BOREXINO: EXPERIMENTAL EVIDENCE OF NEUTRINOS PRODUCED IN THE CNO FUSION CYCLE IN THE SUN

LIVIA LUDHOVA FOR THE BOREXINO COLLABORATION

IKP-2, FORSCHUNGSZENTRUM JÜLICH AND RWTH AACHEN UNIVERSITY, GERMANY

DECEMBER 4TH, 2020 7TH KAT STRATEGY MEETING

Mitglied der Helmholtz-Gemeinschaft

OUTLINE

- 1. Solar neutrinos
- 2. Borexino detector
- 3. Borexino solar neutrino analysis
 - ✓ pp fusion chain
 - ✓ latest news:
 - the first observation
 - of CNO cycle solar neutrinos

published in Nature few days ago: 25/11/2020

HYDROGEN-TO-HELIUM FUSION IN THE SUN

CNO-cycle: < 1% solar energy ⁴He ^{1}H Gamma Ray Proton Neutron Neutrino ν Positron

CNO CYCLE VS PP CHAIN IN THE STARS

Haxton & Serenelli: The Astrophysical J. 687 (2008) 678

SOLAR NEUTRINOS FROM THE PP AND CNO

ENERGY SPECTRUM OF SOLAR NEUTRINOS

Forschungszentrum

SOLAR NEUTRINOS AND WHY TO STUDY THEM

Neutrino physics

- Solar mixing angle θ_{12} and global fits of **neutrino oscillation parameters**
- Testing LMA-MSW predictions and matter effects: electron flavour survival probability as f(E_v) and its upturn
- Searches for Non-standard Neutrino Interactions

Solar and stellar physics

- Direct probe of **nuclear fusion**
- Photon vs neutrino luminosity: testing thermodynamical stability of the Sun
- Standard Solar Models
 - ✓ Metallicity problem

SOLAR METALLICITY PROBLEM

Z = abundance of heavy elements: C, N, O, Ne, Mg, Si, Ar, Fe X = abundance of H and He Metallicity is an input to the SSM, that influences the neutrino flux prediction.

- opacity -> temperature -> cross sections
- CNO -> direct influence through C, N, O

High-Metallicity HZ-SSM = B16 SSM with an older GS98 metallicity input Low-Metallicity LZ SSM = B16 SSM with a newer AGSS09met input

The new low metallicity inputs, based on the new spectroscopic data and 3D models of the solar atmosphere, spoil the previous agreement of the SSM (with older high metallicity inputs) with the helio-seismological data.

wave velocity SM) / SSM	0.015 GS98 AGSS09	FLUX	B16-GS98	B16-AGSs09met	DIFF. (HZ-LZ)/HZ	
	$\begin{array}{c c} 0.010 \\ \hline \\ AGS05 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	pp (10 ¹⁰ cm ⁻² s ⁻¹)	5.98(1±0.006)	6.03(1±0.005)	-0.8%	
		pep (10 ⁸ cm ⁻² s ⁻¹)	1.44(1±0.01)	1.46(1±0.009)	-1.4%	
stic – St		⁷ Be (10 ⁹ cm ⁻² s ⁻¹)	4.94(1±0.06)	4.50(1±0.06)	8.9%	
cous ata -	0.000 HZ-SSM	⁸ B (10 ⁶ cm ⁻² s ⁻¹)	5.46(1±0.12)	4.50(1±0.12)	17.6%	
A(di b)		¹³ N (10 ⁸ cm ⁻² s ⁻¹)	2.78(1±0.15)	2.04(1±0.14)	26.6%	
	$-0.005 \begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & 0.0 & & 0.2 & & 0.4 & & 0.6 & & 0.8 & & 1.0 \end{bmatrix}$	¹⁵ O (10 ⁸ cm ⁻² s ⁻¹)	2.05(1±0.17)	1.44(1±0.16)	29.7%	
	R/R _o Radial distance/ solar radius	¹⁷ F(10 ⁶ cm ⁻² s ⁻¹)	5.29(1±0.20)	3.26(1±0.18)	38.3%	
Mitglied	I der Helmholtz-Gemeinschaft	N. Vinyoles et al., Astrophys. J. 836 (2017) 202				

BOREXINO COLLABORATION

~100 scientists from

• Italy

• Germany Forschungszentrum Jülich JGU Mainz RWTH Aachen TU Dresden TU München

- USA
- Russia
- France
- Poland

BOREXINO DETECTOR

Laboratori Nazionali del Gran Sasso, Italy

- the world's radio-purest LS detector < 9 × 10⁻¹⁹ g(Th)/g , < 8 × 10⁻²⁰ g(U)/g
- ~500 photoelectrons / MeV
- energy reconstruction: 5 keV (5%) @ 1 MeV
- position reconstruction: 10 cm @ 1 MeV
- pulse shape identification (α/β , e⁺/e⁻)

Operating since 2007

More about detector in: NIM A600 (2009) 568

Solar neutrino detection: SINGLES

- Elastic scattering of electrons
- No threshold
- All flavours (cross section for v_e ~6x higher)

+

BOREXINO TIMELINE AND RESULTS

- Geoneutrinos (2010, 2013, 2015, 2019)
- Search for solar, astro anti-v (2011)
- Test of electric charge conservation (2015)
- Limit on v-magnetic moment (2017)
- Search for solar axions (2008, 2012)
- Search for coincidence with GRB's (2016)
- Search for coincidence with GRB's (2016)
- Search for coincidence with GW's (2017)

Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun

Subscribe

The Borexino Collaboration

Nature 587, 577–582(2020) Cite this article Metrics

BOREXINO PP-CHAIN RESULTS ARTICLE

Spectroscopy of all pp-cycle neutrinos at once Low Energy Region (LER) 0.19 – 2.93 MeV: *pp* (9.5%), ⁷Be (2.7%), *pep* (>5σ) High Energy Region (HER) 3.2 – 16 MeV: ⁸B (3 MeV threshold, 8%)

- First Borexino limit on hep neutrinos
- Limit on CNO cycle neutrinos
- Neutrino and photon luminosity in agreement

Comprehensive measurement of *pp*-chain solar neutrinos

The Borexino Collaboration

- Indication towards HZ Standard Solar Models
- $BR(pp_{II}/pp_{I}) = <^{3}He + ^{4}He > / <^{3}He + ^{3}He > = 0.18 + 0.03$
- Survival probabilities at different energies in both vacuum and matter domains
- Vacuum-LMA model excluded at 98.2% CL

CHALLENGES TO MEASURE CNO NEUTRINOS

- Low rate (3-5 counts/day/100 ton of liquid scintillator)
- No prominent spectral features
- Correlation with
- ✓ pep solar neutrino: 1.4% constraint from the solar luminosity and global fit of solar data without Bx Phase III
- ✓ ²¹⁰Bi contamination of liquid scintillator: CHALLENGE

Expected sensitivity 4-5 σ for the HZ-SSM and conditions achieved in Phase III (Eur. Phys. Jour. C (2020) 1091)

BOREXINO STRATEGY TO CONSTRAIN 210-BISMUTH

Assuming secular equilibrium, all these rates are the same

BOREXINO STRATEGY TO CONSTRAIN 210-BISMUTH

Problem: seasonal convective currents bringing ²¹⁰Po from the nylon vessel to the fiducial volume of the analysis; **breaking the secular equilibrium**

TEMPORAL EVOLUTION OF 210-POLONIUM RATE

Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

SOLUTION: THERMAL STABILIZATION OF THE DETECTOR

Thermal insulation with mineral wool

Temperature probes and active temperature control

Mitglied der Helmholtz-Gemeinschaft

LOW POLONIUM FIELD (LPoF)

- 1. Clean region in the core of the detector is created: LPoF
- 2. We extract the minimal ²¹⁰Po rate value, that is an upper limit on ²¹⁰Bi rate

 $R(^{210}Po_{min}) = R(^{210}Bi) + R(^{210}Po^{vessel}) < R(^{210}Bi)$

 Check that the R(²¹⁰Bi) is homogeneous in the whole fiducial volume of the analysis (include non-homogeneity in the sys error)

4. Use upper limit on R(²¹⁰Bi)

as a half-Gaussian constraint in the analysis

Nature 587 (2020) 577

LOW POLONIUM FIELD – POSITION AND FIT

 $R(^{210}Bi) \leq (11.5 \pm 1.3) \text{ counts / day / 100 ton}$ including all systematic errors

Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

MULTIVARIATE SPECTRAL FIT WITH THREE-FOLD COINCIDENCE (TFC) TO TAG 11C

FIT AND COUNTING ANALYSIS RESULTS

FIT AND COUNTING ANALYSIS RESULTS

SIGNIFICANCE OF THE RESULT WITH TOY MONTE CARLO

SUMMARY AND OUTLOOK

- Borexino has experimentally confirmed the existence of the CNO fusion cycle in Nature using the Phase III data (July 2016 – Feb 2020)
- More precise measurements are needed for solving the solar metallicity puzzle
- Borexino will stop data taking in 2021: more precise measurement is very hard but not fully excluded

Solar Neutrinos

"For 35 years people said to me: `John, we just don't understand the Sun well enough to be making claims about the fundamental nature of neutrinos, so we shouldn't waste time with all these solar neutrino experiments.'

Then the SNO results came out.

And the next day people said to me, `Well, John, we obviously understand the Sun perfectly well! No need for any more of these solar neutrino experiments.'"

---- John Bahcall, 2003

Thank you!

Backup slídes

Nature 587 (2020) 577

TFC-subtracted (64% of exposure, 8% of ¹¹C)

210-BISMUTH HOMOGENEITY IN THE FIDUCIAL VOLUME

Angular homogeneity <u>+</u>0.59 cpd/100 t

Radial homogeneity +0.52 cpd/100 t

Nature 587 (2020) 577

SYSTEMATIC ERROR

On ²¹⁰Bi upper limit

$R\left(\mathrm{Po}_{\mathrm{min}} ight)$	σ_{fit}	σ_{mass}	σ_{bin}	$\sigma^{hom.}_{angular}$	$\sigma^{hom.}_{radial}$	σ^{leak}_{eta}	σ_{tot}
11.5	0.88	0.36	0.31	0.59	0.52	0.30	1.30

- σ_{fit} : paraboloidal/spline fit uncertainty
- σ_{mass} : LPoF mass uncertainty
- σ_{bin} : Uncertainty due to binning (used 1 or 2 months)
- $\sigma_{angular}^{hom.}$ and $\sigma_{radial}^{hom.}$: see previous slide
- σ_{β}^{leak} : R_{β} uncertainty (β leakage)

On the fit CNO rate

- from the fiducial volume defiinition, lifetime, scintillator density NEGLIGIBLE
- fit conditions (binning etc) with 2500 data fits NEGLIGIBLE
- light yield stability, non-linearity of the energy scale and resolution based on the calibration data and using ²¹⁰Po and ¹¹C standard candles, shape on the ²¹⁰Bi energy spectrum ^{+0.6} -0.5 cpd/100 t

