
Vectorization libraries

Corsika 8 Call, 3/12/2020 Luisa Arrabito – LUPM/CNRS 1



Vectorization techniques and libs

• Intrinsics
– Low level SIMD instructions specific to each architecture
– For arithmetics operations : +, -, /, x plus other types of operations (e.g. mask)
– High performances but low portability

• Intrinsics through Vectorization libraries
– Provide an abstraction of low level intrinsics
– Intermediate performances and good portability

• Auto-vectorization (by compiler)
– Lower performances and high portability
– No extra-dependancy

• Optimized libs
– E.g. For Linear Algebra, elementary functions, etc.

• Code generators: e.g. TensorFlow, Loopy (from Python language)
– Transform programs written in C++, C, Python in highly optimized C++, CUDA code for a given

architecture
– Pros: Good perf and good portability
– Cons: Add an extra dependancy

-> Vectorization libs and optimized libs seem the good approach for Corsika 8

2



Vectorization libs

• Vc
– https://github.com/VcDevel/Vc
– SSE4, AVX, AVX-2

• UME::SIMD used as backend of VecCore -> Tested
– https://github.com/edanor/umesimd
– SSE4, AVX, AVX-2, AVX-512
– Support of some vectorized mathematical functions but not really optimized

• xsimd
– https://github.com/QuantStack/xsimd
– SSE4, AVX, AVX-2, AVX-512
– Support of some vectorized mathematical functions

• VecCore (CERN)
– https://github.com/root-project/veccore
– Part the ROOT project on GitHub
– Vc, UME::SIMD, or a scalar implementation

3

https://github.com/VcDevel/Vc
https://github.com/edanor/umesimd
https://github.com/QuantStack/xsimd
https://github.com/root-project/veccore
https://github.com/root-project
https://github.com/VcDevel/Vc
https://github.com/edanor/umesimd


Libs for elementary functions

• Implement the most common functions
– exp, log, trigonometric functions, cbrt, ...

• Intel’s SVML:
– https://software.intel.com/en-us/node/583201

• AMDs libm:
– http://developer.amd.com/tools-and-sdks/archive/libm

• GNU’s libmvec (open source) -> Tested 
– gcc > 4.9.0 and glibc > 2.26
– Enabled by ffast-math flag -> No IEEE compliant
– https://sourceware.org/glibc/wiki/
– Based on auto-vectorization 
– No code transformation needed but it works only for simple scenarios

4

https://software.intel.com/en-us/node/583201
http://developer.amd.com/tools-and-sdks/archive/libm
https://sourceware.org/glibc/wiki/


Libs for elementary functions

• CERN’s VDT (backend of VecCore) (open source) -> Tested 
– https://github.com/dpiparo/vdt
– http://iopscience.iop.org/article/10.1088/1742-

6596/513/5/052027/pdf
– Based on auto-vectorization
– Functions require vector parameters
– About 3-4 ulps accuracy

• SIMD vector libm (open source) -> Tested and Used for Corsika 7 
optimization
– https://gitlab.com/cquirin/vector-libm
– https://hal.archives-ouvertes.fr/hal-01511131/document
– Based on auto-vectorization
– Functions require vector parameters
– About 3 ulps measured accuracy (8 ulps guaranteed)

5

https://github.com/dpiparo/vdt
http://iopscience.iop.org/article/10.1088/1742-6596/513/5/052027/pdf
https://gitlab.com/cquirin/vector-libm
https://hal.archives-ouvertes.fr/hal-01511131/document


Libs for elementary functions

• VecMath (CERN)
– https://github.com/root-project/vecmath
– Elementary functions but also pseudorandom number generators, 

support of specific types, such as Lorentz vectors
– Being extended to support vector operations for 2D and 3D vectors, and 

general-purpose vectorized algorithms
– SIMD and SIMT (GPUs) support based on VecCore
– Functions require vector parameters
– Free of of external dependencies other than VecCore and usable by 

vector-aware software stacks

6

https://github.com/root-project/vecmath


Libs for Linear Algebra

• Linear Algebra
– Low-level libs: e.g. MKL, BLAS, ATLAS, LAPACK, LAPACK++

• Pros: High perf. and portable
• Cons: Not easy to use because of the high number of parameters

for the functions
– High-level libs (based on auto-vectorization): e.g. Eigen, Armadillo, HPX, 

Xtensor
• Pros: Good perf and Easy to use. Allow to handle: Vector, Matrix, 

Tensor
• Cons: They are specialized for different use cases but they are not 

compatible among them
– Armadillo -> good for small matrix
– Eigen -> good for large matrix
– HPX -> good for very large matrix

• Cons: Compilation can be very long and high memory consuming

7


