in the atmosphere?

Measured quantities and inference

- Energy spectrum
- Mass composition
- Arrival direction

Theoretical interpretation

of cosmic rays $\Phi(\mathbf{n})$ Ultra-high energy cosmic rays above 10¹⁸ eV

Telescope Array (TA)

Delta, UT, USA 507 detector stations, 680 km² 36 fluorescence telescopes

Any anisotropy finge poles. Non-zero amp ations of the flux on a The directional ex the effective time-inte each direction of the tional exposure of the the sum of the indivi sures have here to be b due to the unavoid sures of the experime as a fudge factor whi certainties in the rela of these uncertainties chosen to re-weight t Auger Observatory re

Pierre Auger Observatory

Province Mendoza, Argentina 1660 detector stations, 3000 km² 27 fluorescence telescopes

 $\omega(\mathbf{n};b)$

Dead times of dete sure of each experim right ascension. Howeve of data taking, the rela

Auger collaboration

16 countries ca. 90 institutions ca. 450 authors

- Germany strongest contributor
- Many positions taken within the collaboration
- Spokesperson from Germany

Pierre Auger Observatory

20th Anniversary of the Foundation of the Pierre Auger Observatory

14-16 November 2019 Pierre Auger Observatory

Full members Associate members

The Pierre Auger Observatory

Fluorescence detector (FD)

- 4 sites
- 0-30°
- E>10¹⁸ eV
- HEAT
- 30°-60°
- E>10¹⁷ eV

Surface detector array (SD)

- Grid of 1500 m
- 3000 km²
- 1660 stations
- E>10^{18.5} eV

• Grid of 750 m

- 24 km²
- 61 stations
- $E > 10^{17.5} eV$

The Pierre Auger Observatory

Fluorescence detector (FD)

- 4 sites
- 0-30°
- E>10¹⁸ eV
- HEAT
- 30°-60°
- E>10¹⁷ eV

Surface detector array (SD)

- Grid of 1500 m
- 3000 km²
- 1660 stations
- E>10^{18.5} eV

• Grid of 750 m

- 24 km²
- 61 stations
- E>10^{17.5} eV

Coihi Coihyeco

Malargije

Fluorescence detector (FD)

- 4 sites 0-30°
- E>10¹⁸ eV
- HEAT
- 30°-60°
- E>10¹⁷ eV

Surface detector array (SD)

- Grid of 1500 m
 - 3000 km²
 - 1660 stations
 - $E > 10^{18.5} eV$

Grid of 750 m

- **24** km²
- 61 stations
- E>10^{17.5} eV

Hybrid detection

Fluorescence Detector (FD):

- calorimetric measurement of energy
- ca. I 5% duty cycle

Surface Detector (SD):

- data driven shape of Lateral Distribution function (LDF)
- optimal distance at 1000 m
- ca. 100% duty cycle

100% duty cycle

Event observed with Auger Observatory

Zenith angle ranges of SD derived spectra

[wy] 19 **^** 19 \bigcirc 18 - 0 y [km] E 1500 m 19 ► 60° 19 17 • 100% eff. @ 3 EeV \bigcirc 16 • 16 15 $\stackrel{\circ}{=} \stackrel{\circ}{A} S_{38}^{\mathcal{B}}$ 15 \bigcirc \bigcirc 14 \bigcirc \bigcirc 13 14 🗄 \bigcirc \bigcirc 12 13 **12** [⊨]**○** -6 -2 0 **11**<u>⊢</u> -6 -2 2 -4 0 x [km] x [km] [km] 26 • 1500 m **>** 24 \bigcirc -0Ο \bigcirc [km] 22 • 60°<θ < 80° \cap [km] **↓**0% eff.@ > 24 **2**∰ [=_] \mathbf{i} • No by definition 20 pendent of 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc **18**¢ \bigcirc \bigcirc \bigcirc \cap \cap 0 0 \bigcirc \circ 0 \bigcirc \bigcirc 0 0 0 (16 _O O \bigcirc \bigcirc \bigcirc 18 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \circ 14 \bigcirc $\circ \circ \circ$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 \bigcirc 12 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 0 0 0 \bigcirc 0 0 \bigcirc \cap \bigcirc \bigcirc \bigcirc \cap 14 0 $\circ \circ \circ \circ \circ \circ$ \bigcirc 10৮ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cap 12^{[-} \bigcirc \bigcirc \circ \bigcirc \bigcirc **8**⊨° ° \bigcirc \bigcirc \bigcirc \circ \circ \bigcirc 0 0 0 0 0 \bigcirc \cap \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

SD data: energy calibration

$E_{\rm FD} = A S^B$

Energy resolution

- 750m θ<55°: 15% @ 0.3 EeV (13% @ 1 EeV)
- I 500m θ<60°: I 6% @ 3 EeV (I 2% @ I 0 EeV)
- I 500m 60°θ<80°: I 9% @ 4 EeV

Data driven calibration ⇒ Air shower simulations are avoided

Five measurements of the cosmic-ray flux

13

Five measurements of the cosmic-ray flux

Combined energy spectra of Auger and TA

σ_E=21%

Combined energy spectrum

 eV^{2} Sr⁻¹ Vr^{-1} [km⁻² ЦЗ X J(E)

New feature emerges due to high statistics and excellent energy resolution

New feature at high statistics (i.e. data of the 1500m array)

$$J(E) = J_0 \left(\frac{L}{10^{18.5} \text{ eV}} \right) \prod_{i=1}^{N} \left[1 + \left(\frac{L}{E_{ij}} \right)^{-ij} \right]^{(i+ij)}$$
$$\omega_{ij} = 0.05$$

Phys. Rev. D 102, 062005 (2020 Phys. Rev. Lett. 125, 121106 (2020)

New feature at high statistics (i.e. data of the 1500m array)

New feature at high statistics (i.e. data of the 1500m array)

parameter	value $\pm \sigma_{\rm stat} \pm \sigma_{\rm sys.}$
$J_0 [\mathrm{km}^{-2} \mathrm{sr}^{-1} \mathrm{yr}^{-1} \mathrm{eV}^{-1}]$	$(1.315 \pm 0.004 \pm 0.400) \times 10^{-18}$
γ_1	$3.29 \pm 0.02 \pm 0.10$
γ_2	$2.51 \pm 0.03 \pm 0.05$
γ_3	$3.05 \pm 0.05 \pm 0.10$
γ_4	$5.1 \pm 0.3 \pm 0.1$
E_{12} [eV] (ankle)	$(5.0 \pm 0.1 \pm 0.8) imes 10^{18}$
E_{23} [eV]	$(13 \pm 1 \pm 2) \times 10^{18}$
E_{34} [eV] (suppression)	$(46 \pm 3 \pm 6) \times 10^{18}$
$D/n_{\rm dof}$	17.0/12

Previous parametrization disfavored by 3.9σ

Functional shape

$$J(E) = J_0 \left(\frac{E}{10^{18.5} \text{ eV}}\right)^{-\gamma_1} \prod_{i=1}^3 \left[1 + \left(\frac{E}{E_{ij}}\right)^{1/\omega_{ij}}\right]^{(\gamma_i - \gamma_j)}$$
$$\omega_{ij} = 0.05$$

Phys. Rev. D **102**, 062005 (2020 *Phys. Rev. Lett.* 125, 121106 (2020)

Zenith and declination dependence

Phys. Rev. D **102**, 062005 (2020 *Phys. Rev. Lett.* 125, 121106 (2020)

No significant zenith nor declination dependence beyond expected dipole effect

Declination dependence

$E > 8 \times 10^{18} eV$

Declination band	Integral intensity [km ⁻² yr ⁻¹ sr ⁻¹]
$-90.0^{\circ} \le \delta < -42.5^{\circ} -42.5^{\circ} \le \delta < -17.3^{\circ} -17.3^{\circ} \le \delta < +24.8^{\circ}$	$(4.17 \pm 0.04) \times 10^{-1}$ $(4.11 \pm 0.04) \times 10^{-1}$ $(4.11 \pm 0.04) \times 10^{-1}$

Phys. Rev. D **102**, 062005 (2020 *Phys. Rev. Lett.* 125, 121106 (2020)

- GZK model at odds with new feature
- Absence of declination dependenc \Rightarrow Disfavors local source emitting protons
- Ilustrative model:
- At source E_{max} ~ Z i.e. heavier elements at high energies (in concordance with recent Auger results)
- Combined fit with X_{max} data (EPOS LHC)
- Sources stationary and uniform in coming volume
 - Hard injection spectra
- $E_{He}/E_{CNO}=3.4\pm0.3$
- Subdominant light contribution not excluded

Summany

Five independent measurements using either SD and FD

 Using same energy scale derived from FD: Syst. uncertainty of 14%

 Combined spectrum covering range from 10^{16.5} eV to 10²⁰ eV using data collected over almost 15 years

 New feature identified due to high statistics and precision of measurement

New AugerPrime data will allow for composition selected analyses

Upgrade of Auger Observatory: AugerPrime

Vertical showers: scintillators and water-Cherenkov detectors: em. particles vs. µ

- Scintillators (3.8 m²) and radio antenna on top of each array detector
- Composition measurement up to 10²⁰ eV
- Composition selected anisotropy
- Particle physics with air showers

Ongoing upgrade AugerPrime (scintillators and radio antennas)

(AugerPrime design report 1604.03637)

Institute for Astroparticle Physics

AugerPrime — Advent of multi-hybrid data

AugerPrime — Advent of multihybrid data

Institute for Astroparticle Physics

SD energy estimator for vertical events

 $S(r) = S(r_{\text{opt}})f(r)$

1500 m array: $S(r_{opt}) = S1000$ **750 m array:** $S(r_{opt}) = S450$

 θ -dependence (attenuation in atmosphere) corrected for using CIC

Institute for Astroparticle Physics

Zenith dependent bias

Institute for Astroparticle Physics

FD correlated uncertainties

Total uncertainty: 14% ≈ energy independent

Largest contribution from FD calibration

1500 m array θ < 60°

Absolute fluorescence yield	3,4 %
Fluores. spectrum and quenching param.	1,1 %
Sub total (Fluorescence Yield)	3,6 %
Aerosol optical depth	3 % — 6 %
Aerosol phase function	I %
Wavelength dependence of aerosol scattering	0,5 %
Atmospheric density profile	I %
Sub total (Atmosphere)	3,4 % — 6,2 %
Absolute FD calibration	9 %
Nightly relative calibration	2 %
Optical efficiency	3,5 %
Sub total (FD calibration)	9,9 %
Folding with point spread function	5 %
Multiple scattering model	I %
Simulation bias	2 %
Constraints in the Gaisser-Hillas fit	I % — 3,5 %
Sub total (FD profile rec.)	5,6 % — 6,5 %
Invisible energy	I,5 % — 3 %
Statistical error of the SD calib. fit	0,7 % — I,8 %
Stability of the energy scale	5 %
TOTAL	 4 %

