A puzzle in $\overline{B}_{(s)}^0 \to D_{(s)}^{(*)+} \{\pi^-, K^-\}$ decays and extraction of the f_s/f_d fragmentation fraction

Nico Gubernari

Based on arXiv:2007.10338 in collaboration with M. Bordone, T. Huber, M. Jung, D. van Dyk Mini-workshop on hadronic *B* decays Universität Siegen ONLINE, 25-Mar-2020

Talk outline

Introduction

• f_s/f_d fragmentation fraction

Method

- QCD factorization
- Light-cone sum rules (LCSRs)

Results for $\overline{B}_{(s)}^0 \rightarrow D_{(s)}^+ \{\pi^-, K^-\}$

- f_s/f_d fragmentation fraction
- A new puzzle: tension with experimental data

Possible explanations of the Puzzle

- large NLP corrections
- BSM effects

Introduction

Fragmentation fraction f_s/f_d

fragmentation fraction f_s/f_d : quantifies the relative production rate of B_s^0 with respect to B^0 mesons

essential input to study B_s^0 decays at LHC e.g. $B_s^0 \rightarrow \mu^+\mu^-$ important probes for BSM physics

branching fractions in B^0 and B^+ decays measured very precisely a B-factories but B-factories do not produce (enough) B_s mesons!

determine this ratio using [Fleischer/Serra/Tuning '11]

$$\frac{f_s}{f_d} = \frac{\mathcal{B}(B^0 \to D^- K^+)}{\mathcal{B}(B_s^0 \to D_s^- \pi^+)} \frac{\epsilon_{DK}}{\epsilon_{D_s \pi}} \frac{N_{D_s \pi}}{N_{DK}}$$

 ϵ efficiencies, N signal yield

can also be predicted using semileptonic decays [LHCb '11 arXiv:1111.2357]

Effective Lagrangian

advantage in considering $\bar{B}_s^0 \to D_s^{(*)+}\pi^-$ and $\bar{B}^0 \to D^{(*)+}K^-$ decays (all quark flavours different in the final state) respect to, e.g. $\bar{B}^0 \to D^{(*)+}\pi^-$

clean theoretical predictions: no weak annihilation or penguin topologies, no chirally enhanced hard-scattering contributions

 \mathbf{M}

effective Lagrangian

$$\mathcal{L} = -\frac{4G_F}{\sqrt{2}} V_{cb} V_{uq_2}^* (C_1 O_1^{q_2} + C_2 O_2^{q_2}) \qquad q_2 = d, s$$

effective operators

$$O_1^{q_2} = (\bar{c}\gamma^{\mu}P_LT^Ab)(\bar{q}_2\gamma_{\mu}P_LT^Au) \qquad O_2^{q_2} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{q}_2\gamma_{\mu}P_Lu)$$

Wilson coefficients q_2 -flavour universal in the SM, BSM effects may not q_2 -flavour universal

Naïve factorization

decompose a very complicated matrix element — e.g. $\langle D^+K^-|O_i|\bar{B}^0_s\rangle$ — into simpler matrix elements

naïve factorization:

$$\langle D^+ K^- | O_i | \bar{B}_s^0 \rangle = \langle K^- | j_a | 0 \rangle \langle D^+ | j_b | \bar{B}_s^0 \rangle + O(\alpha_s) + O\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

 $\langle K^-|j_a|0\rangle \propto \text{decay constant}$

 $\langle D^+ | j_b | \overline{B}^0_s \rangle \propto B \rightarrow D$ form factors $F_i^{B \rightarrow D}$

QCD factorization

compute systematically α_s corrections, neglect power corrections $\frac{\Lambda_{QCD}}{m_b}$ [Beneke/Buchalla/Neubert/Sachrajda '00]

for M_1 and M_2 both light

$$\langle M_1 M_2 | O_i | \bar{B} \rangle = \sum_j F_j^{B \to M_1}(m_2^2) \int_0^1 du \, T_{ij}^I(u) \Phi_{M_2}(u) + (M_1 \leftrightarrow M_2)$$

+
$$\int_0^1 d\xi du dv \, T_i^{II}(\xi, u, v) \Phi_B(\xi) \Phi_{M_1}(v) \Phi_{M_2}(u)$$

for M_1 heavy, and M_2 light

$$\langle M_1 M_2 | O_i | \overline{B} \rangle = \sum_j F_j^{B \to M_1}(m_2^2) \int_0^1 du \, T_{ij}^I(u) \Phi_{M_2}(u)$$

 $T_{ij}^{I}(u)$ computed at NNLO in α_s

[Huber/Kränkl/Li '16]

Our theoretical predictions

improve theoretical predictions for $\bar{B}_s^0 \to D_s^{(*)+}\pi^-$ and $\bar{B}^0 \to D^{(*)+}K^-$ branching fractions

use QCD factorization (leading power in $\frac{\Lambda_{\rm QCD}}{m_b}$)

$$\frac{\mathcal{B}(\bar{B}_{s}^{0} \to D_{s}^{+}\pi^{-})}{\mathcal{B}(\bar{B}^{0} \to D^{+}K^{-})} = \frac{\tau_{B_{s}}}{\tau_{B_{d}}} \left| \frac{V_{ud}}{V_{us}} \right|^{2} \frac{f_{\pi}^{2}}{f_{K}^{2}} \left| \frac{F_{0}^{B_{s} \to D_{s}}(M_{\pi}^{2})}{F_{0}^{B \to D}(M_{K}^{2})} \right| \left| \frac{a_{1}(D_{s}^{+}\pi^{-})}{a_{1}(D^{+}K^{-})} \right|^{2} \times kin. \ factors$$

- Wilson coefficients a_1 computed in Huber/Kränkl/Li '16
- update $B \rightarrow D^{(*)}$ and $B_s \rightarrow D_s^{(*)}$ form factors [Bordone/NG/Jung/van Dyk '19]
- estimate $\frac{\Lambda_{\text{QCD}}}{m_b}$ corrections for the first time

Power corrections

- 1. use form factors in terms of the QCD fields \Rightarrow no $\frac{\Lambda_{QCD}}{m_c}$ corrections
- 2. hard-gluon between b or c quarks and the light meson is included in the WC
- 3. no hard-collinear gluon between spectator quark and the light meson (spectator is soft)
- 4. soft-gluon exchange between the $\overline{B}_{(s)}^{0}D_{(s)}^{(*)+}$ system and the light meson *L* we estimate this contribution with light-cone sum rules (LCSRs)

Power corrections estimation

Light-cone sum rules in a nutshell

light-cone sum rules (LCSRs) are a method to calculate hadronic matrix elements

method already applied in Khodjamirian et al 2010 for nonlocal matrix elements in $B \to K^{(*)}$

use a similar set-up

we apply this method for the first time to estimate $\mathcal{A}\left(\overline{B}_{q}^{0} \rightarrow D_{q}^{(*)+}L^{-}\right)\Big|_{NLP}$

Light-cone sum rules results

our conservative estimates

$$\frac{\mathcal{A}(\bar{B}_q^0 \to D_q^+ L^-)\big|_{\mathrm{NLP}}}{\mathcal{A}(\bar{B}_q^0 \to D_q^+ L^-)\big|_{\mathrm{LP}}} \simeq [0.06, 0.6]\%$$
$$\frac{\mathcal{A}(\bar{B}_q^0 \to D_q^{*+} L^-)\big|_{\mathrm{NLP}}}{\mathcal{A}(\bar{B}_q^0 \to D_q^{*+} L^-)\big|_{\mathrm{LP}}} \simeq [0.04, 0.4]\%$$

lower bound correspond to our central value upper bound obtained increasing the central value by a factor of 10 motivated by the large uncertainties on λ_E^2 and λ_H^2

corroborate the fact that $\overline{B}_q^0 \rightarrow D_q^{(*)+}L^-$ decays are theoretically clean

Numerical inputs and results

Form factors in HQE

expand $B \rightarrow D^{(*)}$ FFs in the limit $m_{b,c} \rightarrow \infty$

$$F^{B \to D^{(*)}}(q^2) = c_0 \xi(q^2) + c_1 \frac{\alpha_s}{\pi} C_i(q^2) + c_2 \frac{1}{m_b} L_i(q^2) + c_3 \frac{1}{m_c} L_i(q^2) + c_4 \frac{1}{m_c^2} l_i(q^2)$$

$$F^{B_s \to D_s^{(*)}}(q^2) = c_0 \xi^s(q^2) + c_1 \frac{\alpha_s}{\pi} C_i(q^2) + c_2 \frac{1}{m_b} L_i^s(q^2) + c_3 \frac{1}{m_c} L_i^s(q^2) + c_4 \frac{1}{m_c^2} l_i(q^2)$$

include $1/m_c^2$ corrections [Bordone/Jung/van Dyk '19] all $B \rightarrow D^{(*)}$ and $B_s \rightarrow D_s^{(*)}$ FFs parametrized in terms of 14 Isgur-Wise functions

Form factors predictions

constrain the Isgur-Wise functions combining

- lattice QCD (where available)
- light-cone sum rules for the FFs
- SVZ sum rules for Isgur-Wise functions
- dispersive bounds
- with and w/o exp data

results for all $B \rightarrow D^{(*)}$ FFs and $B_s \rightarrow D_s^{(*)}$ FFs in the whole physical phase space

Numerical inputs and results

quantity	unit	this work	ref. $[2]$ (2016)	
$F_0^{\bar{B}\to D}(M_K^2)$		0.672 ± 0.011	0.670 ± 0.031	improved FFs uncertainties
$F_0^{\bar{B}_s^0 \to D_s}(M_\pi^2)$		0.673 ± 0.011	0.700 ± 0.100	
$A_0^{\bar{B} \to D^*}(M_K^2)$		0.708 ± 0.038	0.654 ± 0.068	
$A_0^{\bar{B}_s^0 \to D_s^*}(M_{\pi}^2)$		0.689 ± 0.064	0.520 ± 0.060	
$\left a_1(D_s^+\pi^-)\right $		$1.0727^{+0.0125}_{-0.0140}$	$1.073_{-0.014}^{+0.012}$	same results for the WC of
$\left a_1(D^+K^-)\right $		$1.0702^{+0.0101}_{-0.0128}$	$1.070^{+0.010}_{-0.013}$	OCDF as in Huber/Kränkl/Li
$\left a_1(D_s^{*+}\pi^-)\right $		$1.0713_{-0.0137}^{+0.0128}$	$1.071\substack{+0.013\\-0.014}$	
$\left a_1(D^{*+}K^-)\right $		$1.0687\substack{+0.0103\\-0.0125}$	$1.069^{+0.010}_{-0.013}$	
$ V_{cb} $	10^{-3}	41.1 ± 0.5	39.5 ± 0.8	
$ V_{ud} f_{\pi}$	MeV	127.13 ± 0.13	126.8 ± 1.4	 update remaining inputs
$ V_{us} f_K$	MeV	35.09 ± 0.06	35.06 ± 0.15	
$ au_{B_d}$	\mathbf{ps}	1.519 ± 0.004	1.520 ± 0.004	
$ au_{B_s}$	\mathbf{ps}	1.510 ± 0.004	1.505 ± 0.004	
$\mathcal{B}(\bar{B}^0 \to D^+ K^-)$	10^{-3}	0.326 ± 0.015	$0.301\substack{+0.032\\-0.031}$	mora pracisa pradictions
$\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$	10^{-3}	$0.327^{+0.039}_{-0.034}$	$0.259^{+0.039}_{-0.037}$	more precise predictions
$\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)$	10^{-3}	4.42 ± 0.21	$4.39^{+1.36}_{-1.19}$	unc. dominated by the FFs
$\mathcal{B}(\bar{B}^0_s \to D^{*+}_s \pi^-)$	10^{-3}	$4.30^{+0.9}_{-0.8}$	$2.24^{+0.56}_{-0.50}$	2

Comparison with measurements

Fits to the available data

	-			
source	PDG	our fits (w	v/o QCDF)	QCDF prediction
scenario		no f_s/f_d	$(f_s/f_d)^{7 \text{ TeV}}_{\text{LHCb,sl}}$	
χ^2/dof		2.5/4	3.1/5	
$\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)$	3.00 ± 0.23	3.6 ± 0.7	3.11 ± 0.25	4.42 ± 0.21
$\mathcal{B}(\bar{B}^0 \to D^+ K^-)$	0.186 ± 0.020	0.222 ± 0.012	0.224 ± 0.012	0.326 ± 0.015
$\mathcal{B}(\bar{B}^0 \to D^+ \pi^-)$	2.52 ± 0.13	2.71 ± 0.12	2.73 ± 0.12	
$\mathcal{B}(\bar{B}^0_s \to D^{*+}_s \pi^-)$	2.0 ± 0.5	2.4 ± 0.7	2.1 ± 0.5	$4.3^{+0.9}_{-0.8}$
$\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$	0.212 ± 0.015	0.216 ± 0.014	0.216 ± 0.014	$0.327^{+0.039}_{-0.034}$
$\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$	2.74 ± 0.13	2.78 ± 0.15	2.79 ± 0.15	
$\mathcal{R}^P_{s/d}$	16.1 ± 2.1	16.2 ± 3.3	14.0 ± 1.1	$13.5^{+0.6}_{-0.5}$
$\mathcal{R}^V_{s/d}$	9.4 ± 2.5	11.4 ± 3.6	9.6 ± 2.5	$13.1^{+2.3}_{-2.0}$
$\mathcal{R}^{\dot{V}/P}_{s}$	0.66 ± 0.16	0.66 ± 0.16	0.66 ± 0.16	$0.97^{+0.20}_{-0.17}$
$\mathcal{R}_{d}^{V/P}$	1.14 ± 0.15	0.97 ± 0.08	0.97 ± 0.08	1.01 ± 0.11
$(f_s/f_d)_{ m LHCb}^{7 { m TeV}}$		$0.223^{+0.056}_{-0.038}$ *	0.260 ± 0.019	
$(f_s/f_d)_{\rm Tev}$		$0.208^{+0.056}_{-0.038}$ *	0.243 ± 0.028	

- fits indicate that measurements are consistent
- discrepancy between measurements and theoretical predictions:

$$\begin{split} & \bar{B}^0_s \to D^+_s \pi^- \to 4\sigma \\ & \bar{B}^0 \to D^+ K^- \to 5\sigma \\ & \bar{B}^0_s \to D^{*+}_s \pi^- \to 2\sigma \\ & \bar{B}^0 \to D^{*+} K^- \to 3\sigma \end{split}$$

Possible explanations

- 1. large nonfactorizable contributions of $O(15 20\%) \rightarrow$ excluded by our estimate at 4.4σ level (see also next slides)
- experimental issue → would imply problems in several (consistent) measurements (CLEO, BaBar, LHCb, Belle)
- 3. shift in the inputs, larger uncertainties in V_{ud} , V_{us} , $V_{cb} \rightarrow$ would probably violate CKM unitarity
- 4. assuming that both theoretical and experimental results are correct \rightarrow BSM physics only explanation left (see next slides)
- 5. a combination of the effects discussed above

Fit allowing large non-fact. contr.

source	our fit (w/ QQ	CDF, no f_s/f_d)	QCDF prediction
scenario	ratios only	<u>SU(3)</u>	
χ^2/dof	4.6/6	3.7/4	
$\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)$	$3.11_{-0.19}^{+0.21}$	$3.20^{+0.20}_{-0.26}$ *	4.42 ± 0.21
$\mathcal{B}(\bar{B}^0 \to D^+ K^-)$	0.227 ± 0.012	0.226 ± 0.012	0.326 ± 0.015
$\mathcal{B}(\bar{B}^0\to D^+\pi^-)$	2.74 ± 0.12	$2.73_{-0.11}^{+0.12}$	
$\mathcal{B}(\bar{B}^0_s \to D^{*+}_s \pi^-)$	$2.46^{+0.37}_{-0.32}$	$2.43^{+0.39}_{-0.32}$	$4.3^{+0.9}_{-0.8}$
$\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$	$0.213_{-0.013}^{+0.014}$	$0.213_{-0.013}^{+0.014}$	$0.327^{+0.039}_{-0.034}$
$\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$	$2.76^{+0.15}_{-0.14}$	$2.76^{+0.15}_{-0.14}$	
$\mathcal{R}^P_{s/d}$	13.6 ± 0.6	$14.2^{+0.6}_{-1.1}$ *	$13.5^{+0.6}_{-0.5}$
$\mathcal{R}^V_{s/d}$	$11.4^{+1.7}_{-1.6}$	$11.4^{+1.7}_{-1.5}$ *	$13.1^{+2.3}_{-2.0}$
$\mathcal{R}^{V/P}_{s}$	$0.81^{+0.12}_{-0.11}$	$0.76^{+0.11}_{-0.10}$	$0.97^{+0.20}_{-0.17}$
$\mathcal{R}_d^{V/P}$	0.97 ± 0.06	0.95 ± 0.07	1.01 ± 0.11
$(f_s/f_d)^{7 \text{ TeV}}_{\text{LHCb}}$	$0.261^{+0.018}_{-0.016}$	$0.252^{+0.023}_{-0.015}$ *	
$(f_s/f_d)_{\rm Tev}$	$0.244_{-0.023}^{+0.026}$	$0.236^{+0.026}_{-0.022}$ *	
Δ_P	$-0.164^{+0.030}_{-0.028}$	-0.167 ± 0.029	
Δ_V	$-0.20^{+0.06}_{-0.05}$	$-0.20^{+0.06}_{-0.05}$	

$$\begin{aligned} \frac{\mathcal{A}(\bar{B}^0 \to D^+ K^-)}{\mathcal{A}(\bar{B}^0 \to D^+ K^-)|_{\mathrm{LP}}} &= 1 + \Delta_P \\ \frac{\mathcal{A}(\bar{B}^0_S \to D^+_S \pi^-)}{\mathcal{A}(\bar{B}^0_S \to D^+_S \pi^-)|_{\mathrm{LP}}} &= 1 + r_{SU(3)}^P \Delta_P \\ \frac{\mathcal{A}(\bar{B}^0 \to D^{*+} K^-)}{\mathcal{A}(\bar{B}^0 \to D^{*+} K^-)|_{\mathrm{LP}}} &= 1 + \Delta_V \\ \frac{\mathcal{A}(\bar{B}^0_S \to D^{*+}_S \pi^-)}{\mathcal{A}(\bar{B}^0_S \to D^{*+}_S \pi^-)|_{\mathrm{LP}}} &= 1 + r_{SU(3)}^V \Delta_V \end{aligned}$$

with $r_{SU(3)}^V \in [0.9, 1.1]$

consistent picture and improved determination of f_s/f_d

Is NP a viable option?

implies BSM contributions to $C_{1,2}^{q_2}$

for the moment being, we do not consider operator that do not contribute in the SM

we also assume that $C_{1,2}^d$ and $C_{1,2}^s$ have the same shift, consistently with our fit

implies O(20%) tree-level corrections in $b \rightarrow cu(d/s)$ transitions not observed so far

Consistency check

- compatible with the Γ_q (decay width of the B_q meson)
- lifetimes ratio τ_{B_s}/τ_{B_d} both predicted and measured to very high precision \rightarrow main BSM contributions cancel in the ratio
- consistent with $\overline{B}{}^0 \to D^{(*)+}\pi^-$ and $\overline{B}{}^0_s \to D^{(*)+}_s K^-$ branching fractions also in this case measurements < predictions

BSM viable hypothesis (?)

- Iguro/Kitahara arXiv:2008.01086
- Bordone/Greljo/Marzocca 2103.10332 (see Admir talk)

Conclusion and prospects

Prospects

- measure absolute branching fractions, especially for B_s mesons
- please produce more B_s mesons at Belle!

we suggest a two-staged approach to measure f_s/f_d

$$\frac{\mathcal{B}(\bar{B}^0 \to D^+ K^-)}{\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)} = \frac{\mathcal{B}(\bar{B}^0 \to D^+ K^-)}{\mathcal{B}(\bar{B} \to X)} \frac{\mathcal{B}(\bar{B} \to X)}{\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)}$$

for instance, $X = D^+\pi^-$ (larger branching fraction, cancel π syst. unc.)

$$\frac{\mathcal{B}(\bar{B}^0 \to D^+ \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^+ K^-)} = 12.47^{+0.42}_{-0.37}$$

low experimental uncertainty

Summary and conclusion 1/2

revisit theoretical predictions of the $\bar{B}_s^0 \to D_s^{(*)+}\pi^-$ and $\bar{B}^0 \to D^{(*)+}K^-$ branching fractions

 $\begin{aligned} \mathcal{A}(\bar{B}^0 \to D^+ K^-) &= 0.326 \pm 0.015 \\ \mathcal{A}(\bar{B}^0_s \to D^+_s \pi^-) &= 4.42 \pm 0.21 \\ \mathcal{A}(\bar{B}^0 \to D^{*+} K^-) &= 0.327^{+0.039}_{-0.034} \\ \mathcal{A}(\bar{B}^0_s \to D^{*+}_s \pi^-) &= 4.3^{+0.9}_{-0.8} \end{aligned}$

updated values of the form factors

next-to-leading power effects included for the first time

extract f_s/f_d in various scenarios

Summary and conclusion 2/2

4.4 σ discrepancy between theoretical predictions and measurements of the $\bar{B}_s^0 \to D_s^{(*)+}\pi^-$ and $\bar{B}^0 \to D^{(*)+}K^-$ branching fractions

four possible (unsatisfactory) explanations

- 1. large nonfactorizable contributions of $O(15 20\%) \rightarrow$ unlikely since these cays are well understood in QCDF, and contradict our estimates (factor of 50)
- 2. experimental issue O(30%) systematic shift \rightarrow would invalidate most of the *B* meson branching fractions measurements
- 3. shift in the inputs (e.g. V_{ud} , V_{us} , V_{cb}) \rightarrow would probably violate CKM unitarity
- 4. BSM physics effects $\rightarrow O(20\%)$ tree-level corrections in $b \rightarrow cu(d/s)$ transitions not observed so far

