

www.kit.edu

Recent developments in neutrino oscillations from a phenomenology perspective

Thomas Schwetz-Mangold

KIT – The Research University in the Helmholtz Association

Neutrinos oscillate!

SuperK 1998 atmospheric neutrinos

KamLAND 2006 reactor neutrinos ~ 180 km

neutrinos have mass \rightarrow Standard Model of particle physics needs to be extended!

"For the greatest benefit to mankind

2015 NOBEL PRIZE IN PHYSICS

Takaaki Kajita Arthur B. McDonald

DayaBay, 2015 $ar{
u}_e
ightarrow ar{
u}_e$, $\langle L
angle \sim 2 \; {
m km}$

T2K, 2015 $u_{\mu}
ightarrow
u_{\mu}$, $\langle L
angle \sim$ 295 km

3-flavour neutrino parameters

- ► 3 masses: Δm_{21}^2 , Δm_{31}^2 , m_0
- ► 3 mixing angles: θ_{12} , θ_{13} , θ_{23}
- ▶ 3 phases: 1 Dirac (δ), 2 Majorana (α_1, α_2)

neutrino oscillations absolute mass observables lepton-number violation

3-flavour effects are suppressed: $\Delta m_{21}^2 \ll \Delta m_{31}^2$ and $\theta_{13} \ll 1$ $(U_{e3} = s_{13}e^{-i\delta})$

 \Rightarrow dominant oscillations are well described by effective two-flavour oscillations \Rightarrow present data is already sensitive to sub-leading effects

The rough picture

- the two mass-squared differences are separated roughly by a factor 30: $\Delta m_{21}^2 \approx 7 \times 10^{-5} \text{eV}^2$, $|\Delta m_{31}^2| \approx |\Delta m_{32}^2| \approx 2.4 \times 10^{-3} \text{eV}^2$
- at least two neutrinos are massive two possible orderings
- mixing angles are large

$$\begin{aligned} \sin \theta_{13} &= |U_{e3}| & (\nu_e \text{ component in } \nu_3) = (\nu_3 \text{ component in } \nu_e) & \theta_{13} \approx 9^\circ \\ \tan \theta_{12} &= \frac{|U_{e2}|}{|U_{e1}|} & \text{ratio of } \nu_2 \text{ and } \nu_1 \text{ component in } \nu_e & \theta_{12} \approx 33^\circ \\ \tan \theta_{23} &= \frac{|U_{\mu3}|}{|U_{\tau3}|} & \text{ratio of } \nu_\mu \text{ and } \nu_\tau \text{ component in } \nu_3 & \theta_{23} \approx 45^\circ \end{aligned}$$

Complementarity of global oscillation data

param	experiment	comment
θ_{12}	SNO, SuperK, (KamLAND)	resonant matter effect in the Sun
θ_{23}	SuperK, T2K, NOvA	$ u_{\mu}$ disappearance atmospheric (accelerator) neutrinos
θ_{13}	DayaBay, RENO, D-Chooz (T2K, NOvA)	$ar{ u}_{e}$ disappearance reactor experiments @ ~ 1 km
Δm_{21}^2	KamLAND, (SNO, SuperK)	$ar{ u}_e$ disappearance reactor @ \sim 180 km (spectrum)
$ \Delta m^2_{31} $	MINOS, T2K, NOvA, DayaBay	$ u_{\mu}$ and $ar{ u}_{e}$ disapp (spectrum)
δ	T2K, NOvA $+$ DayaBay	combination of $(u_{\mu} ightarrow u_{e}) + ar{ u}_{e}$ disap

⇒ global analysis (especially sub-leading 3-flavour effects)

NuFit collaboration: <u>www.nu-fit.org</u> with M.C. Gonzalez-Garcia, M. Maltoni, et al. NuFIT 5.0: Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, 2007.14792

compatible results from Bari (Lisi et al.) and Valencia (Tortola et al.) groups

NuFit 5.0 results

www.nu-fit.org

					Nul 11 3.0 (2020)	
		Normal Ore	lering (best fit)	Inverted Ordering ($\Delta \chi^2 = 2.7$)		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
without SK atmospheric data	$\sin^2 heta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	
	$ heta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
	$\sin^2 heta_{23}$	$0.570\substack{+0.018\\-0.024}$	$0.407 \rightarrow 0.618$	$0.575_{-0.021}^{+0.017}$	$0.411 \rightarrow 0.621$	
	$ heta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$	
	$\sin^2 heta_{13}$	$0.02221^{+0.00068}_{-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02240^{+0.00062}_{-0.00062}$	$0.02053 \rightarrow 0.02436$	
	$ heta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.61_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$	
	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$	
		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 7.1)$		
		Normal Ore	dering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 7.1)$	
		Normal Ore bfp $\pm 1\sigma$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$	Inverted Orde bfp $\pm 1\sigma$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$	
	$\sin^2 \theta_{12}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$	
lata	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^\circ}$	$\begin{tabular}{ c c c c c c c }\hline Normal Ord \\ \hline bfp \pm 1\sigma \\ \hline 0.304^{+0.012}_{-0.012} \\ \hline 33.44^{+0.77}_{-0.74} \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$	
ric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\sin^2 \theta_{23}$	$\begin{tabular}{ c c c c c c }\hline Normal Ord \\ \hline bfp \pm 1 \sigma \\ \hline 0.304^{+0.012}_{-0.012} \\ \hline 33.44^{+0.77}_{-0.74} \\ \hline 0.573^{+0.016}_{-0.020} \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$	
spheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	$\begin{tabular}{ c c c c c c c } \hline Normal Ord \\ \hline bfp \pm 1 \sigma \\ \hline 0.304^{+0.012}_{-0.012} \\ \hline 33.44^{+0.77}_{-0.74} \\ \hline 0.573^{+0.016}_{-0.020} \\ \hline 49.2^{+0.9}_{-1.2} \end{tabular}$	$\begin{array}{l} \text{dering (best fit)} \\ \hline 3\sigma \text{ range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.86 \\ \hline 0.415 \rightarrow 0.616 \\ 40.1 \rightarrow 51.7 \end{array}$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$	
ttmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\sin^2 \theta_{13}$	$\begin{tabular}{ c c c c c c c } \hline Normal Ord \\ \hline bfp \pm 1 \sigma \\ \hline 0.304^{+0.012}_{-0.012} \\ \hline 33.44^{+0.77}_{-0.74} \\ \hline 0.573^{+0.016}_{-0.020} \\ \hline 49.2^{+0.9}_{-1.2} \\ \hline 0.02219^{+0.00062}_{-0.00063} \\ \hline \end{tabular}$	$\begin{array}{l} \text{dering (best fit)} \\ \hline 3\sigma \text{ range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.86 \\ \hline 0.415 \rightarrow 0.616 \\ 40.1 \rightarrow 51.7 \\ \hline 0.02032 \rightarrow 0.02410 \end{array}$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$	$\begin{array}{l} \text{ering } (\Delta\chi^2 = 7.1) \\ \hline 3\sigma \text{ range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.87 \\ \hline 0.419 \rightarrow 0.617 \\ 40.3 \rightarrow 51.8 \\ \hline 0.02052 \rightarrow 0.02428 \end{array}$	
SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$	$\begin{array}{r} \mbox{Normal Ord} \\ \mbox{bfp } \pm 1 \sigma \\ \mbox{0.304}^{+0.012}_{-0.012} \\ \mbox{33.44}^{+0.77}_{-0.74} \\ \mbox{0.573}^{+0.016}_{-0.020} \\ \mbox{49.2}^{+0.9}_{-1.2} \\ \mbox{0.02219}^{+0.00062}_{-0.00063} \\ \mbox{8.57}^{+0.12}_{-0.12} \end{array}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$	$ \begin{array}{c} \mbox{Inverted Orde} \\ \mbox{bfp } \pm 1 \sigma \\ \mbox{0.304}^{+0.013}_{-0.012} \\ \mbox{33.45}^{+0.78}_{-0.75} \\ \mbox{0.575}^{+0.016}_{-0.019} \\ \mbox{49.3}^{+0.9}_{-1.1} \\ \mbox{0.02238}^{+0.00063}_{-0.00062} \\ \mbox{8.60}^{+0.12}_{-0.12} \end{array} $	$\begin{array}{c} \text{ering } (\Delta\chi^2 = 7.1) \\ \hline 3\sigma \text{ range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.87 \\ \hline 0.419 \rightarrow 0.617 \\ 40.3 \rightarrow 51.8 \\ \hline 0.02052 \rightarrow 0.02428 \\ \hline 8.24 \rightarrow 8.96 \end{array}$	
with SK atmospheric data	$ \frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}} \\ \frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}} \\ \frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}} \\ \frac{\delta_{CP}/^{\circ}}{\delta_{CP}/^{\circ}} $	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$ $0.02219^{+0.00062}_{-0.00063}$ $8.57^{+0.12}_{-0.12}$ 197^{+27}_{-24}	$\begin{array}{l} \text{dering (best fit)} \\ \hline 3\sigma \text{ range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.86 \\ \hline 0.415 \rightarrow 0.616 \\ 40.1 \rightarrow 51.7 \\ \hline 0.02032 \rightarrow 0.02410 \\ \hline 8.20 \rightarrow 8.93 \\ \hline 120 \rightarrow 369 \end{array}$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$ $8.60^{+0.12}_{-0.12}$ 282^{+26}_{-30}	$\begin{array}{l} \text{ering } (\Delta\chi^2 = 7.1) \\ \hline 3\sigma \text{ range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.87 \\ \hline 0.419 \rightarrow 0.617 \\ 40.3 \rightarrow 51.8 \\ \hline 0.02052 \rightarrow 0.02428 \\ 8.24 \rightarrow 8.96 \\ \hline 193 \rightarrow 352 \end{array}$	
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{\rm CP}/^{\circ}$ $\frac{\Delta m_{21}^2}{10^{-5} \ \rm eV^2}$	$\begin{array}{r} \mbox{Normal Ord} \\ \hline \mbox{bfp } \pm 1 \sigma \\ \hline \mbox{0.304}^{+0.012}_{-0.012} \\ \mbox{33.44}^{+0.77}_{-0.020} \\ \mbox{49.2}^{+0.9}_{-1.2} \\ \mbox{0.02219}^{+0.00062}_{-0.00063} \\ \mbox{8.57}^{+0.12}_{-0.12} \\ \mbox{197}^{+27}_{-24} \\ \mbox{7.42}^{+0.21}_{-0.20} \end{array}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$ $120 \rightarrow 369$ $6.82 \rightarrow 8.04$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$ $8.60^{+0.12}_{-0.12}$ 282^{+26}_{-30} $7.42^{+0.21}_{-0.20}$	$\begin{array}{l} \text{ering } (\Delta\chi^2 = 7.1) \\ \hline 3\sigma \text{ range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.87 \\ \hline 0.419 \rightarrow 0.617 \\ 40.3 \rightarrow 51.8 \\ \hline 0.02052 \rightarrow 0.02428 \\ 8.24 \rightarrow 8.96 \\ \hline 193 \rightarrow 352 \\ \hline 6.82 \rightarrow 8.04 \end{array}$	
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\frac{\delta_{\rm CP}/^{\circ}}{\delta_{\rm CP}/^{\circ}}$ $\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$ $\frac{\Delta m_{3\ell}^2}{10^{-3} \ {\rm eV}^2}$	$\begin{array}{r} \mbox{Normal Ord} \\ \hline \mbox{bfp } \pm 1 \sigma \\ \hline \mbox{0.304}^{+0.012}_{-0.012} \\ \mbox{33.44}^{+0.77}_{-0.020} \\ \mbox{49.2}^{+0.9}_{-1.2} \\ \mbox{0.02219}^{+0.00062}_{-0.00063} \\ \mbox{8.57}^{+0.12}_{-0.12} \\ \mbox{197}^{+27}_{-24} \\ \mbox{7.42}^{+0.21}_{-0.20} \\ \mbox{+2.517}^{+0.026}_{-0.028} \end{array}$	$\begin{array}{l} \mbox{dering (best fit)} \\ \hline 3\sigma \ range \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.86 \\ \hline 0.415 \rightarrow 0.616 \\ 40.1 \rightarrow 51.7 \\ \hline 0.02032 \rightarrow 0.02410 \\ 8.20 \rightarrow 8.93 \\ \hline 120 \rightarrow 369 \\ \hline 6.82 \rightarrow 8.04 \\ +2.435 \rightarrow +2.598 \end{array}$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$ $8.60^{+0.12}_{-0.12}$ 282^{+26}_{-30} $7.42^{+0.21}_{-0.20}$ $-2.498^{+0.028}_{-0.028}$	$\begin{array}{l} \mbox{ering } (\Delta\chi^2=7.1) \\ \hline 3\sigma \ {\rm range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.87 \\ \hline 0.419 \rightarrow 0.617 \\ 40.3 \rightarrow 51.8 \\ \hline 0.02052 \rightarrow 0.02428 \\ 8.24 \rightarrow 8.96 \\ \hline 193 \rightarrow 352 \\ \hline 6.82 \rightarrow 8.04 \\ -2.581 \rightarrow -2.414 \end{array}$	

NuFit 5.0 results

robust determination
 (relat. precision at 3σ):

 $\begin{array}{ll} \theta_{12} \left(14\% \right) &, & \theta_{13} \left(9\% \right) \\ \Delta m_{21}^2 \left(16\% \right) , & \left| \Delta m_{3\ell}^2 \right| \left(6.7\% \right) \end{array}$

broad allowed range for θ₂₃ (27%), non-significant indications for non-maximality/octant

ambiguity in sign of $\Delta m_{3\ell}^2 \rightarrow$ mass ordering

values of $\delta_{
m CP}\simeq 90^\circ$ disfavoured

CP violation and mass ordering

status about one year ago:

- preference for normal mass ordering ~3σ (subtle interplay of global data)
- hints for "large" CP violation ~2-3σ (mostly driven by T2K versus DayaBay)

New data from T2K and NOvA at Neutrino20 (June 2020) neutrino samples increased by 32% / 54% resp.

T2K and NOvA accelerator experiments

- $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ disappearance
- $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance

T2K and NOvA Neutrino20 $v_{\mu} \rightarrow v_{e}$ appearance results

>4 σ evidence of \bar{v}_e appearance

Latest results from T2K and NOvA

determined by DayaBay, RENO, DoubleChooz

Th. Schwetz - KAT meeting 3./4. Dec 2020

Status of mass ordering and CP phase

 T2K and NOvA better compatible for IO → LBL combination best fit for IO

Status of mass ordering and CP phase

- T2K and NOvA better compatible for IO → LBL combination best fit for IO
- CP phase best fit at δ=195° (shifted towards 180°) →
 CP conservation allowed at 0.6σ
- for IO: best fit close to δ=270°, CP conserv.
 disfavoured at 3σ

T2K and NOvA are statistically consistent for both orderings

Figure 3. 1 σ and 2σ allowed regions (2 dof) for T2K (red shading), NOvA (blue shading) and their combination (black curves). Contours are defined with respect to the local minimum for IO (left) or NO (right). We are fixing $\sin^2 \theta_{13} = 0.0224$, $\sin^2 \theta_{12} = 0.310$, $\Delta m_{21}^2 = 7.40 \times 10^{-5} \text{ eV}^2$ and minimize with respect to $|\Delta m_{3\ell}^2|$.

µ and e disappearance

Consistency of μ and e disappearance

slightly different effective mass-squared differences: -/+ for NO/IO Nunokawa, Parke, Zukanovich, 05

Status of mass ordering

- T2K and NOvA better compatible for IO → LBL combination best fit for IO
- LBL/reactor determ of Δm^2 better for NO \rightarrow
- overall preference for NO with $\Delta \chi^2 = 2.7$ (was 6.2 in 2019)

Mass ordering - atmospheric neutrinos

•
$$\chi^2(IO) - \chi^2(NO) = 4.3$$

- analysis not reproducable outside SK
- add χ^2 table to global fit (,,black box")

Inverted Hierarchy
Normal Hierarchy

Mass ordering - atmospheric neutrinos

- global analysis (using SK I-IV, 1710.09126): $\chi^{2}(IO) - \chi^{2}(NO) = 2.7$ (no SK) $\rightarrow 7.1$ (w SK) 2.7 σ was 10.4 (3.2 σ) in 2019
- NOTE: recent SK update @ Neutrino20: improved analysis: $\chi^2(IO) - \chi^2(NO) = 4.3 \rightarrow 3.2$ (χ^2 table not available yet)

Small "tension" (2σ) in 12 sector

long-standing tension between Δm^2 from KamLAND and solar neutrinos:

- missing up-turn of high-energy solar neutrino spectrum
- too large day-night effect

Small "tension" (2σ) in 12 sector: **RESOLVED**

Summary

- 3-flavour oscillation paradigm very successful excellent description of global data
- previous hints for CP violation disappeared mostly due to new T2K and NOvA results:
 - CP cons. @ 0.6σ
 - if restricted to inverted ordering: CPV preferred at $\sim 3\sigma$
- previous hints for normal ordering decreased:
 - $\Delta \chi^2(IO) = 2.7$ (no SK atm) / 7.1 (w SK atm)

opposite tendencies in different sets of experiments

- preference for NO from SK atm is decreasing
- previous tension between solar and KamLAND data resolved with latest SuperK solar neutrino data

Thank you for your attention!

Supplementary slides

T2K, NOvA, and reactors are consistent with each others

data sets	normal ordering			inverted ordering		
	$\chi^2_{ m PG}/n$	<i>p</i> -value	$\#\sigma$	$\chi^2_{ m PG}/n$	<i>p</i> -value	$\#\sigma$
T2K vs NOvA	6.7/4	0.15	1.4σ	3.6/4	0.46	0.7σ
T2K vs React	0.3/2	0.87	0.2σ	2.5/2	0.29	1.1σ
NOvA vs React	3.0/2	0.23	1.2σ	6.2/2	0.045	2.0σ
T2K vs NOvA vs React	8.4/6	0.21	1.3σ	8.9/6	0.18	1.3σ
T2K vs NOvA	6.5/3	0.088	1.7σ	2.8/3	0.42	0.8σ
T2K vs NOvA vs React	7.8/4	0.098	1.7σ	7.2/4	0.13	1.5σ

Table 2. Testing the consistency of different data sets shown in the first column assuming either normal or inverted ordering. "React" includes Daya-Bay, RENO and Double-Chooz. In the analyses above the horizontal line, θ_{13} is a free parameter, whereas below the line we have fixed $\sin^2 \theta_{13} = 0.0224$. See text for more details.

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, 2007.14792

