
MR 317: OUTPUT ARCHITECTURE

R. Prechelt

April 8, 2021



Summary

• MR:317 contains an implementation of:
• A standardized output architecture for writing C8 data into a standard directory and file

format.
• An implementation of this architecture for several modules using Apache Parquet as the

file format.
• A Python analysis library that parses and loads the above structure.

• It has been available on Gitlab for ~6 weeks and all comments have been addressed -
would like to merge by the end of this week.

• Currently an issue with the CI related to a dependency but that will be fixed soon.

1/9



Directory Format

• Each C8 library (i.e. a collection of many showers) is stored in a single directory.
• Each module gets its own subdirectory that contains the data for all the showers in the

libary (as well as metadata in *.yaml).

1 <library name>/
2 config.yaml
3 obsplane/ # name of module
4 config.yaml
5 summary.yaml
6 particles.parquet
7 radio/ # name of module
8 config.yaml
9 summary.yaml
10 waveforms.parquet
11 ... 2/9



OutputManager

• The output system is coordinated by an instance of an OutputManager; this creates
the directories, writes the metadata files, and organizes the C8 modules that want to
write data.

• Modules (i.e. an ObservationPlane) are created as usual and are then registered
with the OutputManager using the add() method.

• The OutputManager is now an additional argument to the Cascade (so that it can
hook into the Run() method).

3/9



OutputManager Implements a Simple FSM

• The OutputManager implements a simple state machine that allows modules to hook
into the current simulation state:

1. Start of Library (before the first shower)
2. Start of Shower (start of each shower)
3. End of Shower (end of each shower)
4. End of Library (called after the last shower)

• At each state transition, the corresponding method from each registered output is
called allowing modules to hook into the simulation state.

• At the end of the simulation, the EndOfLibrary method of the OutputManager
must be called by the user to indicate that no more showers will be run; this closes out
the outputs and ensures everything is written to disk.

4/9



Output Interface

• To register with the OutputManager, each class must inherit from BaseOutput and
can provide the following methods (most are optional):

• StartOfLibrary
• StartOfShower
• EndOfShower
• EndOfLibrary
• GetConfig
• GetSummary

• Classes only need to implement whatever they need for their particular use case.

• The only one that is required is GetConfig (which I will discuss later).

5/9



Core C8 Modules - Can Swap Out File Format

• ObservationPlane and TrackWriter have already been ported to this new output
system; other modules will follow next week.

• To allow the output writer (i.e. file format) to be swapped out, each of the above
modules now has an additional template argument, TOutputWriter, that implements
the actual file format.

• TOutputWriter is defaulted to Parquet writers so for most use cases you don’t need
to worry about templates (i.e. TrackWriter writer; will work). However, the file
format can be easily replaced on a module-by-module basis, i.e.
TrackWriter<TrackWriterROOTWriter> writer; if users want to write their
own output writers.

• Future implementations should try to follow this pattern where possible.

6/9



Config and Summary

• All modules must provide a getConfig method that returns a complete specification
of their configuration (in YAML); this is written to a config.yaml file in the module
directory.

• The goal is to make the config file contain all the information needed to reproduce a
particular simulation setup/config.

• Modules can optionally provide a getSummary method which is called at the end of
the last shower; this is written to a summary.yaml file for that module. This is
intended to be used for text-based summary statistics or small datasets.

7/9



Python Analysis Library

• The MR also provides a corsika Python library. This loads the directory format and
provides access to the underlying data in a variety of formats.

• This is pip-installable and doesn’t depend on the C8 C++ library.
• Pandas is the default format for tabular data but library can also provide access to raw

NumPy arrays or Parquet blobs.

1 >>> lib = corsika.Library("path/to/library") # open a library
2 >>> lib.config # full simulation configuration as dictionary
3 >>> # here, "obsplane" is the registered name of the module
4 >>> df = lib.get("obsplane1").astype() # data as pandas dataframe
5 >>> lib.get("obsplane2").astype("numpy") # raw data as NumPy array

8/9



Questions?

Questions?

9/9


