
QGameTheory
Indranil Ghosh

School of Fundamental Sciences
Massey University

Manawatu, Private Bag 11 222, Palmerston North 4442, New
Zealand

i.ghosh@massey.ac.nz

Abstract

QGameTheory is a contributed R package that helps in
simulating quantum versions of various game theory mod-
els. It is a general-purpose toolbox that works with a simple
quantum computing framework, known as the quantum cir-
cuit model to perform various computations. The current
version of the package makes use of a maximum of six
qubits and a total number of seven game theory models.
Application of quantum computation in game theory, which
gives rise to many interesting results, like the escape from
the dilemma in the case of Quantum Prisoner’s Dilemma,
which otherwise persists in the classical case. The ob-
jective of this presentation is to introduce the package to
interested students starting in this field, using which they
can learn quantum computation and game theory concepts.
Quantum versions of models that have been handled within
the package are: Penny Flip Game, Prisoner’s Dilemma,
Two Person Duel, Battle of the Sexes, Hawk and Dove
Game, Newcomb’s Paradox and Monty Hall Problem.

1. Package Logo

2. Repository

The development version can be downloaded from the
github repository:

1 > devtools::install_github("indrag49/QGameTheory")

It can also be downloaded from the CRAN repository by:
1 > install.packages("QGameTheory")

After downloading the package, activate the package and
initialize all the variables inside it, using the following com-
mand:

1 > init()

3. Introduction

A quantum environment has been already defined inside
the package:

1 Q <<- new.env(parent=emptyenv())

the user can define qubits, qutrits and any possible quan-

tum states to begin with. Qubit |0〉 =
[
1
0

]
can be initialized

in the following way:
1 > Q$Q0
2 [,1]
3 [1,] 1
4 [2,] 0

Similarly, qubit |1〉 =
[
0
1

]
can be defined too. An arbitrary

quantum state, for example, |ψ〉 = |0〉⊗ (1√
2
|0〉+ 1√

2
|1〉), can

be initialized using the package:
1 > psi = kronecker(Q$Q0, (Q$Q0/sqrt(2) + Q$Q1/sqrt(2)))

The vector form of |ψ〉 is:
1 > psi
2 [,1]
3 [1,] 0.7071068
4 [2,] 0.7071068
5 [3,] 0.0000000
6 [4,] 0.0000000

One can also perform measurement of the quantum state,
using the command:

1 > QMeasure(psi)

The command will yield us the following probability distribu-
tion plot:

The package allows us to work with quantum logic gates

too, that are unitary matrices and help us simulate quantum
algorithms. Some of them are the identity operator , the
Pauli gates, the Hadamard gate, CNOT, Fredkin, T, Toffoli,
and more, along with the Gell Mann matrices representing
3-system logic gates. For example, the Hadamard gate

H = 1√
2

[
1 1
1 −1

]
can be written as:

1 > Hadamard(Q$I2)
2 [,1] [,2]
3 [1,] 0.7071068 0.7071068
4 [2,] 0.7071068 -0.7071068

One can define the Bell states and also perform Quantum
Fourier Transform with the package

4. A Quantum Algorithm

Let a simple quantum algorithm (generated with IBM Q Ex-
perience) look like:

Using QGameTheory we can write an R script to simulate

the same:
1 Psi <- Q$Q00 # initialize the quantum state
2 H <- Hadamard(Q$I2) # Hadamard Gate, I2 is the identity

operator
3 X <- sigmaX(Q$I2) # Pauli-X Gate
4 HH <- kronecker(H, H) # outer product between two Hadamard

Gates
5 XI <- kronecker(X, Q$I2) # outer product between Hadamard and

identity
6 Psi1 <- HH %*% Psi # intermediate quantum state
7 Psif <- XI %*% Psi1 # final quantum state
8 QMeasure(Psif) # measure the quantum state

The probability distribution plot after measurement:

5. Game Theory Concepts

The QGameTheory package allows us to work with
the Iterated Deletion of Strictly Dominated Strategies
(IDSDS) algorithm and also provides us with functionality
to calculate NASH equilibrium from payoff matrices. For
example:

1 > A <- matrix(c(10, 5, 3, 0, 4, 6, 2, 3, 2), ncol=3, byrow=
TRUE)

2 > B <- matrix(c(4, 3, 2, 1, 6, 0, 1, 5, 8), ncol=3, byrow=TRUE
)

3 > IDSDS(A, B)
4 [[1]]
5 [,1]
6 [1,] 10
7

8 [[2]]
9 [,1]

10 [1,] 4

The IDSDS() function gives the indices along with the cor-
responding values of the strictly dominant strategies from
the payoff matrices. The NASH() function gives only the
indices, as illustrated below:

1 > NASH(A, B)
2 Joining, by = c("V1", "V2")
3 V1 V2
4 1 1 1

6. Quantum Penny Flip Game

We consider, for example, a particular case of the
quantum penny flip game where both Alice and
Bob cheat, represented by the following game tree:

The R script simulating the above case:

1 Psi <- (Q$Q0+Q$Q1)/sqrt(2)
2 S1 <- sigmaX(Q$I2)
3 S2 <- Q$I2
4 H <- Hadamard(Q$I2)
5 SA <- list(S1, S2)
6 SB <- list(H)
7 QPennyFlip(Psi, SA, SB)

The above code will also generate the following probabil-
ity distribution plot simulating the result that helps us in our
analysis:

We see that both Alice and Bob have the equal probability

of winning the game.

7. Conclusion

The QGameTheory package provides us with other func-
tionalities to analyse the remaining six quantum game mod-
els described before. It also gives us access to miscella-
neous functions, for example, the levi civita() function
that might be required for our analysis.

8. Disclaimer

It is to inform the readers that the views, thoughts, and opin-
ions expressed herein, belong solely to the author, and not
to the author’s employer, organization or any other group or
individual.

References

[1] I. Ghosh. QGameTheory: Quantum Game Theory Sim-
ulator (v0.1.2). CRAN, 2020.

[2] M. Nielsen and I. Chuang. Quantum Computation and
Quantum Information. ISBN-978-1-107-00217-3, 2010.

[3] J. O. Grabbe. An Introduction to Quantum Game Theory.
arXiv:quant-ph/0506219, 2005.

[4] LATEX template derived from the file ‘sciposter.cls’ v 1.18
authors Michael H.F. Wilkinson and Alle Meije Wink, Au-
gust 18, 2006.

SORSE - INTERNATIONAL SERIES OF ONLINE RESEARCH SOFTWARE EVENTS, 2021, MARCH, ONLINE

