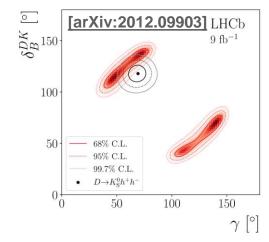
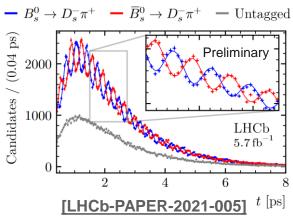


On the menu today: $B_{(s)}^0 \to D_{(s)}^- h^+$, $\Lambda_b^0 \to \Lambda_c^+ h^-$

- Non-leptonic tree-level:
 - $b \to c\bar{u}d(s)$ or $b \to u\bar{c}d(s)$ transitions
- Colour allowed: separate colour indices for $X_b X_c$ and h systems
- Main decay modes (focus of today):
 - $B^0 \to D^{(*)-}\{K^+, \pi^+\}$
 - $B^+ \to \overline{D}^{(*)0}\{K^+, \pi^+\}$ (w. colour-suppressed contributions)
 - $B_S^0 \to D_S^{(*)-}\{K^+, \pi^+\}$
 - $\Lambda_b^0 \to \Lambda_c^+ \{ K^-, \pi^- \}$

Example decay: $B^0 \rightarrow D^-K^+$

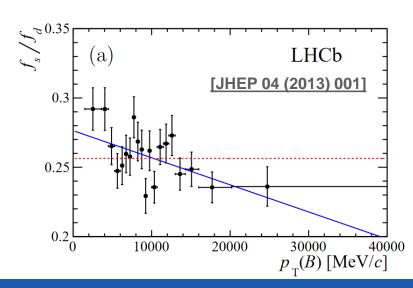

[Fleischer, arXiv:0802.2882]



Why study $B_{(s)}^0 \rightarrow D_{(s)}^- h^+$?

- Very abundant B decays

 (only semileptonic modes are more abundant)
- Fully charged final states: many modes easy to reconstruct
- Excellent to study B-meson system (CKM, mixing, CP violation):
 - Gamma measurements with $B^+ \to D^{(*)0}h^+$
 - Δm_s with $B_s^0 \rightarrow D_s^- \pi^+$
 - CPV in $B_s^0 \rightarrow D_s^- K^+$ or $B^0 \rightarrow D^- \pi^+$
- BF measurements are performed as well, especially to study B-hadron production



$B_{(s)}^0 \to D_{(s)}^- h^+$ decay rates and B production

- Original experimental motivation for rates of $B_{(s)}^0 \to D_{(s)}^-\{K^+,\pi^+\}$ modes: determine B_s^0/B^0 production/hadronisation ratio $f_s/f_d!$
- Study versus B-hadron kinematics
- Example: Run 1 measurement of p_T dependence with $\frac{B_S^0 \to D_S^- \pi^+}{B^0 \to D^- \pi^+}$, value with $\frac{B_S^0 \to D_S^- \pi^+}{B^0 \to D^- K^+}$
- Require BF prediction as input

[Fleischer et al., arXiv:1012.2784, Fleischer et al., arXiv:1004.3982]

Predictions of $B(B_{(s)}^0 \to D_{(s)}^{(*)-}h^+)$

- Two types of transitions:
 - $B^0 \rightarrow D^{(*)-}K^+, B_S^0 \rightarrow D_S^{(*)-}\pi^+$: tree-only decays
 - $B^0 \rightarrow D^{(*)-}\pi^+, B_S^0 \rightarrow D_S^{(*)-}K^+$: tree + exchange decays
- Require sufficient knowledge of
 - π , K decay constants f_{π} , f_{K}
 - $B \rightarrow D$ form factors $F_0^{(s/d)}(m_h^2)$
 - Non-factorizable contributions $a_1(D_s^-h)$
 - Size of exchange contributions
- Let's go measure them at LHCb!

[Fleischer et al., arXiv:1012.2784, Fleischer et al., arXiv:1004.3982, Bordone et al., arXiv:2007.10338]

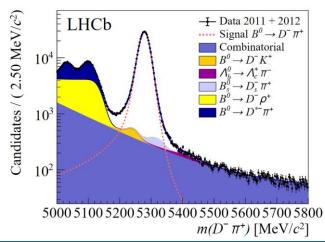
Prediction for ratio of tree-only decays

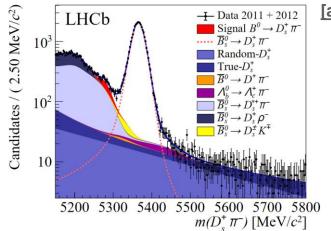
$$\frac{\text{BR}(\bar{B}_{s}^{0} \to D_{s}^{+}\pi^{-})}{\text{BR}(\bar{B}_{d}^{0} \to D^{+}K^{-})} \sim \frac{\tau_{B_{s}}}{\tau_{B_{d}}} \left| \frac{V_{ud}}{V_{us}} \right|^{2} \\
\times \left(\frac{f_{\pi}}{f_{K}} \right)^{2} \left[\frac{F_{0}^{(s)}(m_{\pi}^{2})}{F_{0}^{(d)}(m_{K}^{2})} \right]^{2} \left| \frac{a_{1}(D_{s}\pi)}{a_{1}(D_{d}K)} \right|^{2}$$

Measuring branching fractions at LHCb

 No absolute measurement possible because of limited knowledge of b-hadron cross sections → measure ratios!

$$\frac{n_{\text{corr}}(B_s^0 \to X)}{n_{\text{corr}}(B^{0(+)} \to Y)} = \frac{\mathcal{B}(B_s^0 \to X)}{\mathcal{B}(B^{0(+)} \to Y)} \frac{f_s}{f_{d(u)}}$$


- Measure ratio of yields through fit to data
- Determine efficiency ratio with simulation calibrated on data
- Obtain efficiency-corrected yield n_{corr} per mode
- Correct for b-hadron production differences for B_s^0 , Λ_b^0



Measuring $B_{(s)}^0 \to D_{(s)}^- h^+$ at LHCb

LHCb is well-suited for hadronic tree-level decays:

- Large background reduction in VELO from detached B hadrons (~1 cm decay length)
- Excellent mass resolution (~20 MeV) from tracking to separate B^0 , B_s^0 contributions
- Good $\pi^+ K^+$ separation with RICH to separate final states

[arXiv:2010.11986]

Sidenote: which final states are best?

- Prefer final state with only charged particles, so no $\rho^+ \to \pi^+ \pi^0$, $K^{*+} \to K_S^0 \pi^+$ or $D_S^{*+} \to D_S^+ \pi^0$
- Leaves 5 charm hadron modes:

$$D^{*+} \to D^0 \pi^+, D^0 \to K^+ \pi^-, D^+ \to K^- \pi^+ \pi^+, D_S^+ \to K^+ K^- \pi^+, \text{ and } \Lambda_C^+ \to p K^- \pi^+$$

- Resulting B decays for LHCb (require input on production):
 - $B^0 \to D^{(*)} \{K^+, \pi^+\}$
 - $B^+ \to D^0\{K^+, \pi^+\}$
 - $B_S^0 \to D_S^-\{K^+, \pi^+\}$
 - $\Lambda_b^0 \to \Lambda_c^+ \{ K^-, \pi^- \}$
- Belle II should be well suited to study other B^0 , B^+ modes
 - For example, $B(B^+ \to D^0 \{K^{*+}, \rho^+\})$ measured with ~ 10% precision at Belle

Overview of current results

Brief summary:

- $B(B^0 \to D^-K^+)$: Measured with Run 1 data
- $B(B^0 \to D^{*-}K^+)$: Measured with Run 1 data
- $B(\Lambda_h^0 \to \Lambda_c^+ \pi^-)$: Measured with Run 1 data
- $B(\Lambda_b^0 \to \Lambda_c^+ K^-)$: Measured with Run 1 data

Focus of today:

- $B(B_s^0 \to D_s^- \pi^+)$: Very recent update
- $B(B_s^0 \to D_s^- K^+)$: Measured with Run 1 data, **updated w. new** $B(B_s^0 \to D_s^- \pi^+)$

Run 1 measurements: B⁰ modes

 Relative measurements of branching fractions which test exchange diagram contributions

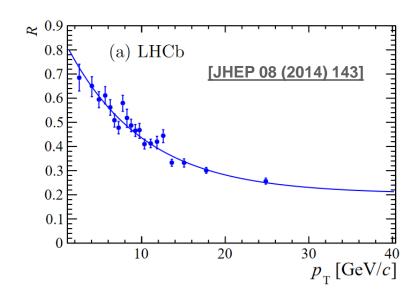
•
$$\frac{B(B^0 \to D^- K^+)}{B(B^0 \to D^- \pi^+)}$$
, T/T+E, f_s/f_d analysis: 8.22 ± 0.11 (stat.) ± 0.25 (syst.) %

JHEP 04 (2013) 001

•
$$\frac{B(B^0 \to D_S^- K^+)}{B(B^0 \to D^- \pi^+)}$$
, E/T+E, dedicated analysis: $1.29 \pm 0.05 (\text{stat.}) \pm 0.08 (\text{syst.})\%$

JHEP 05 (2015) 019

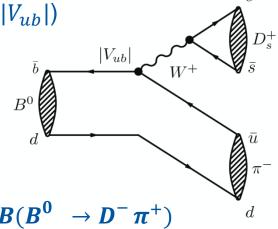
•
$$\frac{B(B^0 \to D^{*-}K^+)}{B(B^0 \to D^{*-}\pi^+)}$$
, T/T+E, $B^0 \to D^{*-}3h$ study: 7.76 ± 0.34 (stat.) ± 0.26 (syst.)%


PRD87 (2013) 092001

- Similar systematic uncertainties, mainly trigger and PID
 (can probably be improved with current understanding of detector)
- Do we need to improve handle on exchange diagram contributions by remeasuring these modes?

Run 1 measurements: Λ_b^0 modes

- Interesting modes, only accessible at LHCb
 - Different helicity structure
 - Separate form factors
- Could these modes provide complementary constraints?
- No prediction yet (work ongoing by van Dyk et al., see <u>link</u>)
- Results limited by $f_{\Lambda_b^0}/f_d$ from semileptonic decays (uncertainty down to ~6% for Run 2, no updates yet)
- $B(\Lambda_b^0 \to \Lambda_c^+ \pi^-) = (4.46 \pm 0.36) \times 10^{-3}$ (combination of [PRD89 (2014) 032001, JHEP 08 (2014) 143])
- $\frac{B(\Lambda_b^0 \to \Lambda_c^+ \pi^+)}{B(B^0 \to D^- \pi^+)} = 1.60 \pm 0.01 \pm 0.04 \pm 0.10$ (converted from <u>JHEP 08 (2014) 143</u>)
- $\frac{B(\Lambda_b^0 \to \Lambda_c^+ K^+)}{B(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = (7.31 \pm 0.16 \pm 0.16)\%$



Measurement of $B(B^0 \to D_s^-\pi^+)$ and $B(B_s^0 \to D_s^-\pi^+)$

[arXiv:2010.11986]

- Recent study of rates in $D_s^-\pi^+$ final state
- Main goal: $B(B^0 \to D_s^- \pi^+)$, tests factorisation (and $|V_{ub}|$)

- "By-product": efficiency-corrected yield ratio of $B_s^0 \to D_s^- \pi^+ / B^0 \to D^- \pi^+$
- Essential input to new combination of f_s/f_d , leading to new measurement of $B(B_s^0 \to D_s^-\pi^+)/B(B^0 \to D^-\pi^+)$

f_s/f_d combination: introduction

[arXiv:2103.06810]

- $f_s/f_d = B_s^0/B^0$ production ratio
 - Required to measure B^0_s branching fractions such as $B(B^0_s o \mu^+\mu^-)$
 - Interesting per se as probe of hadronisation and fragmentation
 - Previously found to depend on p_T (not on η)
 - Assume equal production of B⁰, B⁺
- f_s/f_d measured at LHCb with ratio of B_s^0/B^0 (or B^+) efficiency-corrected yields using prediction for branching fraction ratio:

$$\frac{n_{\text{corr}}(B_s^0 \to X)}{n_{\text{corr}}(B^{0(+)} \to Y)} = \frac{\mathcal{B}(B_s^0 \to X)}{\mathcal{B}(B^{0(+)} \to Y)} \frac{f_s}{f_{d(u)}}$$

Five previous measurements (2011 to 2020):
 combination to determine single value with higher precision

f_s/f_d combination: methods

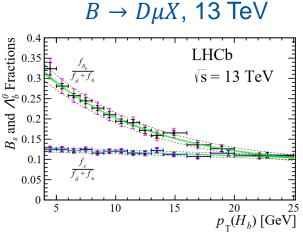
- $B \rightarrow D\mu X$ (2 measurements)
 - Precise prediction available ([Bigi et al., JHEP09(2011)012])
- $B \rightarrow Dh$ (2 measurements)
 - Nominal fit includes prediction
- $B \rightarrow I/\psi X$ (1 measurement)
 - No prediction available
 - Larger experimental rate than $B \rightarrow Dh$
 - Sensitive to dependence of f_s/f_d in p_T, η, \sqrt{s}
 - Determine $B(B_s^0 \to I/\psi \phi)$ from fit

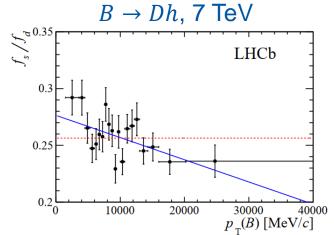
$$\begin{split} \frac{f_s}{f_u + f_d} = & \frac{n_{\text{corr}}(B_s^0 \to D_s^- X \mu^+ \nu_\mu) + n_{\text{corr}}(B_s^0 \to \overline{D} \overline{K} X \mu^+ \nu_\mu)}{n_{\text{corr}}(B^{+,0} \to \overline{D}^0 X \mu^+ \nu_\mu) + n_{\text{corr}}(B^{+,0} \to D^- X \mu^+ \nu_\mu)} \frac{\tau_{B^+} + \tau_{B^0}}{2\tau_{B_s^0}} (1 - \xi_s) \\ - \varepsilon_{\text{ratio}} & \frac{\mathcal{B}(B^{+,0} \to D_s^- \overline{K} X \mu^+ \nu_\mu)}{\mathcal{B}_{\text{SL}}} \quad , \end{split}$$

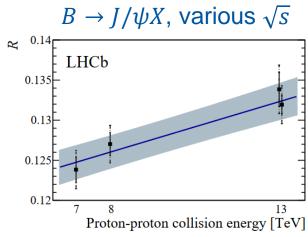
$$\begin{array}{ll} \textit{Dh (2 measurements)} \\ \textit{Nominal fit includes prediction} \\ \textit{Determine } \textit{B}(\textit{B}_{\textit{S}}^{\textit{0}} \rightarrow \textit{D}_{\textit{S}}^{-}\pi^{+}) \textit{ without prediction} \end{array} \\ \begin{array}{ll} \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}K^{+}} \left| \frac{V_{us}}{V_{ud}} \right|^{2} \left(\frac{f_{K}}{f_{\pi}} \right)^{2} \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{\mathcal{B}(D_{s}^{-} \rightarrow K^{-}K^{+}\pi^{-})} \frac{n_{\text{corr}}(B_{s}^{0} \rightarrow D_{s}^{-}\pi^{+})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}K^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}\pi^{+}} \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}\mathcal{N}_{E}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{\mathcal{B}(D_{s}^{-} \rightarrow K^{-}K^{+}\pi^{-})} \frac{n_{\text{corr}}(B_{s}^{0} \rightarrow D^{-}K^{+})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}\pi^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}\pi^{+}} \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}\mathcal{N}_{E}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{\mathcal{B}(D_{s}^{-} \rightarrow K^{-}K^{+}\pi^{-})} \frac{n_{\text{corr}}(B_{s}^{0} \rightarrow D^{-}K^{+})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}\pi^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}\pi^{+}} \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}\mathcal{N}_{E}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}\pi^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}\pi^{+}} \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}\mathcal{N}_{E}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}\pi^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}\pi^{+}} \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}\mathcal{N}_{E}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}\pi^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}\pi^{+}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}\mathcal{N}_{E}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}\pi^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}\pi^{+}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}\mathcal{N}_{E}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}\pi^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}\pi^{+}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}\mathcal{N}_{E}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}\pi^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{-}\pi^{+}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}\mathcal{N}_{E}} \frac{\mathcal{B}(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})}{n_{\text{corr}}(B^{0} \rightarrow D^{-}\pi^{+})} \;, \\ \frac{f_{s}}{f_{d}} = \Phi_{\text{PS},D^{$$

$$\frac{f_s}{f_u} = \frac{n_{\text{corr}}(B_s^0 \to J/\psi \phi)}{n_{\text{corr}}(B^+ \to J/\psi K^+)} \frac{\mathcal{B}(B^+ \to J/\psi K^+)}{\mathcal{B}(B_s^0 \to J/\psi \phi) \mathcal{B}(\phi \to K^+ K^-)} = \frac{\mathcal{R}}{\mathcal{F}_R}$$

f_s/f_d combination: measurements


- $B \rightarrow D\mu X$
 - Integrated measurement at 7 TeV
 - Measurement vs p_T at 13 TeV, dominates precision on scale
- $B \rightarrow Dh$
 - Measurement vs p_T at 7 TeV with $B_s^0 \to D_s^- \pi^+/B^0 \to D^- \pi^+,$ value from integrated measurement with $B_s^0 \to D_s^- \pi^+/B^0 \to D^- K^+$
 - Integrated measurement at 7, 8, 13 TeV with $B_s^0 \to D_s^- \pi^+ / B^0 \to D^- \pi^+$
- $B \rightarrow J/\psi X$
 - Measurement vs p_T at 7, 8, 13 TeV, dominates dependence


f_s/f_d combination: examples


[arXiv:2103.06810]

- Previous LHCb measurements performed at 7, 8, 13 TeV, $p_T \in [0.5,40]$ GeV, $\eta \in [2,6.4]$
- Selection of plots:

25/03/21

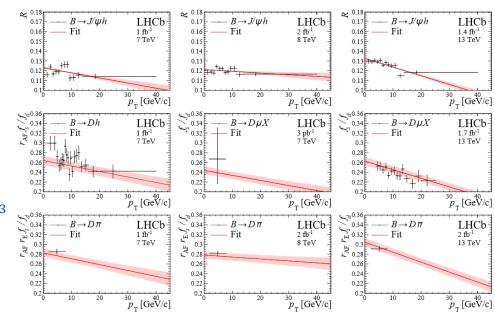
Combination of f_s/f_d measurements: inputs

- Updated external inputs for $B \to D\mu X$, $B \to Dh$
 - D meson branching fractions, incl. recent BESIII measurement, arXiv:2011.08041
 - B meson lifetimes
 - B → D form factor update
 thanks to Bordone et al., arXiv:1912.09335
 - Exchange diagram estimates including LHCb BF
- Significant reduction in overall uncertainty, especially due to recent BESIII measurement
- Correlation between $B \rightarrow D\mu X$, $B \rightarrow Dh$, measurements estimated at around 68%, included in nominal fit

	-	_
Input	Value	Reference
$\mathcal{B}(\overline{D}{}^0 \to K^+\pi^-)$	$(3.999 \pm 0.045)\%$	[6]
$\mathcal{B}(D^- \to K^+ \pi^- \pi^-)$	$(9.38 \pm 0.16)\%$	7
$\mathcal{B}(D_s^- \to K^- K^+ \pi^-)$	$(5.47 \pm 0.10)\%$	6 40
$ au_{B_s^0}/ au_{B^0}$	1.006 ± 0.004	<u>[6]</u>
$(au_{B^+} + au_{B^0})/2 au_{B_s^0}$	1.032 ± 0.005	6
$(1-\xi_s)$	1.010 ± 0.005	34
\mathcal{N}_a	1.000 ± 0.020	37
\mathcal{N}_F	1.000 ± 0.042	[19, 41]
\mathcal{N}_E	0.966 ± 0.062	7[37]
$ V_{us} f_K/ V_{ud} f_\pi$	0.2767	9

Combination of f_s/f_d : technicalities

- Combination through χ^2 minimization
- External inputs included as Gaussian constraints
- $B \to Dh$ theoretical inputs defined as $r_{AF} = \frac{N_{AF,fit}}{N_{AF,theo}}$,


$$r_E = \frac{N_{E,fit}}{N_{E,theo}}$$
, r_{AF} shared for hadronic measurements

- r_{AF} at tension with expectation (= 1); to appropriately show fit result, r_{AF} included on y-axis for hadronic fits
- Fit procedure validated with pseudoexperiments, found to be unbiased and with proper coverage

Combination of f_s/f_d measurements: results

- First observation of \sqrt{s} dependence, hint of p_T dependence variation vs \sqrt{s}
- Integrated value (13 TeV) in LHCb acceptance: $\frac{f_s}{f_d} = 0.2539 \pm 0.0079$
- Shape not fully satisfactory, but effect on integrated value is negligible
- Uncertainty reduced by ~ factor 2 to ~3%
- Also measure $B(B_s^0 \to J/\psi \phi)$: $B(B_s^0 \to J/\psi \phi) = (1.018 \pm 0.032 \pm 0.037) \times 10^{-3}$
- Update previous B_s^0 branching fraction measurements (see backup)
- Essential improvement for current/future measurements of $B(B_s^0 \to (\phi)\mu^+\mu^-)$

Combination of f_s/f_d measurements: $B(B_s^0 \to D_s^-\pi^+)$

• For $B(B_s^0 \to D_s^- \pi^+)$, fit without constraints on r_{AF} , r_{E}

[arXiv:2103.06810]

- Results: $r_{AF} = 1.16 \pm 0.06, r_E = 1.04 \pm 0.04$
- Measured value for $B(B_s^0 o D_s^- \pi^+)$:

$$\frac{B(B_S^0 \to D_S^- \pi^+)}{B(B^0 \to D^- \pi^+)} = 1.18 \pm 0.04,$$

$$B(B_S^0 \to D_S^- \pi^+) = (3.20 \pm 0.10 \pm 0.16) \times 10^{-3}$$

- Uncertainty reduced on BF measurement as main external parameters are correlated with $B \rightarrow D\mu X$
- Same value of BF ratio, uncertainty reduced by factor 2 compared to previous measurement
- Update B_s^0 branching fraction measurements, including $B(B_s^0 \to D_s^- K^+)$: $B(B_s^0 \to D_s^- K^+) = (2.41 \pm 0.05 \pm 0.06 \pm 0.14) \times 10^{-4}$

 $a(7 \, \text{TeV})$ 0.238 ± 0.008 $(-10.3 \pm 2.7) \times 10^{-4}$ 1.000 ± 0.026 1.00 ± 0.04 1.16 ± 0.06 0.517 ± 0.017 $a(8 \, \text{TeV})$ 0.234 ± 0.008 $(-3.3 \pm 2.3) \times 10^{-4}$ a(13 TeV) 0.256 ± 0.009 $(-16.9 \pm 2.0) \times 10^{-4}$ 1.000 ± 0.009 0.998 ± 0.023 1.04 ± 0.04

Table 8: Output parameters of the fit to the data without external theory constraints.

Interpretation

- After updates of $B \rightarrow D$ form factors, multiple papers discussed $B \rightarrow Dh$ BFs
- As shown in table on right, predictions consistently larger than experiment (around 15% level effect)
- Uncertainty implies 4,5 σ effects in $B_s^0 \to D_s^- \pi^+, B_s^0 \to D_s^- \pi^+$
- Effect from updated $B(B_s^0 \to D_s^- h^+)$: reduced uncertainty on estimates
- All LHCb measurements normalised to $B^0 \to D^-\pi^+$ BF from B-factories, any possible biases from there?

[Bordone et al., arXiv:2007.10338]

[Cai et al., arXiv:2103.04138]

$ a_1(D_{(s)}^{(*)+}L^-) $	LO	NLO	NNLO	Ref. [36]	Exp.
$ a_1(D^+\pi^-) $	1.028	$1.059{}^{+0.017}_{-0.019}$	$1.073{}^{+0.005}_{-0.010}$	$1.073^{+0.012}_{-0.014}$	0.88 ± 0.03
$ a_1(D^{*+}\pi^-) $	1.028	$1.059{}^{+0.017}_{-0.019}$	$1.075{}^{+0.006}_{-0.011}$	$1.071{}^{+0.013}_{-0.014}$	0.92 ± 0.04
$ a_1(D^+\rho^-) $	1.028	$1.059{}^{+0.017}_{-0.019}$	$1.073^{+0.005}_{-0.010}$	$1.072^{+0.012}_{-0.014}$	0.92 ± 0.07
$ a_1(D^{*+}\rho^-) $	1.028	$1.059{}^{+0.017}_{-0.019}$	$1.075{}^{+0.006}_{-0.011}$	$1.071^{+0.013}_{-0.014}$	0.85 ± 0.06
$ a_1(D^+K^-) $	1.028	$1.059 \substack{+0.018 \\ -0.019}$	$1.075{}^{+0.008}_{-0.011}$	$1.070{}^{+0.010}_{-0.013}$	0.92 ± 0.04
$ a_1(D^{\ast+}K^-) $	1.028	$1.059 \substack{+0.018 \\ -0.019}$	$1.078{}^{+0.009}_{-0.012}$	$1.069{}^{+0.010}_{-0.013}$	0.94 ± 0.11
$ a_1(D^+K^{*-}) $	1.028	$1.058{}^{+0.017}_{-0.019}$	$1.071{}^{+0.004}_{-0.009}$	$1.070{}^{+0.010}_{-0.013}$	1.01 ± 0.09
$ a_1(D_s^+\pi^-) $	1.028	$1.059^{+0.017}_{-0.019}$	$1.073^{+0.005}_{-0.010}$	_	0.87 ± 0.05
$ a_1(D_s^+K^-) $	1.028	$1.059^{+0.018}_{-0.019}$	$1.075^{+0.008}_{-0.011}$	_	0.79 ± 0.05

Table 3. Theoretical and experimental values for the effective coefficients $|a_1(D_{(s)}^{(*)}+L^-)|$. The experimental errors are estimated by adding the uncertainties of the non-leptonic branching ratios and the semi-leptonic differential decay rates in quadrature.

Absolute BF measurements

- Absolute $B^0 \to D^{(*)} \pi^+$ branching fractions measured at B-factories
- Relevant systematic uncertainties: D branching fractions, f^{+-}/f^{00} [Jung, PLB 753, 187]
- Some measurements are input-independent!
- For $B^0 \rightarrow D^-\pi^+$:
 - Independent measurements differ from dependent measurements by ~1 sigma and 15%
 - Redetermining average with updated inputs only affects result by <1%, unc by <10%. (compared with average, not fit)
 - Does using PDG fit or average (6% difference) affect conclusions?
- Dependent and independent measurements from Belle (II) essential to fully exclude issues

 $\Gamma \Gamma \left(B^0 \to D^- \pi^+ \right) / \Gamma_{\text{total}}$

VALUE (10 ⁻³)	EVTS		DOCUMENT ID		TECN	COMMENT
$\textbf{2.52} \pm \textbf{0.13}$	OUR FIT Error includ	es	scale factor of 1.1.			
$\textbf{2.68} \pm \textbf{0.13}$	OUR AVERAGE					
$2.55 \pm 0.05 \pm 0.16$		1	AUBERT	2007H	BABR	$e^+~e^- ightarrow~\varUpsilon(4S)$
$3.03 \pm 0.23 \pm 0.23$		2	AUBERT,BE	2006J	BABR	$e^+~e^- ightarrow~\varUpsilon(4S)$
$2.68 \pm 0.12 \pm 0.24$	1	, 3	AHMED	2002B	CLE2	$e^+~e^- ightarrow~\varUpsilon(4S)$
$2.7 \pm 0.6 \pm 0.5$		4	BORTOLETTO	1992	CLEO	$e^+~e^- ightarrow~\varUpsilon(4S)$
$4.8 \pm 1.1 \pm 1.1$	22	5	ALBRECHT	1990J	ARG	$e^+~e^- ightarrow~\varUpsilon(4S)$
$5.1_{-2.5}^{+2.8}_{-1.2}^{+1.3}$	4	6	BEBEK	1987	CLEO	$e^+~e^- ightarrow~\varUpsilon(4S)$
• • • We do not use t	the following data for ave	era	ges, fits, limits, etc. •	••		
$2.73 \pm 0.19 \pm 0.05$	7	, 1	AUBERT,B	20040	BABR	Repl. by AUBERT 2007H
$2.83 \pm 0.42 \pm 0.05$	81	8	ALAM	1994	CLE2	Repl. by AHMED 2002B
$3.1 \pm 1.3 \pm 1.0$	7	5	ALBRECHT	1988K	ARG	$e^+~e^- ightarrow \varUpsilon(4S)$
1			- 20(- 20)			

Assumes equal production of B⁺ and B⁰ at the T(4S)

² Uses a missing-mass method. Does not depend on D branching fractions or B^+/B^0 production rates

 $^{^3}$ AHMED 2002B reports an additional uncertainty on the branching ratios to account for 4.5% uncertainty on relative production of B^0 and B^+ , which is not included here.

⁴ BORTOLETTO 1992 assumes equal production of B⁺ and B⁰ at the T(4S) and uses Mark III branching fractions for the D.

⁵ ALBRECHT 1988K assumes $\vec{B}^0 \vec{B}^0$: $B^+ B^-$ production ratio is 45:55. Superseded by ALBRECHT 1990J which assumes 50:50.

⁶ BEBEK 1987 value has been updated in BERKELMAN 1991 to use same assumptions as noted for BORTOLETTO 1992

⁷ AUBERT,B 20040 reports $[\Gamma(B^0 \to D^-\pi^+)/\Gamma_{\rm total}] \times [B(D^+ \to K_9^0 \pi^+)] = (42.7 \pm 2.1 \pm 2.2) \times 10^{-6}$ which we divide by our best value $B(D^+ \to K_9^0 \pi^+) = 0.01562 \pm 0.00031$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁸ ALAM 1994 reports $[\Gamma(B^0 \to D^-\pi^+)/\Gamma_{\text{total}}] \times [B(D^+ \to K^-2\pi^+)] = 0.000265 \pm 0.000032 \pm 0.000023$ which we divide by our best value $B(D^+ \to K^-2\pi^+) = 0.0938 \pm 0.0016$. Our first error is their experiment's error and our second error is the systematic error from usino our best value. Assumes each alt product for B^+ and B^+ at the T445.

Naïve questions

- How much is deviation an absolute effect only?
 If so, any way to test in ratios (i.e. at LHCb)?
- How large are uncertainties on non-factorisable contributions?
- Do uncertainties on exchange diagrams affect estimates?
 Sensible to add as additional "degree of freedom" in theoretical fit?

Questions: additional modes

- How about constraints from
 - $B^+ \to \overline{D}{}^0\{K^+,\pi^+\}$? Experimental measurements have similar precision, significant deviation from isospin for colour-suppressed contribution?
 - Baryonic modes $\Lambda_b^0 \to \Lambda_c^+ \{K^+, \pi^+\}$?

 Additional uncertainty from $\mathbf{f}_{\Lambda_b^0}/\mathbf{f_d}$, work on predictions ongoing (link)
 - Higher multiplicity modes $(X_b \to X_c \{K^+, \pi^+\}\pi^+\pi^-)$ Theoretically complicated because of resonances?

Summary

- Non-leptonic colour-allowed tree-level decays are outstanding laboratory to study flavour physics and strong interactions
- Significant step in precision for B^0_s modes through simultaneous measurement of f_s/f_d and $B^0_s \to D^+_s \pi^-$
- Possible hints of deviation in absolute branching fractions?
- Thinking of future studies:
 - Absolute branching fraction measurements from Belle II
 - Updated measurements at LHCb (eager to hear which to prioritise ©)
 - Additional studies of baryonic modes
- Looking forward to discussing with all of you!

Backup

f_s/f_d : conversion from rates

$$B \to D\mu X \qquad \frac{f_{s}}{f_{u} + f_{d}} = \frac{n_{\text{corr}}(B_{s}^{0} \to D_{s}^{-} X \mu^{+} \nu_{\mu}) + n_{\text{corr}}(B_{s}^{0} \to \overline{D} \overline{K} X \mu^{+} \nu_{\mu})}{n_{\text{corr}}(B^{+,0} \to \overline{D}^{0} X \mu^{+} \nu_{\mu}) + n_{\text{corr}}(B^{+,0} \to D^{-} X \mu^{+} \nu_{\mu})} \frac{\tau_{B^{+}} + \tau_{B^{0}}}{2\tau_{B_{s}^{0}}} (1 - \xi_{s}) \\ -\varepsilon_{\text{ratio}} \frac{\mathcal{B}(B^{+,0} \to D_{s}^{-} \overline{K} X \mu^{+} \nu_{\mu})}{\mathcal{B}_{\text{SL}}} , \qquad (2)$$

$$B \to Dh \qquad \frac{f_s}{f_d} = \Phi_{\text{PS},D^-K^+} \left| \frac{V_{us}}{V_{ud}} \right|^2 \left(\frac{f_K}{f_{\pi}} \right)^2 \frac{\tau_{B^0}}{\tau_{B_s^0}} \frac{1}{\mathcal{N}_a \mathcal{N}_F} \frac{\mathcal{B}(D^- \to K^+ \pi^- \pi^-)}{\mathcal{B}(D_s^- \to K^- K^+ \pi^-)} \frac{n_{\text{corr}}(B_s^0 \to D_s^- \pi^+)}{n_{\text{corr}}(B^0 \to D^- K^+)} , \quad (3a)$$

$$\frac{f_s}{f_d} = \Phi_{\text{PS},D^-\pi^+} \frac{\tau_{B^0}}{\tau_{B_s^0}} \frac{1}{\mathcal{N}_a \mathcal{N}_F \mathcal{N}_E} \frac{\mathcal{B}(D^- \to K^+ \pi^- \pi^-)}{\mathcal{B}(D_s^- \to K^- K^+ \pi^-)} \frac{n_{\text{corr}}(B_s^0 \to D_s^- \pi^+)}{n_{\text{corr}}(B^0 \to D^- \pi^+)} , \quad (3b)$$

$$B \to J/\psi h' \qquad \frac{f_s}{f_u} = \frac{n_{\rm corr}(B_s^0 \to J/\psi \phi)}{n_{\rm corr}(B^+ \to J/\psi K^+)} \frac{\mathcal{B}(B^+ \to J/\psi K^+)}{\mathcal{B}(B_s^0 \to J/\psi \phi)\mathcal{B}(\phi \to K^+ K^-)} = \frac{\mathcal{R}}{\mathcal{F}_R}$$

B_s^0 branching fraction updates

- Take previous result
- Update B^0/B^+ normalisation BF if needed, including correction for f^{+-}/f^{00}
- Scale for change in f_s/f_d and normalisation branching fraction
- Reduction of f_s/f_d uncertainty by factor 2
- Also update $|V_{cb}|$:

The recent measurement of $|V_{cb}|$ with $B_s^0 \to D_s^{(*)-} \mu^+ \nu_\mu$ decays using Run 1 data [52], also relies on an estimate of f_s/f_d and is independent of the uncertainty on the product $\mathcal{B}(D_s^- \to K^- K^+ \pi^-) \times \tau_{B_s^0}$. For this estimate, the correlation of f_s/f_d with $\mathcal{B}(D_s^- \to K^- K^+ \pi^-)$ from the semileptonic measurement is used. The resulting estimates for $|V_{cb}|$ are $|V_{cb}|_{\text{CLN}} = (40.8 \pm 0.6 \pm 0.9 \pm 1.1) \times 10^{-3}$, $|V_{cb}|_{\text{BGL}} = (41.7 \pm 0.8 \pm 0.9 \pm 1.1) \times 10^{-3}$, where CLN [53] and BGL [54] stand for two hadronic form-factor parametrisations. Both results are consistent with the current world average (see for example Ref. [7]).

Table of normalisation BFs

Table 2: The branching fractions of B^0 and B^+ normalisation channel decays used to update previous measurements of B^0_s branching fractions, as reported in Ref. [7] for all but the $B^0 \to J/\psi K^{*0}$ branching fraction, which is taken from the amplitude analysis in Ref [50], and corrected for the relative production fraction of B^+ and B^0 mesons at B Factories [49].

Decay mode	Branching fraction	Decay mode	Branching fraction
$B^0 \rightarrow J/\psi K^{*0}$	$(1.21 \pm 0.08) \times 10^{-3}$	$B^0 \to D^- \mu^+ \nu_\mu$	$(2.31 \pm 0.10)\%$
$B^0 o J/\psi ho^0$	$(2.58 \pm 0.18) \times 10^{-5}$	$B^0 o D^{*-} \mu^+ \nu_\mu$	$(5.05 \pm 0.14)\%$
$B^0 o J/\psi K_{ m S}^0$	$(4.40 \pm 0.17) \times 10^{-3}$	$B^0 o D^{*\pm}D^{\mp}$	$(6.2 \pm 0.6) \times 10^{-4}$
$B^0 o J/\psi K_{\rm S}^0 \pi^+ \pi^-$	$(2.18 \pm 0.19) \times 10^{-3}$	$B^0 o D^+ D^-$	$(2.14 \pm 0.19) \times 10^{-4}$
$B^0 \to \psi(2S)K^{*0}$	$(5.98 \pm 0.42) \times 10^{-4}$	$B^0 o D^- D_s^+$	$(7.3 \pm 0.8) \times 10^{-3}$
$B^0 \to \psi(2S) K^+ \pi^-$	$(5.88 \pm 0.42) \times 10^{-4}$	$B^+ o \overline{D}{}^0 D_s^+$	$(9.0 \pm 0.9) \times 10^{-3}$
$B^0 \to K^+\pi^-$	$(1.98 \pm 0.07) \times 10^{-5}$	$B^0 o \overline{D}{}^0 \pi^+ \pi^-$	$(8.8 \pm 0.5) \times 10^{-4}$
$B^0 \to K_{\rm S}^0 \pi^+ \pi^-$	$(2.51 \pm 0.11) \times 10^{-5}$	$B^0 o ar{D}{}^0 ho$	$(3.21 \pm 0.21) \times 10^{-4}$
$B^0 o K^{*+}\pi^-$	$(7.60 \pm 0.43) \times 10^{-6}$	$B^0 o \overline{D}{}^0 K^0_{ m S}$	$(5.3 \pm 0.7) \times 10^{-5}$
$B^0 o p \overline{p} K^+ \pi^-$	$(6.30 \pm 0.50) \times 10^{-6}$	$B^0 o \overline{D}{}^0 K^+ K^-$	$(6.1 \pm 0.6) \times 10^{-5}$
$B^0 o p \overline{\Lambda}\pi^-$	$(3.18 \pm 0.30) \times 10^{-6}$		
$B^0 o K^{*0} \gamma$	$(4.13 \pm 0.26) \times 10^{-5}$		
$B^0 o \phi K_{ m S}^0$	$(3.70 \pm 0.36) \times 10^{-6}$		
$B^0 o \phi K^{*0}$	$(1.01 \pm 0.05) \times 10^{-5}$		

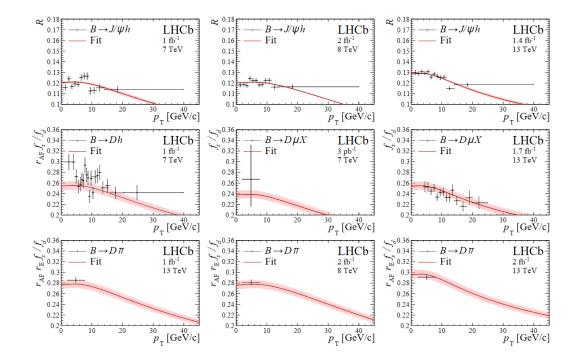

Example table with BFs

Table 6: Updated branching fractions of B_s^0 decays to open-charm final states. The uncertainties are statistical, systematic, due to f_s/f_d , and due to the normalisation branching fraction. The $B_s^0 \to D_s^\mp K^\pm$, $B_s^0 \to D_s^- \pi^+ \pi^- \pi^+$ and $B_s^0 \to D_s^- K^+ \pi^- \pi^+$, $B_s^0 \to D_s 1 (2536)^- \pi^+$ branching fractions are normalised with respect to $B_s^0 \to D_s^- \pi^+ \pi^- \pi^+$, respectively, and their third uncertainty covers the full normalisation uncertainty. Results with the \star symbol have had their normalisation branching fraction updated as well.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Decay mode	Updated branching fraction	Previous result	
$\begin{array}{c} B_s^0 \to D^+ D_s \\ B_s^0 \to D^+ D_s \\ B_s^0 \to D^+ D^- \\ C_s \\ B_s^0 \to D^+ D^+ \\ C_s \\ B_s^0 \to D^- D^- \\ C_s \\ B_s^0 \to D^- \\ C_s \\ B_s^0 \to$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu$	$(2.40 \pm 0.12 \pm 0.15 \pm 0.06 \pm 0.10) \times 10^{-2}$	$(2.49 \pm 0.12 \pm 0.16 \pm 0.09 \pm 0.11) \times 10^{-2}$	52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(3.01 \pm 0.32 \pm 0.10 \pm 0.08 \pm 0.34) \times 10^{-4}$		81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_s^0 o D^+ D^-$	$(2.47 \pm 0.46 \pm 0.23 \pm 0.08 \pm 0.22) \times 10^{-4}$	$(2.2 \pm 0.4 \pm 0.1 \pm 0.1 \pm 0.3) \times 10^{-4}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B^0_s o D^0 \overline D{}^0$	$(1.83 \pm 0.29 \pm 0.29 \pm 0.05 \pm 0.18) \times 10^{-4}$	$(1.9 \pm 0.3 \pm 0.2 \pm 0.2 \pm 0.3) \times 10^{-4}$	82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$B_s^0 o D_s^+ D_s^-$	$(4.38 \pm 0.23 \pm 0.31 \pm 0.11 \pm 0.49) \times 10^{-3}$	$(4.0 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.4) \times 10^{-3}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$B_s^0 o D^{*\pm} D^{*\mp}$	$(8.38 \pm 1.02 \pm 0.12 \pm 0.26 \pm 0.81) \times 10^{-5}$	$(8.41 \pm 1.02 \pm 0.12 \pm 0.39 \pm 0.79) \times 10^{-5}$	83
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$B^0_* \to D^{+(*)}_* D^{-(*)}_*$	$(3.36 \pm 0.11 \pm 0.14 \pm 0.09 \pm 0.38) \times 10^{-2}$	$(3.05 \pm 0.10 \pm 0.13 \pm 0.14 \pm 0.34) \times 10^{-2}$	84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(1.39 \pm 0.09 \pm 0.10 \pm 0.04 \pm 0.16) \times 10^{-2}$	$(1.27 \pm 0.08 \pm 0.09 \pm 0.06 \pm 0.14) \times 10^{-2}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_s^0 \rightarrow \overline{D}{}^0 K_S^0$	$(4.69 \pm 0.51 \pm 0.28 \pm 0.15 \pm 0.64) \times 10^{-4}$	$(4.3 \pm 0.5 \pm 0.3 \pm 0.3 \pm 0.6) \times 10^{-4}$	85
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$B_s^0 o \overline{D}^{*0} K_{ m S}^0$	$(3.05 \pm 1.13 \pm 0.40 \pm 0.10 \pm 0.41) \times 10^{-4}$	$(2.8 \pm 1.0 \pm 0.3 \pm 0.2 \pm 0.4) \times 10^{-4}$	85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_s^0 o \overline{D}{}^0 \overline{K}^{*0}$	$(5.31 \pm 1.22 \pm 0.54 \pm 0.17 \pm 0.35) \times 10^{-4}$	$(4.72 \pm 1.07 \pm 0.48 \pm 0.37 \pm 0.74) \times 10^{-4}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_s^0 \to \overline{D}{}^0 K^- \pi^+$	$(1.11 \pm 0.05 \pm 0.07 \pm 0.04 \pm 0.06) \times 10^{-3}$	$(1.00 \pm 0.04 \pm 0.06 \pm 0.08 \pm 0.10) \times 10^{-3}$	87 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_s^0 \to \overline{D}{}^0 \phi$	$(3.25 \pm 0.38 \pm 0.19 \pm 0.11 \pm 0.18) \times 10^{-5}$	$(3.0 \pm 0.3 \pm 0.2 \pm 0.2 \pm 0.2) \times 10^{-5}$	88 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_s^0 \to \overline{D}^{*0} \phi$	$(4.01 \pm 0.48 \pm 0.27 \pm 0.13 \pm 0.23) \times 10^{-5}$	$(3.7 \pm 0.5 \pm 0.2 \pm 0.2 \pm 0.2) \times 10^{-5}$	88 *
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$B_s^0 o \overline{D}{}^0 K^+ K^-$	$(6.13 \pm 0.59 \pm 0.28 \pm 0.20 \pm 0.56) \times 10^{-5}$	$(5.7 \pm 0.5 \pm 0.2 \pm 0.3 \pm 0.5) \times 10^{-5}$	89 ★
$B_s^0 \to D_s^- K^+ \pi^- \pi^+ \qquad (3.34 \pm 0.32 \pm 0.19 \pm 0.73) \times 10^{-4} \qquad \qquad (3.13 \pm 0.30 \pm 0.18 \pm 0.76) \times 10^{-4} \qquad \qquad \boxed{92} \star \qquad \qquad \bullet \qquad \bullet$	$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$(2.41 \pm 0.05 \pm 0.06 \pm 0.14) \times 10^{-4}$	$(2.29 \pm 0.05 \pm 0.06 \pm 0.17) \times 10^{-4}$	90 *
	$B_s^0\!\to D_s^-\pi^+\pi^-\pi^+$	$(6.43 \pm 1.18 \pm 0.64 \pm 0.38) \times 10^{-3}$	$(6.01 \pm 1.11 \pm 0.60 \pm 0.48) \times 10^{-3}$	91 *
$B_s^0 \to D_{s1}(2536)^-\pi^+ (2.57 \pm 0.64 \pm 0.26 \pm 0.56) \times 10^{-5} \qquad (2.41 \pm 0.60 \pm 0.24 \pm 0.58) \times 10^{-5} $	$B_s^0 \to D_s^- K^+ \pi^- \pi^+$	$(3.34 \pm 0.32 \pm 0.19 \pm 0.73) \times 10^{-4}$	$(3.13 \pm 0.30 \pm 0.18 \pm 0.76) \times 10^{-4}$	92 *
	$B_s^0 \to D_{s1}(2536)^-\pi^+$	$(2.57 \pm 0.64 \pm 0.26 \pm 0.56) \times 10^{-5}$	$(2.41 \pm 0.60 \pm 0.24 \pm 0.58) \times 10^{-5}$	92 *

Fit with Tsallis function

