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ABSTRACT: The scope of dijet resonance searches at the LHC has recently been enlarged by novel
experimental techniques such as data scouting. In this work, we reinterpret ATLAS and CMS
analyses to set robust constraints on all hypothetical tree-level scalar and vector mediators in the
mass range between 50 and 5000 GeV, assuming a diquark or a quark-antiquark coupling with an
arbitrary flavor composition. To illustrate the application of these general results, we quantify the
permissible size of new physics in B̄q ! D(⇤)+

q {⇡,K} consistent with the absence of signal in
dijet resonance searches. Along the way, we perform a full SMEFT analysis of the aforementioned
non-leptonic B meson decays at leading-order in ↵s. Our findings uncover a pressing tension
between the new physics explanations of recently reported anomalies in these decays and the dijet
resonant searches. The high-pT constraints are crucial to drain the parameter space consistent with
the low-pT flavor physics data.
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3 General EFT analysis of b ! cudi

In this section we study NP effects in non-leptonic B meson decays adopting a bottom-up approach
to keep the discussion as general as possible. To this purpose, we utilize the methods of effective
field theory (EFT). After presenting the data, we perform the fit in the weak effective Hamiltonian
to identity the preferred parameter space. The results are then interpreted in the context of the EFT
above the electroweak scale (SMEFT).

Measurements

The experimental values for the branching fractions for b ! cūdi decays are obtained by fitting all
available data and are compared with the most up-to-date SM predictions based on QCDF [8]. The
main difference between the results in Ref. [8] with respect to previous analyses (see e.g. Ref. [16])
is the use of updated inputs for CKM elements, decay constants and form factors for B̄q ! D(⇤)+

q

transitions [52–54], causing shifts in the central values (the largest one for B̄s ! D⇤+
s ⇡ decay)

and generally a reduction of the uncertainties on the branching ratios. From the experimental point
of view, the non-leptonic B̄s ! D(⇤)+

s ⇡ and B̄ ! D(⇤)+K decays are often measured as part of
ratios with other decay channels in order to reduce experimental errors.

To be conservative we choose to employ the experimental fit in the third column of Table II
of Ref. [8] (without QCDF inputs but with the LHCb measurements of fs/fd from semileptonic
decays). Let us define the ratio of the measured branching ratio to the respective SM prediction as

R(X ! Y Z) ⌘ B(X ! Y Z)/B(X ! Y Z)SM . (3.1)

Combining the measurements and SM predictions, including correlations in both experimental and
theoretical uncertainties,1 we obtain the following result:

R(B̄0
s ! D+

s ⇡
�) = 0.704± 0.074

R(B̄0 ! D+K�) = 0.687± 0.059

R(B̄0
s ! D⇤+

s ⇡�) = 0.49± 0.24

R(B̄0 ! D⇤+K�) = 0.66± 0.13

, ⇢ =

0

BBB@

1 0.36 0.16 0.092

0.36 1 0.072 0.16

0.16 0.072 1 0.40

0.092 0.16 0.40 1

1

CCCA
, (3.2)

where ⇢ is the correlation matrix and, by definition all R = 1 in the SM. The observed branching
ratios are consistently smaller than the QCDF predictions [8].

Low-energy effective field theory

The most general theoretical framework for short-distance NP effects in b ! cūdi (i = 1, 2)
transitions is the low-energy effective field theory (LEFT) [55]. Here we perform a NP analysis
including the full set of relevant operators Oi in the basis of Ref. [55] (for the list see Eq. (A.1)
of Appendix A). These operators, however, are not in a convenient form to evaluate the hadronic
matrix elements we are interested in. Therefore, we Fierz them to the Q(0)

i
listed in Table 2, where

LNP =
7X

i=1

(aiQi + a0iQ0
i) + h.c. . (3.3)

1We thank Martin Jung for providing the associated correlation matrix.
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NP?
Thanks to Martin Jung. See also the talk by Nico Gubernari.
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Qijkl
VLL

= (ūi
L�µd

j
L)(d̄

k
L�

µul
L) Q0ijkl

VLL
= (ūi

L�µT
AdjL)(d̄

k
L�

µTAul
L)

Qijkl
VRR

= (ūi
R�µd

j
R)(d̄

k
R�

µul
R) Q0ijkl

VRR
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AdjR)(d̄

k
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Qijkl
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j
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Table 2. Low-energy operators relevant for b ! cūdi transitions.

The corresponding matching relations between the two bases are reported in Eq. (A.3). The oper-
ators Qcbiu

VLL
and Q0cbiu

VLL
correspond to the SM color-allowed and color-suppressed operators Q2 and

Q1 of the CMM basis [56], respectively. In these conventions, the SM Wilson coefficients are

(acbiuVLL
)SM = �C2

4GFVcbV ⇤
uip

2
, (a0cbiuVLL

)SM = �C1
4GFVcbV ⇤

uip
2

, (3.4)

where C2 = +1.010 and C1 = �0.291 [57]. The hadronic matrix elements for the NP operators
are evaluated at leading order in ↵s and leading power in 1/mb. As in the SM, the NP operators
can be grouped in color-allowed and color-suppressed ones. As a consequence of color algebra, we
have

hD+(⇤)
q P�|Q0

i|B̄qi = 0 +O(↵s/Nc) , (3.5)

regardless of the chirality structure of Q0
i

operators. Introducing ↵s corrections generates contri-
butions from the color-suppressed operators proportional to ↵s/Nc. These contributions in the SM
are small compared to the leading ones since they are further suppressed by the Wilson coefficient
C1 ⌧ C2. A recent computation of color-suppressed topologies [14] showed that they are even
more subleading than what naively expected, compared to color-allowed ones. This strengthens
our hypothesis of disregarding color-suppressed Q0

i
operators for this NP analysis. Furthermore,

we stress that this choice does not affect the constraining power of dijet resonance searches.
The non-zero matrix elements give rise to the following decay amplitudes for B̄q ! D+(⇤)

q P�

(see Appendix A for details):

A(B̄q ! D+
q P

�) =A(B̄q ! D+
q P

�)SM⇥
(
1 +

1

2
p
2GFVcbV ⇤

ui
C2

�
� acbiuVLL

+ acbiuVRR
+ acbiuVLR

� auibcVLR

�

+
m2

P

(mu +mdi)(mb �mc)

�
acbiuSRL

� acbiuSLR
� acbiuSRR

+ auibcSRR

���
, (3.6)

A(B̄q ! D⇤+
q P�) =A(B̄q ! D⇤+

q P�)SM⇥
(
1 +

1

2
p
2GFVcbV ⇤

ui
C2

�
� acbiuVLL

� acbiuVRR
+ acbiuVLR

+ auibcVLR

�

+
m2

P

(mu +mdi)(mb +mc)

�
acbiuSRL

+ acbiuSLR
� acbiuSRR

� auibcSRR

���
, (3.7)
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ators Qcbiu

VLL
and Q0cbiu

VLL
correspond to the SM color-allowed and color-suppressed operators Q2 and

Q1 of the CMM basis [56], respectively. In these conventions, the SM Wilson coefficients are
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where C2 = +1.010 and C1 = �0.291 [57]. The hadronic matrix elements for the NP operators
are evaluated at leading order in ↵s and leading power in 1/mb. As in the SM, the NP operators
can be grouped in color-allowed and color-suppressed ones. As a consequence of color algebra, we
have
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q P�|Q0

i|B̄qi = 0 +O(↵s/Nc) , (3.5)

regardless of the chirality structure of Q0
i

operators. Introducing ↵s corrections generates contri-
butions from the color-suppressed operators proportional to ↵s/Nc. These contributions in the SM
are small compared to the leading ones since they are further suppressed by the Wilson coefficient
C1 ⌧ C2. A recent computation of color-suppressed topologies [14] showed that they are even
more subleading than what naively expected, compared to color-allowed ones. This strengthens
our hypothesis of disregarding color-suppressed Q0

i
operators for this NP analysis. Furthermore,

we stress that this choice does not affect the constraining power of dijet resonance searches.
The non-zero matrix elements give rise to the following decay amplitudes for B̄q ! D+(⇤)

q P�

(see Appendix A for details):
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L�µd

j
L)(d̄

k
R�

µul
R) Q0ijkl

VLR
= (ūi
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more subleading than what naively expected, compared to color-allowed ones. This strengthens
our hypothesis of disregarding color-suppressed Q0
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operators for this NP analysis. Furthermore,

we stress that this choice does not affect the constraining power of dijet resonance searches.
The non-zero matrix elements give rise to the following decay amplitudes for B̄q ! D+(⇤)
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Figure 4. Low-energy EFT fit to B̄q ! D+(⇤)
q P� decays. Dashed and solid lines show 68% and 95% CL

regions for vector operators (left panel) and scalar operators (right panel). The gray dotted line is consistent
with the relative size following the CKM ratio Vus/Vud.

where i = d, s corresponds to P� = ⇡�,K�, respectively.

Fit to the data

These decay amplitudes are used to calculate the ratio of the branching fractions to the respective
SM prediction in Eq. (3.1) as

R(X ! Y Z) =
|A(X ! Y Z)|2

|A(X ! Y Z)SM|2 , (3.8)

from which we perform a fit using Eq. (3.2) and Eqs. (3.6)–(3.7). Only half of the NP coefficients
contributing to the amplitudes in Eq. (3.6) and Eq. (3.7) can simultaneously explain the observed
suppression in both final states with a D+

q or a D+⇤
q meson. These are acbiu

VLL
, acbiu

VLR
, acbiu

SRR
and acbiu

SRL
.

The other half can not fit the data well. Regarding the flavor structure, new interactions with both
strange and down quarks are needed.

The results of the fits are shown in Fig. 4. The left (right) panel is for new vector (scalar)
interactions. The horizontal and the vertical axes are for the couplings to down and to strange
quarks, respectively. The dashed and solid green lines describe the boundaries of the 68% and 95%

CL regions. The discrepancy between SM predictions and measurements manifests as a shift of the
preferred region from the origin. The best-fit point in the left (right) plot improves the fit to data
with respect to the SM by �2

SM � �2
best�fit ⇡ 36 (35) and corresponds to

vector:
n
acbduVLL

� acbduVLR
⇡ 0.23Vud TeV�2 , acbsuVLL

� acbsuVLR
⇡ 0.24Vus TeV�2 ,

scalar:
n
acbduSRR

� acbduSRL
⇡ 0.26Vud TeV�2 , acbsuSRR

� acbsuSRL
⇡ 0.31Vus TeV�2 .

(3.9)

The preferred size of the effective operators suggests ultraviolet completion not far above the TeV
scale. Furthermore, we observe that in both cases the fits are compatible with a CKM-like flavor
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Thanks to Martin Jung. See also the talk by Nico Gubernari.
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Figure 4. Low-energy EFT fit to B̄q ! D+(⇤)
q P� decays. Dashed and solid lines show 68% and 95% CL

regions for vector operators (left panel) and scalar operators (right panel). The gray dotted line is consistent
with the relative size following the CKM ratio Vus/Vud.
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from which we perform a fit using Eq. (3.2) and Eqs. (3.6)–(3.7). Only half of the NP coefficients
contributing to the amplitudes in Eq. (3.6) and Eq. (3.7) can simultaneously explain the observed
suppression in both final states with a D+

q or a D+⇤
q meson. These are acbiu

VLL
, acbiu

VLR
, acbiu
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and acbiu

SRL
.

The other half can not fit the data well. Regarding the flavor structure, new interactions with both
strange and down quarks are needed.

The results of the fits are shown in Fig. 4. The left (right) panel is for new vector (scalar)
interactions. The horizontal and the vertical axes are for the couplings to down and to strange
quarks, respectively. The dashed and solid green lines describe the boundaries of the 68% and 95%

CL regions. The discrepancy between SM predictions and measurements manifests as a shift of the
preferred region from the origin. The best-fit point in the left (right) plot improves the fit to data
with respect to the SM by �2
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The preferred size of the effective operators suggests ultraviolet completion not far above the TeV
scale. Furthermore, we observe that in both cases the fits are compatible with a CKM-like flavor
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• We focus on weakly-coupled extensions of the SM.

• TeV-scale physics, likely tree-level.

3 General EFT analysis of b ! cudi

In this section we study NP effects in non-leptonic B meson decays adopting a bottom-up approach
to keep the discussion as general as possible. To this purpose, we utilize the methods of effective
field theory (EFT). After presenting the data, we perform the fit in the weak effective Hamiltonian
to identity the preferred parameter space. The results are then interpreted in the context of the EFT
above the electroweak scale (SMEFT).

Measurements

The experimental values for the branching fractions for b ! cūdi decays are obtained by fitting all
available data and are compared with the most up-to-date SM predictions based on QCDF [8]. The
main difference between the results in Ref. [8] with respect to previous analyses (see e.g. Ref. [16])
is the use of updated inputs for CKM elements, decay constants and form factors for B̄q ! D(⇤)+

q

transitions [52–54], causing shifts in the central values (the largest one for B̄s ! D⇤+
s ⇡ decay)

and generally a reduction of the uncertainties on the branching ratios. From the experimental point
of view, the non-leptonic B̄s ! D(⇤)+

s ⇡ and B̄ ! D(⇤)+K decays are often measured as part of
ratios with other decay channels in order to reduce experimental errors.

To be conservative we choose to employ the experimental fit in the third column of Table II
of Ref. [8] (without QCDF inputs but with the LHCb measurements of fs/fd from semileptonic
decays). Let us define the ratio of the measured branching ratio to the respective SM prediction as

R(X ! Y Z) ⌘ B(X ! Y Z)/B(X ! Y Z)SM . (3.1)

Combining the measurements and SM predictions, including correlations in both experimental and
theoretical uncertainties,1 we obtain the following result:

R(B̄0
s ! D+

s ⇡
�) = 0.704± 0.074

R(B̄0 ! D+K�) = 0.687± 0.059

R(B̄0
s ! D⇤+

s ⇡�) = 0.49± 0.24

R(B̄0 ! D⇤+K�) = 0.66± 0.13

, ⇢ =

0

BBB@

1 0.36 0.16 0.092

0.36 1 0.072 0.16

0.16 0.072 1 0.40

0.092 0.16 0.40 1

1

CCCA
, (3.2)

where ⇢ is the correlation matrix and, by definition all R = 1 in the SM. The observed branching
ratios are consistently smaller than the QCDF predictions [8].

Low-energy effective field theory

The most general theoretical framework for short-distance NP effects in b ! cūdi (i = 1, 2)
transitions is the low-energy effective field theory (LEFT) [55]. Here we perform a NP analysis
including the full set of relevant operators Oi in the basis of Ref. [55] (for the list see Eq. (A.1)
of Appendix A). These operators, however, are not in a convenient form to evaluate the hadronic
matrix elements we are interested in. Therefore, we Fierz them to the Q(0)

i
listed in Table 2, where

LNP =
7X

i=1

(aiQi + a0iQ0
i) + h.c. . (3.3)

1We thank Martin Jung for providing the associated correlation matrix.

– 12 –

5

Figure 4. Low-energy EFT fit to B̄q ! D+(⇤)
q P� decays. Dashed and solid lines show 68% and 95% CL

regions for vector operators (left panel) and scalar operators (right panel). The gray dotted line is consistent
with the relative size following the CKM ratio Vus/Vud.

where i = d, s corresponds to P� = ⇡�,K�, respectively.

Fit to the data

These decay amplitudes are used to calculate the ratio of the branching fractions to the respective
SM prediction in Eq. (3.1) as

R(X ! Y Z) =
|A(X ! Y Z)|2

|A(X ! Y Z)SM|2 , (3.8)

from which we perform a fit using Eq. (3.2) and Eqs. (3.6)–(3.7). Only half of the NP coefficients
contributing to the amplitudes in Eq. (3.6) and Eq. (3.7) can simultaneously explain the observed
suppression in both final states with a D+

q or a D+⇤
q meson. These are acbiu

VLL
, acbiu

VLR
, acbiu

SRR
and acbiu

SRL
.

The other half can not fit the data well. Regarding the flavor structure, new interactions with both
strange and down quarks are needed.

The results of the fits are shown in Fig. 4. The left (right) panel is for new vector (scalar)
interactions. The horizontal and the vertical axes are for the couplings to down and to strange
quarks, respectively. The dashed and solid green lines describe the boundaries of the 68% and 95%

CL regions. The discrepancy between SM predictions and measurements manifests as a shift of the
preferred region from the origin. The best-fit point in the left (right) plot improves the fit to data
with respect to the SM by �2

SM � �2
best�fit ⇡ 36 (35) and corresponds to

vector:
n
acbduVLL

� acbduVLR
⇡ 0.23Vud TeV�2 , acbsuVLL

� acbsuVLR
⇡ 0.24Vus TeV�2 ,

scalar:
n
acbduSRR

� acbduSRL
⇡ 0.26Vud TeV�2 , acbsuSRR

� acbsuSRL
⇡ 0.31Vus TeV�2 .

(3.9)

The preferred size of the effective operators suggests ultraviolet completion not far above the TeV
scale. Furthermore, we observe that in both cases the fits are compatible with a CKM-like flavor
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Table 3. SMEFT operators relevant for b ! cūdi transitions.

structure, with the operators involving the strange quark being Cabibbo-suppressed with respect to
those with the down quark, as shown with the gray dotted lines in Fig. 4. This is a desirable trait
from the flavor model building perspective.

Standard model effective field theory

The EFT coefficients in Fig. 4 are reported at scale µR = mb. To establish connections with
possible UV completions, these results have to be appropriately extrapolated to high energies. The
low-energy EFT coefficients are evolved up to the EW scale and then matched at tree-level to the
SMEFT. These are finally evolved to the UV scale (see App. A for details). In the SMEFT, the
theory is supplement with a series of gauge-invariant irrelevant operators of increasing canonical
dimension. Among all possible dimension-six SMEFT coefficients, we focus on the dimension-
six four-fermion operators that either contribute directly at tree-level to b ! cūdi or strongly mix
with such operators. In Table 3, we list all these operators. Other tree-level effects in the SMEFT,
such as W -vertex corrections, are better constrained elsewhere, and can not give sizable effect to
B̄q ! D(⇤)+

q {⇡,K} decays.

4 Simplified models

The SMEFT operators identified in the previous section can be generated already at tree-level by
integrating out a new bosonic field X coupled to quark currents. Here we list the complete set
of new scalar and vector mediators which generate the relevant operators shown in Fig. 4 at tree-
level with renormalisable interactions [58], without also necessarily inducing dangerous �F = 2

transitions at tree-level

spin-0:

(
�1 = (1,2, 1/2), �8 = (8,2, 1/2),

�3 = (3̄,1, 1/3),  3 = (3̄,3, 1/3), �6 = (6,1, 1/3),

spin-1: {Q3 = (3,2, 1/6), Q6 = (6̄,2, 1/6) .

(4.1)

Here, the SM gauge representations are reported in the format (SU(3)c, SU(2)L, U(1)Y ). Among
other mediators that generate at tree-level the effective operators listed in Eq. (A.9), colored vectors
(3,2,�5/6) and (6̄,2,�5/6) are not viable since the coefficients acbiu

SLR
do not fit the anomaly. On

the other hand, the vector triplet W 0 = (1,3, 0), vectors (8,1, 0) and (8,3, 0), and the scalar
(6,3, 1/3) mediate a neutral meson mixing at tree-level even with the minimal set of couplings
required to fit the anomaly. Hence, we do not consider them further given the stringent constraints
on �F = 2 transitions. We refer to Ref. [59] for a more detailed discussion of the W 0 case.
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Simplifed mediator models matching to the SMEFT
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with such operators. In Table 3, we list all these operators. Other tree-level effects in the SMEFT,
such as W -vertex corrections, are better constrained elsewhere, and can not give sizable effect to
B̄q ! D(⇤)+

q {⇡,K} decays.

4 Simplified models

The SMEFT operators identified in the previous section can be generated already at tree-level by
integrating out a new bosonic field X coupled to quark currents. Here we list the complete set
of new scalar and vector mediators which generate the relevant operators shown in Fig. 4 at tree-
level with renormalisable interactions [58], without also necessarily inducing dangerous �F = 2

transitions at tree-level

spin-0:

(
�1 = (1,2, 1/2), �8 = (8,2, 1/2),

�3 = (3̄,1, 1/3),  3 = (3̄,3, 1/3), �6 = (6,1, 1/3),

spin-1: {Q3 = (3,2, 1/6), Q6 = (6̄,2, 1/6) .

(4.1)

Here, the SM gauge representations are reported in the format (SU(3)c, SU(2)L, U(1)Y ). Among
other mediators that generate at tree-level the effective operators listed in Eq. (A.9), colored vectors
(3,2,�5/6) and (6̄,2,�5/6) are not viable since the coefficients acbiu

SLR
do not fit the anomaly. On

the other hand, the vector triplet W 0 = (1,3, 0), vectors (8,1, 0) and (8,3, 0), and the scalar
(6,3, 1/3) mediate a neutral meson mixing at tree-level even with the minimal set of couplings
required to fit the anomaly. Hence, we do not consider them further given the stringent constraints
on �F = 2 transitions. We refer to Ref. [59] for a more detailed discussion of the W 0 case.
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the other hand, the vector triplet W 0 = (1,3, 0), vectors (8,1, 0) and (8,3, 0), and the scalar
(6,3, 1/3) mediate a neutral meson mixing at tree-level even with the minimal set of couplings
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Figure 2. Generic tree-level Feynman diagram at the matching scale.

where i = 1, 2, see Fig. 2. Here we neglect the third option (Xuc and Xbdi) which generates
tree-level �F = 2 transitions strongly constrained by D0 � D̄0 and B0,s � B̄0,s neutral meson
oscillations. The new mediator X

• has electric charge ±1/3 or ±1,

• is a color singlet (1), triplet (3), sextet (6), or octet (8),

• has an integer spin (0, 1, . . . ).

The minimal set of required terms in the lagrangian is

L � |DµX|2 �m
2
XX

2 + JqX , (3.1)

where Jq is the quark current (and analogously for vector resonances). These predict two unavoid-
able production mechanisms at high-energy pp colliders: 1) a pair production of resonances from
gauge interactions in the first term, and 2) a single production of a resonance from the last term.
In the most general case, when additional interactions are present, the resonance decays promptly
to either jets, charged leptons, top quark, W or exotic charged particles. For comparable rates, the
dijet final state is hardest to detect at hadron colliders due to the overwhelming QCD background.
Therefore, conservative constraints are obtained when assuming B(X ! jj) = 1, which is also
predicted by the minimal set of new interactions introduced above. Another motivation to assume
X ! jj to be the dominant channel comes from the requirement of perturbativity. More precisely,
the required size of the effect in B ! D {⇡,K} translates into a large partial decay width to a dijet
final state.

The total decay width �X is by definition smaller than the resonance mass mX . We will
focus mostly on models with narrow resonances in which perturbative calculations are fully under
control. By optical theorem, the total decay width is a loop correction to the two-point correlation
function. Collider searches for narrow resonances are effective when �X/mX . 0.1. We will also
comment on how the collider bounds are relaxed for a broad resonance, with �/m ratio similar
in comparison to the ⇢ meson in QCD, while being cautious about the validity of the calculation.
This regime of parameter space signals strongly coupled completion at the TeV scale, and it gets
difficult to justify the absence of new physics in e.g. flavor change neutral currents.
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structure, with the operators involving the strange quark being Cabibbo-suppressed with respect to
those with the down quark, as shown with the gray dotted lines in Fig. 4. This is a desirable trait
from the flavor model building perspective.

Standard model effective field theory

The EFT coefficients in Fig. 4 are reported at scale µR = mb. To establish connections with
possible UV completions, these results have to be appropriately extrapolated to high energies. The
low-energy EFT coefficients are evolved up to the EW scale and then matched at tree-level to the
SMEFT. These are finally evolved to the UV scale (see App. A for details). In the SMEFT, the
theory is supplement with a series of gauge-invariant irrelevant operators of increasing canonical
dimension. Among all possible dimension-six SMEFT coefficients, we focus on the dimension-
six four-fermion operators that either contribute directly at tree-level to b ! cūdi or strongly mix
with such operators. In Table 3, we list all these operators. Other tree-level effects in the SMEFT,
such as W -vertex corrections, are better constrained elsewhere, and can not give sizable effect to
B̄q ! D(⇤)+

q {⇡,K} decays.

4 Simplified models

The SMEFT operators identified in the previous section can be generated already at tree-level by
integrating out a new bosonic field X coupled to quark currents. Here we list the complete set
of new scalar and vector mediators which generate the relevant operators shown in Fig. 4 at tree-
level with renormalisable interactions [58], without also necessarily inducing dangerous �F = 2

transitions at tree-level

spin-0:

(
�1 = (1,2, 1/2), �8 = (8,2, 1/2),

�3 = (3̄,1, 1/3),  3 = (3̄,3, 1/3), �6 = (6,1, 1/3),

spin-1: {Q3 = (3,2, 1/6), Q6 = (6̄,2, 1/6) .

(4.1)

Here, the SM gauge representations are reported in the format (SU(3)c, SU(2)L, U(1)Y ). Among
other mediators that generate at tree-level the effective operators listed in Eq. (A.9), colored vectors
(3,2,�5/6) and (6̄,2,�5/6) are not viable since the coefficients acbiu

SLR
do not fit the anomaly. On

the other hand, the vector triplet W 0 = (1,3, 0), vectors (8,1, 0) and (8,3, 0), and the scalar
(6,3, 1/3) mediate a neutral meson mixing at tree-level even with the minimal set of couplings
required to fit the anomaly. Hence, we do not consider them further given the stringent constraints
on �F = 2 transitions. We refer to Ref. [59] for a more detailed discussion of the W 0 case.
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(3,2,�5/6) and (6̄,2,�5/6) are not viable since the coefficients acbiu
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the other hand, the vector triplet W 0 = (1,3, 0), vectors (8,1, 0) and (8,3, 0), and the scalar
(6,3, 1/3) mediate a neutral meson mixing at tree-level even with the minimal set of couplings
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Figure 1. Representative Feynman diagrams for the pair production pp ! XX ! (jj)(jj) (left diagram)
and the single production pp ! X ! jj (right diagram) of a dijet resonance X at the LHC. The constraints
from the existing searches are reported in Section 2 for different representations and flavor interactions.

gauge interactions. Second, the dijet resonance can be singly produced directly from quark colli-
sions. The representative diagrams of the two production mechanisms are shown in Fig. 1. The
left one corresponds to QCD pair production, in the case of a colored resonance, which is fairly
large at hadron colliders (other diagrams are not shown for simplicity), while the diagram on the
right represents the single dijet resonance production. In the most general case, when additional
(sizeable) interactions are present, the resonance decays (promptly) to either dijet, charged leptons,
top quark, electroweak gauge bosons, or exotic charged particles. For comparable rates, the dijet
final state is hardest to detect at hadron colliders due to the overwhelming QCD background. The
constraints in this section are obtained assuming B(X ! jj) = 1. While the rescaling for dif-
ferent B is straightforward, if other decay channels are present it might be worth considering the
constraints from the corresponding searches since they may be stronger than those from dijets.

The total decay width to mass ratio �X/mX is a crucial parameter in resonance searches. We
will focus mostly on models featuring narrow resonances in which perturbative calculations are
fully under control. By the optical theorem, the total decay width is related to loop corrections to
the propagator. Collider searches for narrow resonances typically imply the following condition,
�X/mX . 0.1, due to the limited detector resolution. In the second part of the study, where we
focus on the NP explanation of b ! cūdi anomalies, the narrow width approximation is valid in a
broad mass range assuming the minimal set of couplings. Nonetheless, we will comment on how
much the collider bounds can be relaxed for a broad resonance, with an increased �X/mX ratio,
while being cautious about the validity of the calculation.

The resonances from new dynamics may or may not be within the kinematical reach of the
LHC. If the resonance mass mX is above the reach for on-shell production at the LHC, its effect
can be studied in the high-pT dijet tails in terms of four-quark contact interactions. From the exper-
imental point of view, this requires a qualitatively different approach since it is no more possible
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Figure 1. Representative Feynman diagrams for the pair production pp ! XX ! (jj)(jj) (left diagram)
and the single production pp ! X ! jj (right diagram) of a dijet resonance X at the LHC. The constraints
from the existing searches are reported in Section 2 for different representations and flavor interactions.

gauge interactions. Second, the dijet resonance can be singly produced directly from quark colli-
sions. The representative diagrams of the two production mechanisms are shown in Fig. 1. The
left one corresponds to QCD pair production, in the case of a colored resonance, which is fairly
large at hadron colliders (other diagrams are not shown for simplicity), while the diagram on the
right represents the single dijet resonance production. In the most general case, when additional
(sizeable) interactions are present, the resonance decays (promptly) to either dijet, charged leptons,
top quark, electroweak gauge bosons, or exotic charged particles. For comparable rates, the dijet
final state is hardest to detect at hadron colliders due to the overwhelming QCD background. The
constraints in this section are obtained assuming B(X ! jj) = 1. While the rescaling for dif-
ferent B is straightforward, if other decay channels are present it might be worth considering the
constraints from the corresponding searches since they may be stronger than those from dijets.

The total decay width to mass ratio �X/mX is a crucial parameter in resonance searches. We
will focus mostly on models featuring narrow resonances in which perturbative calculations are
fully under control. By the optical theorem, the total decay width is related to loop corrections to
the propagator. Collider searches for narrow resonances typically imply the following condition,
�X/mX . 0.1, due to the limited detector resolution. In the second part of the study, where we
focus on the NP explanation of b ! cūdi anomalies, the narrow width approximation is valid in a
broad mass range assuming the minimal set of couplings. Nonetheless, we will comment on how
much the collider bounds can be relaxed for a broad resonance, with an increased �X/mX ratio,
while being cautious about the validity of the calculation.

The resonances from new dynamics may or may not be within the kinematical reach of the
LHC. If the resonance mass mX is above the reach for on-shell production at the LHC, its effect
can be studied in the high-pT dijet tails in terms of four-quark contact interactions. From the exper-
imental point of view, this requires a qualitatively different approach since it is no more possible
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decays (promptly) to either dijet, charged leptons, top quark, electroweak gauge bosons, or 
exotic charged particles. 

•For comparable rates, the dijet final state is hardest to detect at hadron colliders due to the 
overwhelming QCD background. 
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to fit the data with a resonance-like signal over a smooth background. Other observables, such as
the angular distributions of the two jets, are instead employed. For example, see Ref. [37] for an
ATLAS search and Ref. [38] for and EFT analysis in terms of flavor-universal contact interactions.
We leave the analysis of the full set of flavor-dependent four-quark contact interactions for future
work, focusing here on on-shell narrow resonances. The non-leptonic decays studied in the second
part of the paper focus on the weakly coupled ultraviolet (UV) completions for which the reso-
nance searches are sufficient, while contact interactions will be relevant for strongly coupled UV
completions.

2.1 Pair production of dijet resonances

Even when the couplings to quarks are small, the resonance X is pair-produced by gauge interac-
tions, as in the left diagram of Fig. 1. The pair production rate is robustly set by the resonance mass
mX and its gauge representation. We further assume X undergoes a prompt decay to a dijet final
state. The LEP-II bounds rely on QED production in e+e� ! XX̄ and apply for all electrically
charged resonances. A narrow scalar resonance exclusively decaying to jj is ruled out, unless

(LEP� II) m
X±1/3 & 80GeV , mX±1 & 95GeV , (2.1)

see Fig. 9 (c) in [39]. Similar limits apply for vector resonances.
Tevatron and LHC bounds require QCD interactions to be effective and thus apply only to

colored resonances. QCD pair production of colored resonances at hadron colliders is overwhelm-
ing. The main challenge in these searches is to suppress the large multijet background. Nonethe-
less, the most recent ATLAS and CMS searches at 13 TeV with about 36 fb�1 can robustly ex-
clude pair-produced colored resonances decaying exclusively to jj [40, 41]. In particular, the
experimental limits on the complex scalars, for different color and weak representations under
(SU(3)c, SU(2)L), are

Scalar (3,1) (6,1) (8,1)

mX >
410GeV (ATLAS) 820 GeV (ATLAS) 1050GeV (ATLAS)
520GeV (CMS) 950 GeV (CMS) 1000 GeV (CMS)

Scalar (3,3) (6,3) (8,2)

mX >
620GeV (ATLAS) 1200 GeV (ATLAS) 1200GeV (ATLAS)
750GeV (CMS) 1200 GeV (CMS) 1200 GeV (CMS)

.

Here we report the upper edge of the exclusion mass window, while the lower edge extends down
to the LEP-II exclusions. In other words, the combination of all experiments robustly excludes a
resonance X with the mass smaller from what is reported in the table above. The limits on the
color triplet and octet are directly based on the stop and sgluon benchmarks, respectively. Note that
the color octet is a complex field, which doubles the sgluon cross section used in [40]. We neglect
small differences in the acceptance times efficiency for resonances of a different color (and spin),
such that representations not considered by the experimental collaborations are constrained by
comparing the predicted production cross sections with the 95% confidence level (CL) observed
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Figure 1. Representative Feynman diagrams for the pair production pp ! XX ! (jj)(jj) (left diagram)
and the single production pp ! X ! jj (right diagram) of a dijet resonance X at the LHC. The constraints
from the existing searches are reported in Section 2 for different representations and flavor interactions.

gauge interactions. Second, the dijet resonance can be singly produced directly from quark colli-
sions. The representative diagrams of the two production mechanisms are shown in Fig. 1. The
left one corresponds to QCD pair production, in the case of a colored resonance, which is fairly
large at hadron colliders (other diagrams are not shown for simplicity), while the diagram on the
right represents the single dijet resonance production. In the most general case, when additional
(sizeable) interactions are present, the resonance decays (promptly) to either dijet, charged leptons,
top quark, electroweak gauge bosons, or exotic charged particles. For comparable rates, the dijet
final state is hardest to detect at hadron colliders due to the overwhelming QCD background. The
constraints in this section are obtained assuming B(X ! jj) = 1. While the rescaling for dif-
ferent B is straightforward, if other decay channels are present it might be worth considering the
constraints from the corresponding searches since they may be stronger than those from dijets.

The total decay width to mass ratio �X/mX is a crucial parameter in resonance searches. We
will focus mostly on models featuring narrow resonances in which perturbative calculations are
fully under control. By the optical theorem, the total decay width is related to loop corrections to
the propagator. Collider searches for narrow resonances typically imply the following condition,
�X/mX . 0.1, due to the limited detector resolution. In the second part of the study, where we
focus on the NP explanation of b ! cūdi anomalies, the narrow width approximation is valid in a
broad mass range assuming the minimal set of couplings. Nonetheless, we will comment on how
much the collider bounds can be relaxed for a broad resonance, with an increased �X/mX ratio,
while being cautious about the validity of the calculation.

The resonances from new dynamics may or may not be within the kinematical reach of the
LHC. If the resonance mass mX is above the reach for on-shell production at the LHC, its effect
can be studied in the high-pT dijet tails in terms of four-quark contact interactions. From the exper-
imental point of view, this requires a qualitatively different approach since it is no more possible
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• The pair production rate is robustly set by the resonance mass mX and its gauge representation. 



cross section using MadGraph5_aMC@NLO [42] and the UFO model from the FeynRules [43]
repository based on the implementation of [44].

The limits on the vector resonances depend on the UV completion. For example, a vector
color triplet can have an additional non-minimal coupling of the type L � �igsX

†
µT aX⌫Gaµ⌫ .

If the resonance is a massive gauge boson left after the breaking of extended gauge symmetry, the
Yang-Mills (YM) case  = 1 applies. Another example is the minimal coupling (MC) case  = 0,
which usually leads to conservative colliders constraints. Reinterpreting the searches [40, 41] for
these two cases, we find

Vector (3) YM MC

mX >
1150GeV (ATLAS) 700 GeV (ATLAS)
1150GeV (CMS) 800 GeV (CMS)

.

The appropriate cross sections are calculated using the UFO model from Ref. [45]. As shown
in this example, the limits on vector resonances are extremely sensitive to the UV completion.
Nonetheless, the exclusions are typically stronger compared to their scalar counterparts.

As a final comment, when a resonance has sizeable couplings to valence quarks, there is an
additional contribution to production qq̄ ! XX̄ with t-channel quark exchange. Since the overall
rate is dominated by the gluon fusion, the (potential) negative interference with the sub-dominant qq̄
diagram has no practical impact on the limits. On the other hand, when the coupling gets larger, the
total cross section is increased, and the previously quoted exclusions become even more stringent.
(For a related study see Fig. 3 in Ref. [46].) However, given the limits on the couplings derived
from the single production discussed below, the t-channel contribution to the pair production can
be safely neglected.

2.2 Dijet resonance

The coupling of the field X to an arbitrary pair of quarks necessarily leads to a resonant production
of X in pp collisions at high enough energies, followed by a dijet decay signature as shown in
Fig. 1 (right).

Experiments have searched for a new dijet resonance, and set competitive constraints over
a wide range of mX . We can use these null results to set robust upper limits on the size of the
X coupling to any quark pair, as a function of mX . The idea is the following — the different
flavor channels qiq0j ! X add up incoherently in the total cross section — thus an upper limit on
pp ! X ! jj simultaneously bounds the absolute values of all Xqiq0j couplings. We carry out a
general analysis of the latest ATLAS and CMS dijet searches [1–6] for all possible spin-zero and
spin-one mediators considering the most general flavor structure for the couplings.

W 0 example

To set up the stage, let us consider a benchmark example. The partial decay width for a spin-one
colorless W 0 resonance with the interaction Lagrangian

L � xij ū
i

L�
µdj

L
W 0

µ + h.c. , (2.2)

is given by
�
W 0!uid̄j =

mW 0

8⇡
|xij |2 . (2.3)
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SU(3)c 1 3 6 8
�C 1 2 2 4/3
�C 1 2/3 1/3 1/6

spin 0 1
�S 1/2 1
�S 3/2 1

Table 1. Production cross sections (�) and decay widths (�) rescaling factors for resonances X of different
color and spin with Xud couplings. For more details see Sect. 2.2 and Fig. 2. The interaction Lagrangians
are defined in Appendix B.

The cross section for the production of a narrow positively-charged resonance W 0 in the quark
fusion (uid̄j ! W 0) at the LHC is determined by the partial decay width of the inverse process,

�(pp ! W 0) =
8⇡2

3s0

�
W 0!uid̄j

mW 0

Z 1

⌧

dx
1

x
fp

ui(x) f
p

d̄j
(⌧/x) , (2.4)

where ⌧ = m2
W 0/s0 with

p
s0 the collider energy, and fp

q (x) are the parton distribution functions
evaluated at the factorisation scale µF = mW 0 . In our numerical calculations we use MMHT14
NNLO central PDF set [47]. Analogous expressions are for the charged-conjugate process.

Upper limits on the coupling as a function of the mass are extracted from the ATLAS and CMS
exclusions on a specific Z 0 benchmarks [1–6]. These are adopted to our cases by equating the total
production cross sections for two models. The differences in kinematics are expected to be small.
Fig. 2 (top panel) shows exclusions on a W 0 coupled to first-generation quarks, xud 6= 0. The
plot shows 95% CL upper limits on |xud| in the mass range mW 0 2 (50, 5000) GeV. The vertical
axis on the right shows the corresponding partial decay width �W 0/mW 0 in Eq. (2.3), justifying
the narrow-width approximation. Experiments employ different search strategies depending on the
mass of the resonance. In this plot, we can see a nice complementarity between different analyses.
High-mass resonances are easier to hunt than low-mass resonances, for which the QCD multijet
background is dominant. However, there has been impressive progress on this front recently [1–
3]. Novel experimental techniques, such as the data scouting by CMS, probe the parameter space
untouchable by previous experiments at lower energies (see e.g. CDF [48] and UA2 [49]). This
allows us to set important constraints on colorless resonances which are not ruled out by pair
production searches discussed in Sect. 2.1. For explicit example see Sect. 4.2.

Xud couplings

Let us now reinterpret these bounds for a bosonic complex resonance X (scalar or vector) of any
color representation r 2 (1,3,6,8). We define the coupling of X to up and down quarks of
arbitrary flavors i and j as xij in the interaction Lagrangians in Eq. (B.1).

Dijet searches do not discriminate well between different diquark and quark-antiquark res-
onances, see the discussion in Ref. [4]. In other words, the W 0 results can be reinterpreted for
other mediators X with different color, spin, and flavor couplings. Comparing the production cross
sections for the same coupling xij , we find

�(pp ! X)

�(pp ! W 0)
= �C�S , (2.5)
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Figure 1. Representative Feynman diagrams for the pair production pp ! XX ! (jj)(jj) (left diagram)
and the single production pp ! X ! jj (right diagram) of a dijet resonance X at the LHC. The constraints
from the existing searches are reported in Section 2 for different representations and flavor interactions.
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left one corresponds to QCD pair production, in the case of a colored resonance, which is fairly
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right represents the single dijet resonance production. In the most general case, when additional
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focus on the NP explanation of b ! cūdi anomalies, the narrow width approximation is valid in a
broad mass range assuming the minimal set of couplings. Nonetheless, we will comment on how
much the collider bounds can be relaxed for a broad resonance, with an increased �X/mX ratio,
while being cautious about the validity of the calculation.

The resonances from new dynamics may or may not be within the kinematical reach of the
LHC. If the resonance mass mX is above the reach for on-shell production at the LHC, its effect
can be studied in the high-pT dijet tails in terms of four-quark contact interactions. From the exper-
imental point of view, this requires a qualitatively different approach since it is no more possible

– 4 –

Narrow dijet resonance searches at 13 TeV LHC
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Figure 2. Experimental limits on a narrow dijet resonance from the LHC searches at 13 TeV [1–6]. Top
panel is for a spin-1 colorless W 0 coupled to a single flavor combination of chiral quarks, xud 6= 0. The
plot shows upper limits at 95% CL on the absolute value of the coupling from several CMS and ATLAS
searches. The vertical axis on the right-hand side is the corresponding partial decay width �W 0/mW 0 from
Eq. (2.3). Bottom panel shows the combined dijet limits on resonances of different spin and color, as well
as, arbitrary flavor couplings ij. Dashed lines are for diquark resonances (color triplets and sextets) while
solid lines are for quark-antiquark resonances (color singlets and octets). The multiplicative rescaling factors
for color (�C) and spin (�S) are reported in Table 1. This plot assumes B(X ! jj) = 1 and is valid when
the total decay width to mass ratio is �X/mX . 10%.
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cross section using MadGraph5_aMC@NLO [42] and the UFO model from the FeynRules [43]
repository based on the implementation of [44].

The limits on the vector resonances depend on the UV completion. For example, a vector
color triplet can have an additional non-minimal coupling of the type L � �igsX

†
µT aX⌫Gaµ⌫ .

If the resonance is a massive gauge boson left after the breaking of extended gauge symmetry, the
Yang-Mills (YM) case  = 1 applies. Another example is the minimal coupling (MC) case  = 0,
which usually leads to conservative colliders constraints. Reinterpreting the searches [40, 41] for
these two cases, we find

Vector (3) YM MC

mX >
1150GeV (ATLAS) 700 GeV (ATLAS)
1150GeV (CMS) 800 GeV (CMS)

.

The appropriate cross sections are calculated using the UFO model from Ref. [45]. As shown
in this example, the limits on vector resonances are extremely sensitive to the UV completion.
Nonetheless, the exclusions are typically stronger compared to their scalar counterparts.

As a final comment, when a resonance has sizeable couplings to valence quarks, there is an
additional contribution to production qq̄ ! XX̄ with t-channel quark exchange. Since the overall
rate is dominated by the gluon fusion, the (potential) negative interference with the sub-dominant qq̄
diagram has no practical impact on the limits. On the other hand, when the coupling gets larger, the
total cross section is increased, and the previously quoted exclusions become even more stringent.
(For a related study see Fig. 3 in Ref. [46].) However, given the limits on the couplings derived
from the single production discussed below, the t-channel contribution to the pair production can
be safely neglected.

2.2 Dijet resonance

The coupling of the field X to an arbitrary pair of quarks necessarily leads to a resonant production
of X in pp collisions at high enough energies, followed by a dijet decay signature as shown in
Fig. 1 (right).

Experiments have searched for a new dijet resonance, and set competitive constraints over
a wide range of mX . We can use these null results to set robust upper limits on the size of the
X coupling to any quark pair, as a function of mX . The idea is the following — the different
flavor channels qiq0j ! X add up incoherently in the total cross section — thus an upper limit on
pp ! X ! jj simultaneously bounds the absolute values of all Xqiq0j couplings. We carry out a
general analysis of the latest ATLAS and CMS dijet searches [1–6] for all possible spin-zero and
spin-one mediators considering the most general flavor structure for the couplings.

W 0 example

To set up the stage, let us consider a benchmark example. The partial decay width for a spin-one
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general analysis of the latest ATLAS and CMS dijet searches [1–6] for all possible spin-zero and
spin-one mediators considering the most general flavor structure for the couplings.

W 0 example

To set up the stage, let us consider a benchmark example. The partial decay width for a spin-one
colorless W 0 resonance with the interaction Lagrangian

L � xij ū
i

L�
µdj

L
W 0

µ + h.c. , (2.2)

is given by
�
W 0!uid̄j =

mW 0

8⇡
|xij |2 . (2.3)
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Table 1. Production cross sections (�) and decay widths (�) rescaling factors for resonances X of different
color and spin with Xud couplings. For more details see Sect. 2.2 and Fig. 2. The interaction Lagrangians
are defined in Appendix B.

The cross section for the production of a narrow positively-charged resonance W 0 in the quark
fusion (uid̄j ! W 0) at the LHC is determined by the partial decay width of the inverse process,

�(pp ! W 0) =
8⇡2

3s0

�
W 0!uid̄j

mW 0

Z 1

⌧

dx
1

x
fp

ui(x) f
p

d̄j
(⌧/x) , (2.4)

where ⌧ = m2
W 0/s0 with

p
s0 the collider energy, and fp

q (x) are the parton distribution functions
evaluated at the factorisation scale µF = mW 0 . In our numerical calculations we use MMHT14
NNLO central PDF set [47]. Analogous expressions are for the charged-conjugate process.

Upper limits on the coupling as a function of the mass are extracted from the ATLAS and CMS
exclusions on a specific Z 0 benchmarks [1–6]. These are adopted to our cases by equating the total
production cross sections for two models. The differences in kinematics are expected to be small.
Fig. 2 (top panel) shows exclusions on a W 0 coupled to first-generation quarks, xud 6= 0. The
plot shows 95% CL upper limits on |xud| in the mass range mW 0 2 (50, 5000) GeV. The vertical
axis on the right shows the corresponding partial decay width �W 0/mW 0 in Eq. (2.3), justifying
the narrow-width approximation. Experiments employ different search strategies depending on the
mass of the resonance. In this plot, we can see a nice complementarity between different analyses.
High-mass resonances are easier to hunt than low-mass resonances, for which the QCD multijet
background is dominant. However, there has been impressive progress on this front recently [1–
3]. Novel experimental techniques, such as the data scouting by CMS, probe the parameter space
untouchable by previous experiments at lower energies (see e.g. CDF [48] and UA2 [49]). This
allows us to set important constraints on colorless resonances which are not ruled out by pair
production searches discussed in Sect. 2.1. For explicit example see Sect. 4.2.

Xud couplings

Let us now reinterpret these bounds for a bosonic complex resonance X (scalar or vector) of any
color representation r 2 (1,3,6,8). We define the coupling of X to up and down quarks of
arbitrary flavors i and j as xij in the interaction Lagrangians in Eq. (B.1).

Dijet searches do not discriminate well between different diquark and quark-antiquark res-
onances, see the discussion in Ref. [4]. In other words, the W 0 results can be reinterpreted for
other mediators X with different color, spin, and flavor couplings. Comparing the production cross
sections for the same coupling xij , we find

�(pp ! X)

�(pp ! W 0)
= �C�S , (2.5)
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cross section using MadGraph5_aMC@NLO [42] and the UFO model from the FeynRules [43]
repository based on the implementation of [44].

The limits on the vector resonances depend on the UV completion. For example, a vector
color triplet can have an additional non-minimal coupling of the type L � �igsX

†
µT aX⌫Gaµ⌫ .

If the resonance is a massive gauge boson left after the breaking of extended gauge symmetry, the
Yang-Mills (YM) case  = 1 applies. Another example is the minimal coupling (MC) case  = 0,
which usually leads to conservative colliders constraints. Reinterpreting the searches [40, 41] for
these two cases, we find

Vector (3) YM MC

mX >
1150GeV (ATLAS) 700 GeV (ATLAS)
1150GeV (CMS) 800 GeV (CMS)

.

The appropriate cross sections are calculated using the UFO model from Ref. [45]. As shown
in this example, the limits on vector resonances are extremely sensitive to the UV completion.
Nonetheless, the exclusions are typically stronger compared to their scalar counterparts.

As a final comment, when a resonance has sizeable couplings to valence quarks, there is an
additional contribution to production qq̄ ! XX̄ with t-channel quark exchange. Since the overall
rate is dominated by the gluon fusion, the (potential) negative interference with the sub-dominant qq̄
diagram has no practical impact on the limits. On the other hand, when the coupling gets larger, the
total cross section is increased, and the previously quoted exclusions become even more stringent.
(For a related study see Fig. 3 in Ref. [46].) However, given the limits on the couplings derived
from the single production discussed below, the t-channel contribution to the pair production can
be safely neglected.

2.2 Dijet resonance

The coupling of the field X to an arbitrary pair of quarks necessarily leads to a resonant production
of X in pp collisions at high enough energies, followed by a dijet decay signature as shown in
Fig. 1 (right).

Experiments have searched for a new dijet resonance, and set competitive constraints over
a wide range of mX . We can use these null results to set robust upper limits on the size of the
X coupling to any quark pair, as a function of mX . The idea is the following — the different
flavor channels qiq0j ! X add up incoherently in the total cross section — thus an upper limit on
pp ! X ! jj simultaneously bounds the absolute values of all Xqiq0j couplings. We carry out a
general analysis of the latest ATLAS and CMS dijet searches [1–6] for all possible spin-zero and
spin-one mediators considering the most general flavor structure for the couplings.

W 0 example

To set up the stage, let us consider a benchmark example. The partial decay width for a spin-one
colorless W 0 resonance with the interaction Lagrangian

L � xij ū
i

L�
µdj

L
W 0

µ + h.c. , (2.2)

is given by
�
W 0!uid̄j =

mW 0

8⇡
|xij |2 . (2.3)
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where we show the evolution for two values of the diquark mass. In the case of the scalar doublet
more operators are generated and the RG evolution has been performed using DsixTools.

B Details on the tree-level mediators

Conventions for dijet limits

Let us define here the couplings xij of a bosonic resonance X with quark bilinears used in the dijet
analysis. For a given representation of the resonance (spin, SU(3)c) and a coupling to qiq0j , with
q(0) = u, d of arbitrary flavors i, j, we define the interaction Lagrangians as2

(0,1) : L � xij X q̄iPXq0j + h.c. ,

(0,3) : L � xij X
↵ ✏↵�� q̄c

�

i
PXq0�

j
+ h.c. ,

(0,6) : L � xij X
m Sm

↵�
q̄c(↵|

i
PXq0|�)

j
+ h.c. ,

(0,8) : L � xij X
A q̄iT

APXq0j + h.c. ,

(1,1) : L � xij Xµ q̄i�
µPXq0j (+h.c.) ,

(1,3) : L � xij X
↵

µ ✏↵�� q̄
c�

i
�µPXq0�

j
+ h.c. ,

(1,6) : L � xij X
m

µ Sm

↵�
q̄c(↵|

i
�µPXq0|�)

j
+ h.c. ,

(1,8) : L � xij X
A

µ q̄iT
A�µPXq0j (+h.c.) ,

(B.1)

where the chirality projector PX can be either PL/R for left/right spinors. Also, TA are the gener-
ators of SU(3)c,  

(↵|
i
 |�)
j

= 1
2( 

↵

i
 �

j
+  �

i
 ↵

j
), and Sm

↵�
are the symmetric color matrices

S1 =

0

B@
1 0 0

0 0 0

0 0 0

1

CA , S2 =
1p
2

0

B@
0 1 0

1 0 0

0 0 0

1

CA , S3 =

0

B@
0 0 0

0 1 0

0 0 0

1

CA ,

S4 =
1p
2

0

B@
0 0 0

0 0 1

0 1 0

1

CA , S5 =

0

B@
0 0 0

0 0 0

0 0 1

1

CA , S6 =
1p
2

0

B@
0 0 1

0 0 0

1 0 0

1

CA ,

(B.2)

which satisfy the matrices satisfy

TrSmS̄n = �mn ,
X

m

Sm

↵�
S̄��

m =
1

2
(��↵�

�

�
+ ��↵�

�

�
) . (B.3)

where the conjugate matrices are given by S̄↵�
m = Sm

↵�
.

Scalar color-sextet �6 = (6, 1, 1/3)

Let us start the study of the tree-level mediators listed in Eq. (4.1) with the singlet sextet diquark
�6 = (6,1, 1/3). This state has also been studied in [44, 69]. The relevant interaction Lagragian
is:

L � yLij�
↵�†
6 q̄c,(↵|

Li
(i�2)q

|�)
Lj

+ yRij�
↵�†
6 ūc(↵|

Ri
d|�)
Rj

+ h.c. , (B.4)

2Flavor matrices xij are arbitrary complex matrices unless q = q0 when xij is symmetric for scalar sextet, anti-
symmetric for scalar triplet, and Hermitian for real vector singlet and octet where +h.c. is removed from the lagrangian.
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SU(3)c 1 3 6 8
�C 1 2 2 4/3
�C 1 2/3 1/3 1/6

spin 0 1
�S 1/2 1
�S 3/2 1

Table 1. Production cross sections (�) and decay widths (�) rescaling factors for resonances X of different
color and spin with Xud couplings. For more details see Sect. 2.2 and Fig. 2. The interaction Lagrangians
are defined in Appendix B.

The cross section for the production of a narrow positively-charged resonance W 0 in the quark
fusion (uid̄j ! W 0) at the LHC is determined by the partial decay width of the inverse process,

�(pp ! W 0) =
8⇡2

3s0

�
W 0!uid̄j

mW 0

Z 1

⌧

dx
1

x
fp

ui(x) f
p

d̄j
(⌧/x) , (2.4)

where ⌧ = m2
W 0/s0 with

p
s0 the collider energy, and fp

q (x) are the parton distribution functions
evaluated at the factorisation scale µF = mW 0 . In our numerical calculations we use MMHT14
NNLO central PDF set [47]. Analogous expressions are for the charged-conjugate process.

Upper limits on the coupling as a function of the mass are extracted from the ATLAS and CMS
exclusions on a specific Z 0 benchmarks [1–6]. These are adopted to our cases by equating the total
production cross sections for two models. The differences in kinematics are expected to be small.
Fig. 2 (top panel) shows exclusions on a W 0 coupled to first-generation quarks, xud 6= 0. The
plot shows 95% CL upper limits on |xud| in the mass range mW 0 2 (50, 5000) GeV. The vertical
axis on the right shows the corresponding partial decay width �W 0/mW 0 in Eq. (2.3), justifying
the narrow-width approximation. Experiments employ different search strategies depending on the
mass of the resonance. In this plot, we can see a nice complementarity between different analyses.
High-mass resonances are easier to hunt than low-mass resonances, for which the QCD multijet
background is dominant. However, there has been impressive progress on this front recently [1–
3]. Novel experimental techniques, such as the data scouting by CMS, probe the parameter space
untouchable by previous experiments at lower energies (see e.g. CDF [48] and UA2 [49]). This
allows us to set important constraints on colorless resonances which are not ruled out by pair
production searches discussed in Sect. 2.1. For explicit example see Sect. 4.2.

Xud couplings

Let us now reinterpret these bounds for a bosonic complex resonance X (scalar or vector) of any
color representation r 2 (1,3,6,8). We define the coupling of X to up and down quarks of
arbitrary flavors i and j as xij in the interaction Lagrangians in Eq. (B.1).

Dijet searches do not discriminate well between different diquark and quark-antiquark res-
onances, see the discussion in Ref. [4]. In other words, the W 0 results can be reinterpreted for
other mediators X with different color, spin, and flavor couplings. Comparing the production cross
sections for the same coupling xij , we find

�(pp ! X)

�(pp ! W 0)
= �C�S , (2.5)
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cross section using MadGraph5_aMC@NLO [42] and the UFO model from the FeynRules [43]
repository based on the implementation of [44].

The limits on the vector resonances depend on the UV completion. For example, a vector
color triplet can have an additional non-minimal coupling of the type L � �igsX

†
µT aX⌫Gaµ⌫ .

If the resonance is a massive gauge boson left after the breaking of extended gauge symmetry, the
Yang-Mills (YM) case  = 1 applies. Another example is the minimal coupling (MC) case  = 0,
which usually leads to conservative colliders constraints. Reinterpreting the searches [40, 41] for
these two cases, we find

Vector (3) YM MC

mX >
1150GeV (ATLAS) 700 GeV (ATLAS)
1150GeV (CMS) 800 GeV (CMS)

.

The appropriate cross sections are calculated using the UFO model from Ref. [45]. As shown
in this example, the limits on vector resonances are extremely sensitive to the UV completion.
Nonetheless, the exclusions are typically stronger compared to their scalar counterparts.

As a final comment, when a resonance has sizeable couplings to valence quarks, there is an
additional contribution to production qq̄ ! XX̄ with t-channel quark exchange. Since the overall
rate is dominated by the gluon fusion, the (potential) negative interference with the sub-dominant qq̄
diagram has no practical impact on the limits. On the other hand, when the coupling gets larger, the
total cross section is increased, and the previously quoted exclusions become even more stringent.
(For a related study see Fig. 3 in Ref. [46].) However, given the limits on the couplings derived
from the single production discussed below, the t-channel contribution to the pair production can
be safely neglected.

2.2 Dijet resonance

The coupling of the field X to an arbitrary pair of quarks necessarily leads to a resonant production
of X in pp collisions at high enough energies, followed by a dijet decay signature as shown in
Fig. 1 (right).

Experiments have searched for a new dijet resonance, and set competitive constraints over
a wide range of mX . We can use these null results to set robust upper limits on the size of the
X coupling to any quark pair, as a function of mX . The idea is the following — the different
flavor channels qiq0j ! X add up incoherently in the total cross section — thus an upper limit on
pp ! X ! jj simultaneously bounds the absolute values of all Xqiq0j couplings. We carry out a
general analysis of the latest ATLAS and CMS dijet searches [1–6] for all possible spin-zero and
spin-one mediators considering the most general flavor structure for the couplings.

W 0 example

To set up the stage, let us consider a benchmark example. The partial decay width for a spin-one
colorless W 0 resonance with the interaction Lagrangian

L � xij ū
i

L�
µdj

L
W 0

µ + h.c. , (2.2)

is given by
�
W 0!uid̄j =

mW 0

8⇡
|xij |2 . (2.3)
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Table 1. Production cross sections (�) and decay widths (�) rescaling factors for resonances X of different
color and spin with Xud couplings. For more details see Sect. 2.2 and Fig. 2. The interaction Lagrangians
are defined in Appendix B.

The cross section for the production of a narrow positively-charged resonance W 0 in the quark
fusion (uid̄j ! W 0) at the LHC is determined by the partial decay width of the inverse process,

�(pp ! W 0) =
8⇡2

3s0
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W 0!uid̄j

mW 0

Z 1

⌧

dx
1

x
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ui(x) f
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d̄j
(⌧/x) , (2.4)

where ⌧ = m2
W 0/s0 with

p
s0 the collider energy, and fp

q (x) are the parton distribution functions
evaluated at the factorisation scale µF = mW 0 . In our numerical calculations we use MMHT14
NNLO central PDF set [47]. Analogous expressions are for the charged-conjugate process.

Upper limits on the coupling as a function of the mass are extracted from the ATLAS and CMS
exclusions on a specific Z 0 benchmarks [1–6]. These are adopted to our cases by equating the total
production cross sections for two models. The differences in kinematics are expected to be small.
Fig. 2 (top panel) shows exclusions on a W 0 coupled to first-generation quarks, xud 6= 0. The
plot shows 95% CL upper limits on |xud| in the mass range mW 0 2 (50, 5000) GeV. The vertical
axis on the right shows the corresponding partial decay width �W 0/mW 0 in Eq. (2.3), justifying
the narrow-width approximation. Experiments employ different search strategies depending on the
mass of the resonance. In this plot, we can see a nice complementarity between different analyses.
High-mass resonances are easier to hunt than low-mass resonances, for which the QCD multijet
background is dominant. However, there has been impressive progress on this front recently [1–
3]. Novel experimental techniques, such as the data scouting by CMS, probe the parameter space
untouchable by previous experiments at lower energies (see e.g. CDF [48] and UA2 [49]). This
allows us to set important constraints on colorless resonances which are not ruled out by pair
production searches discussed in Sect. 2.1. For explicit example see Sect. 4.2.

Xud couplings

Let us now reinterpret these bounds for a bosonic complex resonance X (scalar or vector) of any
color representation r 2 (1,3,6,8). We define the coupling of X to up and down quarks of
arbitrary flavors i and j as xij in the interaction Lagrangians in Eq. (B.1).

Dijet searches do not discriminate well between different diquark and quark-antiquark res-
onances, see the discussion in Ref. [4]. In other words, the W 0 results can be reinterpreted for
other mediators X with different color, spin, and flavor couplings. Comparing the production cross
sections for the same coupling xij , we find

�(pp ! X)

�(pp ! W 0)
= �C�S , (2.5)
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Narrow dijet resonance searches at 13 TeV LHC
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Figure 2. Experimental limits on a narrow dijet resonance from the LHC searches at 13 TeV [1–6]. Top
panel is for a spin-1 colorless W 0 coupled to a single flavor combination of chiral quarks, xud 6= 0. The
plot shows upper limits at 95% CL on the absolute value of the coupling from several CMS and ATLAS
searches. The vertical axis on the right-hand side is the corresponding partial decay width �W 0/mW 0 from
Eq. (2.3). Bottom panel shows the combined dijet limits on resonances of different spin and color, as well
as, arbitrary flavor couplings ij. Dashed lines are for diquark resonances (color triplets and sextets) while
solid lines are for quark-antiquark resonances (color singlets and octets). The multiplicative rescaling factors
for color (�C) and spin (�S) are reported in Table 1. This plot assumes B(X ! jj) = 1 and is valid when
the total decay width to mass ratio is �X/mX . 10%.
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Figure 1. Representative Feynman diagrams for the pair production pp ! XX ! (jj)(jj) (left diagram)
and the single production pp ! X ! jj (right diagram) of a dijet resonance X at the LHC. The constraints
from the existing searches are reported in Section 2 for different representations and flavor interactions.

gauge interactions. Second, the dijet resonance can be singly produced directly from quark colli-
sions. The representative diagrams of the two production mechanisms are shown in Fig. 1. The
left one corresponds to QCD pair production, in the case of a colored resonance, which is fairly
large at hadron colliders (other diagrams are not shown for simplicity), while the diagram on the
right represents the single dijet resonance production. In the most general case, when additional
(sizeable) interactions are present, the resonance decays (promptly) to either dijet, charged leptons,
top quark, electroweak gauge bosons, or exotic charged particles. For comparable rates, the dijet
final state is hardest to detect at hadron colliders due to the overwhelming QCD background. The
constraints in this section are obtained assuming B(X ! jj) = 1. While the rescaling for dif-
ferent B is straightforward, if other decay channels are present it might be worth considering the
constraints from the corresponding searches since they may be stronger than those from dijets.

The total decay width to mass ratio �X/mX is a crucial parameter in resonance searches. We
will focus mostly on models featuring narrow resonances in which perturbative calculations are
fully under control. By the optical theorem, the total decay width is related to loop corrections to
the propagator. Collider searches for narrow resonances typically imply the following condition,
�X/mX . 0.1, due to the limited detector resolution. In the second part of the study, where we
focus on the NP explanation of b ! cūdi anomalies, the narrow width approximation is valid in a
broad mass range assuming the minimal set of couplings. Nonetheless, we will comment on how
much the collider bounds can be relaxed for a broad resonance, with an increased �X/mX ratio,
while being cautious about the validity of the calculation.

The resonances from new dynamics may or may not be within the kinematical reach of the
LHC. If the resonance mass mX is above the reach for on-shell production at the LHC, its effect
can be studied in the high-pT dijet tails in terms of four-quark contact interactions. From the exper-
imental point of view, this requires a qualitatively different approach since it is no more possible
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Figure 4. Low-energy EFT fit to B̄q ! D+(⇤)
q P� decays. Dashed and solid lines show 68% and 95% CL

regions for vector operators (left panel) and scalar operators (right panel). The gray dotted line is consistent
with the relative size following the CKM ratio Vus/Vud.

where i = d, s corresponds to P� = ⇡�,K�, respectively.

Fit to the data

These decay amplitudes are used to calculate the ratio of the branching fractions to the respective
SM prediction in Eq. (3.1) as

R(X ! Y Z) =
|A(X ! Y Z)|2

|A(X ! Y Z)SM|2 , (3.8)

from which we perform a fit using Eq. (3.2) and Eqs. (3.6)–(3.7). Only half of the NP coefficients
contributing to the amplitudes in Eq. (3.6) and Eq. (3.7) can simultaneously explain the observed
suppression in both final states with a D+

q or a D+⇤
q meson. These are acbiu

VLL
, acbiu

VLR
, acbiu

SRR
and acbiu

SRL
.

The other half can not fit the data well. Regarding the flavor structure, new interactions with both
strange and down quarks are needed.

The results of the fits are shown in Fig. 4. The left (right) panel is for new vector (scalar)
interactions. The horizontal and the vertical axes are for the couplings to down and to strange
quarks, respectively. The dashed and solid green lines describe the boundaries of the 68% and 95%

CL regions. The discrepancy between SM predictions and measurements manifests as a shift of the
preferred region from the origin. The best-fit point in the left (right) plot improves the fit to data
with respect to the SM by �2

SM � �2
best�fit ⇡ 36 (35) and corresponds to

vector:
n
acbduVLL

� acbduVLR
⇡ 0.23Vud TeV�2 , acbsuVLL

� acbsuVLR
⇡ 0.24Vus TeV�2 ,

scalar:
n
acbduSRR

� acbduSRL
⇡ 0.26Vud TeV�2 , acbsuSRR

� acbsuSRL
⇡ 0.31Vus TeV�2 .

(3.9)

The preferred size of the effective operators suggests ultraviolet completion not far above the TeV
scale. Furthermore, we observe that in both cases the fits are compatible with a CKM-like flavor
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The main goal of this section is to show how the high-pT searches at the LHC, specifically
those from dijet signatures, can test the solutions of the anomaly for all viable mediators. We
separate the discussion into two subsections based on the pair production dijet resonance searches
from Sect. 2.1. In particular, in Sect. 4.1 we focus on colored resonances which receive important
constraints from the pair production at the LHC, while the colorless doublet �1 is studied in isola-
tion in Sect. 4.2. The colorless mediator can in principle be much lighter since the relevant bound
comes only from the LEP-II collider.

The single dijet resonance searches derived in Section 2.2 can be used in both cases. Non-
leptonic meson decays depend on the product of two couplings when the resonance is integrated
out at tree level. In particular, the product of the couplings entering those decays satisfies

|xqiqj x⇤qkql | = |xqiqj |⇥ |xqkql | , (4.2)

where both terms on the right-hand side are simultaneously constrained from non-observation of
�(pp ! X ! jj) at high-pT . Using this inequality, we can limit NP contributions in B̄q !
D(⇤)+

q {⇡,K} decays.

4.1 Colored mediators

As discussed in Sect. 2.1, the QCD-induced pair production at the LHC sets robust lower limits
on the masses of the colored mediators in the range 0.5 TeV to 1.15 TeV, depending on the repre-
sentation. Note that, complementary to the pair production, the single mechanism is effective for
heavy resonances. The combination of single and pair production dismisses all these mediators as
the explanation of the anomaly, see Fig. 5.

In the following we show the interplay between the dijet bounds and the fit to the anomaly for
each mediator, leaving the details on the models and their EFT matching to App. B.

Color-sextet diquark �6

The SM is extended with the singlet sextet diquark scalar �6 = (6,1, 1/3). The relevant interaction
Lagragian is:

L�6 � yLij�
↵�†
6 q̄c(↵|

Li
(i�2)q

|�)
Lj

+ yRij�
↵�†
6 ūc(↵|

Ri
d|�)
Rj

+ h.c. , (4.3)

where  (↵|
i
 |�)
j

= 1
2( 

↵

i
 �

j
+  �

i
 ↵

j
), and yL is an antisymmetric matrix. The components of the

sextet representations are given as �↵�

6 ⌘ Si

↵�
�i

6, where i = 1, . . . , 6 and the symmetric color
matrices Si

↵�
are given in Eq. (B.2). The anomaly can be addressed by switching on only two

couplings:

yL =

0

B@
0 yL12 0

�yL12 0 0
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Figure 2. Experimental limits on a narrow dijet resonance from the LHC searches at 13 TeV [1–6]. Top
panel is for a spin-1 colorless W 0 coupled to a single flavor combination of chiral quarks, xud 6= 0. The
plot shows upper limits at 95% CL on the absolute value of the coupling from several CMS and ATLAS
searches. The vertical axis on the right-hand side is the corresponding partial decay width �W 0/mW 0 from
Eq. (2.3). Bottom panel shows the combined dijet limits on resonances of different spin and color, as well
as, arbitrary flavor couplings ij. Dashed lines are for diquark resonances (color triplets and sextets) while
solid lines are for quark-antiquark resonances (color singlets and octets). The multiplicative rescaling factors
for color (�C) and spin (�S) are reported in Table 1. This plot assumes B(X ! jj) = 1 and is valid when
the total decay width to mass ratio is �X/mX . 10%.
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Model example

The main goal of this section is to show how the high-pT searches at the LHC, specifically
those from dijet signatures, can test the solutions of the anomaly for all viable mediators. We
separate the discussion into two subsections based on the pair production dijet resonance searches
from Sect. 2.1. In particular, in Sect. 4.1 we focus on colored resonances which receive important
constraints from the pair production at the LHC, while the colorless doublet �1 is studied in isola-
tion in Sect. 4.2. The colorless mediator can in principle be much lighter since the relevant bound
comes only from the LEP-II collider.

The single dijet resonance searches derived in Section 2.2 can be used in both cases. Non-
leptonic meson decays depend on the product of two couplings when the resonance is integrated
out at tree level. In particular, the product of the couplings entering those decays satisfies

|xqiqj x⇤qkql | = |xqiqj |⇥ |xqkql | , (4.2)

where both terms on the right-hand side are simultaneously constrained from non-observation of
�(pp ! X ! jj) at high-pT . Using this inequality, we can limit NP contributions in B̄q !
D(⇤)+

q {⇡,K} decays.

4.1 Colored mediators

As discussed in Sect. 2.1, the QCD-induced pair production at the LHC sets robust lower limits
on the masses of the colored mediators in the range 0.5 TeV to 1.15 TeV, depending on the repre-
sentation. Note that, complementary to the pair production, the single mechanism is effective for
heavy resonances. The combination of single and pair production dismisses all these mediators as
the explanation of the anomaly, see Fig. 5.

In the following we show the interplay between the dijet bounds and the fit to the anomaly for
each mediator, leaving the details on the models and their EFT matching to App. B.
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6 ūc(↵|

Ri
d|�)
Rj

+ h.c. , (4.3)

where  (↵|
i
 |�)
j

= 1
2( 

↵

i
 �

j
+  �

i
 ↵

j
), and yL is an antisymmetric matrix. The components of the

sextet representations are given as �↵�

6 ⌘ Si

↵�
�i

6, where i = 1, . . . , 6 and the symmetric color
matrices Si

↵�
are given in Eq. (B.2). The anomaly can be addressed by switching on only two

couplings:

yL =

0

B@
0 yL12 0

�yL12 0 0

0 0 0

1

CA , yR =

0

B@
0 0 yR13
0 0 0

0 0 0

1

CA . (4.4)

It is worth noticing that the structure of the left-handed couplings yL of Eq. (4.4) is compatible with
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Figure 5. High-pT constraints from the single dijet resonance production (gray) and the QCD-induced
pair production of dijet resonances (brown) compared with the best-fit region from non-leptonic B decays.
The constraints are imposed on the product of the two relevant couplings as a function of the mass for
colored mediators listed in Eq. (4.1). Note that the constraints from Sect. 2.2 are strictly applicable for
�X/mX . 10% which is not necessarily the case in the upper parts of the plot, depending on the relative
sizes of the couplings. The anomaly in B̄q ! D+(⇤)

q P� selects the best-fit region at 68% CL (green) and
95% CL (yellow). Shown with the red dashed lines in the top-left plot (�6) are the limits from the meson
mixing for two representative choices of yR13 coupling. For more details see Sect. 4.1.

while all other terms should be suppressed. By introducing a spurion Vu = (au, 0), with au ⌧ 1,
transforming as a doublet of U(2)u it is possible to generate a small value of yR13 ⇠ au ⌧ 1.
This spurion is not required by the minimal breaking of the symmetry necessary to generate the
SM Yukawas. We thus conclude that this setup could be compatible with a non-minimally broken
U(2)5 flavor symmetry if yL12 ⇠ 1, yR33 ⇠ 1 and yR13 ⌧ 1.

In the following, we considering the minimal set of couplings introduced in Eq. (4.4). The
non-vanishing aX coefficients for B̄ ! D(⇤)

q P� decays are

acbduSRR
⇡ 2

3
SRGEVcs

yL⇤12 y
R

13

M2
�6

⇡ 0.26Vcs

TeV2 , acbsuSRR
⇡ �2

3
SRGEVcd

yL⇤12 y
R

13

M2
�6

⇡ �0.31Vcd

TeV2 , (4.5)

where SRGE ⇡ 1.65 (1.85) for M�6 = 1 (5) TeV. The 1� and 2� regions from the anomaly fit in
the plane of the product of the two couplings and the mediator mass is shown as a green and yellow
band in the top-left panel of Fig. 5, respectively. This state contributes to precisely measured
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flavor-violation processes at one-loop level. We study the relevant constraints in Appendix C,
which place an upper limit on yL12 as function of the mass. The stronger bound comes from D0

and K0 mixing, and the limit is shown in Fig. 5 (top-left) as dashed and dotted red lines, for two
different assumptions on the right-handed coupling yR13. As shown in the plot, these complementary
constraints from low-energy measurements are not able to probe the interesting parameter space.

The dijet resonance limits become less effective when the resonance is broader,

��6

M�6

=
8|yL12|2 + |yR13|2

16⇡
& 0.1 , (4.6)

but the perturbativity of the model comes into question. Fixing the best-fit value for the product
of the two couplings, the condition above is always violated for M�6 & 2 TeV. The strongest dijet
constraints on the two couplings yL12 and yR13 entering Eq. (4.5), arise from the processes us ! �6

and ub ! �6, respectively. The product of the two couplings, that contributes directly to the
anomaly, is bounded since |yL12yR13| < |yL12|max|yR13|max. Compared to the generic Lagrangian in
Eq. (B.1) the couplings are given by xij = 2yL

ij
for the left-handed quarks and xij = yR

ij
for the

right-handed ones. As shown in Fig. 5 (top-left), the region preferred by the anomaly is excluded
by the dijet searches for all masses where the theory is perturbative.

Color-triplet diquark �3

The scalar triplet �3 = (3̄,1, 1/3) couples to the SM quarks as

L�3 � yqq
ij
✏↵���

↵

3 q̄
�

Li
(i�2)q

c �

Lj
+ yduij ✏↵���

↵

3 d̄
�

Ri
uc �
Rj

+ h.c. , (4.7)

where yqq
ij

is a symmetric matrix. Baryon number conservation must be imposed to suppress the
couplings to quark and leptons, that would otherwise mediate proton decay. The coupling structure
that allows fitting the anomaly with least suppression demands three non-vanishing couplings ydu⇤31 ,
yqq12, and yqq22, such that

acbduSRR
= �2.6

yqq12y
du⇤
31

M2
�3

⇡ 0.26Vud

TeV2 , acbsuSRR
=

(�2.6yqq22 + 0.60yqq12)y
du⇤
31

M2
�3

⇡ 0.31Vus

TeV2 . (4.8)

A good fit requires the relation yqq22 ⇡ 0.50yqq12.
The partonic processes that give the strongest constraints on the couplings relevant to this

model are the same as in the scalar sextet case, as well as the the relations between the yqq/du
ij

and
xij couplings. As shown in Fig. 5 (top-right), the dijet searches firmly exclude the parameter space
relevant for the anomaly in all the perturbative range of the model.

Potentially strong limits from loop-induced flavor-violating processes might require a par-
ticular coupling structure. We do not discuss them further since the dijet searches are already
quite restrictive. The case of the scalar  3 = (3̄,3, 1/3) is discussed in the appendix and shares
analogous features as the scenario where �3 only couples to LH quarks. This scenario is not so
advantageous for the anomaly since it involves a sizable coupling to the top quark, which implies
stronger collider constraints. For this reason, we do not consider it separately, referring to App. B
for more details.
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The main goal of this section is to show how the high-pT searches at the LHC, specifically
those from dijet signatures, can test the solutions of the anomaly for all viable mediators. We
separate the discussion into two subsections based on the pair production dijet resonance searches
from Sect. 2.1. In particular, in Sect. 4.1 we focus on colored resonances which receive important
constraints from the pair production at the LHC, while the colorless doublet �1 is studied in isola-
tion in Sect. 4.2. The colorless mediator can in principle be much lighter since the relevant bound
comes only from the LEP-II collider.

The single dijet resonance searches derived in Section 2.2 can be used in both cases. Non-
leptonic meson decays depend on the product of two couplings when the resonance is integrated
out at tree level. In particular, the product of the couplings entering those decays satisfies
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�(pp ! X ! jj) at high-pT . Using this inequality, we can limit NP contributions in B̄q !
D(⇤)+
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4.1 Colored mediators

As discussed in Sect. 2.1, the QCD-induced pair production at the LHC sets robust lower limits
on the masses of the colored mediators in the range 0.5 TeV to 1.15 TeV, depending on the repre-
sentation. Note that, complementary to the pair production, the single mechanism is effective for
heavy resonances. The combination of single and pair production dismisses all these mediators as
the explanation of the anomaly, see Fig. 5.

In the following we show the interplay between the dijet bounds and the fit to the anomaly for
each mediator, leaving the details on the models and their EFT matching to App. B.
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flavor-violation processes at one-loop level. We study the relevant constraints in Appendix C,
which place an upper limit on yL12 as function of the mass. The stronger bound comes from D0

and K0 mixing, and the limit is shown in Fig. 5 (top-left) as dashed and dotted red lines, for two
different assumptions on the right-handed coupling yR13. As shown in the plot, these complementary
constraints from low-energy measurements are not able to probe the interesting parameter space.

The dijet resonance limits become less effective when the resonance is broader,

��6

M�6

=
8|yL12|2 + |yR13|2

16⇡
& 0.1 , (4.6)

but the perturbativity of the model comes into question. Fixing the best-fit value for the product
of the two couplings, the condition above is always violated for M�6 & 2 TeV. The strongest dijet
constraints on the two couplings yL12 and yR13 entering Eq. (4.5), arise from the processes us ! �6

and ub ! �6, respectively. The product of the two couplings, that contributes directly to the
anomaly, is bounded since |yL12yR13| < |yL12|max|yR13|max. Compared to the generic Lagrangian in
Eq. (B.1) the couplings are given by xij = 2yL

ij
for the left-handed quarks and xij = yR

ij
for the

right-handed ones. As shown in Fig. 5 (top-left), the region preferred by the anomaly is excluded
by the dijet searches for all masses where the theory is perturbative.

Color-triplet diquark �3

The scalar triplet �3 = (3̄,1, 1/3) couples to the SM quarks as

L�3 � yqq
ij
✏↵���

↵

3 q̄
�

Li
(i�2)q

c �

Lj
+ yduij ✏↵���

↵

3 d̄
�

Ri
uc �
Rj

+ h.c. , (4.7)

where yqq
ij

is a symmetric matrix. Baryon number conservation must be imposed to suppress the
couplings to quark and leptons, that would otherwise mediate proton decay. The coupling structure
that allows fitting the anomaly with least suppression demands three non-vanishing couplings ydu⇤31 ,
yqq12, and yqq22, such that

acbduSRR
= �2.6

yqq12y
du⇤
31

M2
�3

⇡ 0.26Vud

TeV2 , acbsuSRR
=

(�2.6yqq22 + 0.60yqq12)y
du⇤
31

M2
�3

⇡ 0.31Vus

TeV2 . (4.8)

A good fit requires the relation yqq22 ⇡ 0.50yqq12.
The partonic processes that give the strongest constraints on the couplings relevant to this

model are the same as in the scalar sextet case, as well as the the relations between the yqq/du
ij

and
xij couplings. As shown in Fig. 5 (top-right), the dijet searches firmly exclude the parameter space
relevant for the anomaly in all the perturbative range of the model.

Potentially strong limits from loop-induced flavor-violating processes might require a par-
ticular coupling structure. We do not discuss them further since the dijet searches are already
quite restrictive. The case of the scalar  3 = (3̄,3, 1/3) is discussed in the appendix and shares
analogous features as the scenario where �3 only couples to LH quarks. This scenario is not so
advantageous for the anomaly since it involves a sizable coupling to the top quark, which implies
stronger collider constraints. For this reason, we do not consider it separately, referring to App. B
for more details.
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Model example

The main goal of this section is to show how the high-pT searches at the LHC, specifically
those from dijet signatures, can test the solutions of the anomaly for all viable mediators. We
separate the discussion into two subsections based on the pair production dijet resonance searches
from Sect. 2.1. In particular, in Sect. 4.1 we focus on colored resonances which receive important
constraints from the pair production at the LHC, while the colorless doublet �1 is studied in isola-
tion in Sect. 4.2. The colorless mediator can in principle be much lighter since the relevant bound
comes only from the LEP-II collider.

The single dijet resonance searches derived in Section 2.2 can be used in both cases. Non-
leptonic meson decays depend on the product of two couplings when the resonance is integrated
out at tree level. In particular, the product of the couplings entering those decays satisfies

|xqiqj x⇤qkql | = |xqiqj |⇥ |xqkql | , (4.2)

where both terms on the right-hand side are simultaneously constrained from non-observation of
�(pp ! X ! jj) at high-pT . Using this inequality, we can limit NP contributions in B̄q !
D(⇤)+

q {⇡,K} decays.

4.1 Colored mediators

As discussed in Sect. 2.1, the QCD-induced pair production at the LHC sets robust lower limits
on the masses of the colored mediators in the range 0.5 TeV to 1.15 TeV, depending on the repre-
sentation. Note that, complementary to the pair production, the single mechanism is effective for
heavy resonances. The combination of single and pair production dismisses all these mediators as
the explanation of the anomaly, see Fig. 5.

In the following we show the interplay between the dijet bounds and the fit to the anomaly for
each mediator, leaving the details on the models and their EFT matching to App. B.
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It is worth noticing that the structure of the left-handed couplings yL of Eq. (4.4) is compatible with
the approximate U(2)q symmetry of the SM Lagrangian, where the first two families transform as a
doublet while the third as a singlet [60]. Indeed, since the antisymmetric combination of the qi=1,2
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doublets transforms as a singlet, the U(2)q symmetry would predict yL12 ⇠ O(1) while yL13, y
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where yqq
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is a symmetric matrix. Baryon number conservation must be imposed to suppress the
couplings to quark and leptons, that would otherwise mediate proton decay. The coupling structure
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xij couplings. As shown in Fig. 5 (top-right), the dijet searches firmly exclude the parameter space
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ticular coupling structure. We do not discuss them further since the dijet searches are already
quite restrictive. The case of the scalar  3 = (3̄,3, 1/3) is discussed in the appendix and shares
analogous features as the scenario where �3 only couples to LH quarks. This scenario is not so
advantageous for the anomaly since it involves a sizable coupling to the top quark, which implies
stronger collider constraints. For this reason, we do not consider it separately, referring to App. B
for more details.
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Figure 5. High-pT constraints from the single dijet resonance production (gray) and the QCD-induced
pair production of dijet resonances (brown) compared with the best-fit region from non-leptonic B decays.
The constraints are imposed on the product of the two relevant couplings as a function of the mass for
colored mediators listed in Eq. (4.1). Note that the constraints from Sect. 2.2 are strictly applicable for
�X/mX . 10% which is not necessarily the case in the upper parts of the plot, depending on the relative
sizes of the couplings. The anomaly in B̄q ! D+(⇤)

q P� selects the best-fit region at 68% CL (green) and
95% CL (yellow). Shown with the red dashed lines in the top-left plot (�6) are the limits from the meson
mixing for two representative choices of yR13 coupling. For more details see Sect. 4.1.

while all other terms should be suppressed. By introducing a spurion Vu = (au, 0), with au ⌧ 1,
transforming as a doublet of U(2)u it is possible to generate a small value of yR13 ⇠ au ⌧ 1.
This spurion is not required by the minimal breaking of the symmetry necessary to generate the
SM Yukawas. We thus conclude that this setup could be compatible with a non-minimally broken
U(2)5 flavor symmetry if yL12 ⇠ 1, yR33 ⇠ 1 and yR13 ⌧ 1.

In the following, we considering the minimal set of couplings introduced in Eq. (4.4). The
non-vanishing aX coefficients for B̄ ! D(⇤)

q P� decays are

acbduSRR
⇡ 2

3
SRGEVcs

yL⇤12 y
R

13

M2
�6

⇡ 0.26Vcs

TeV2 , acbsuSRR
⇡ �2

3
SRGEVcd

yL⇤12 y
R

13

M2
�6

⇡ �0.31Vcd

TeV2 , (4.5)

where SRGE ⇡ 1.65 (1.85) for M�6 = 1 (5) TeV. The 1� and 2� regions from the anomaly fit in
the plane of the product of the two couplings and the mediator mass is shown as a green and yellow
band in the top-left panel of Fig. 5, respectively. This state contributes to precisely measured
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Figure 1. Representative Feynman diagrams for the pair production pp ! XX ! (jj)(jj) (left diagram)
and the single production pp ! X ! jj (right diagram) of a dijet resonance X at the LHC. The constraints
from the existing searches are reported in Section 2 for different representations and flavor interactions.

gauge interactions. Second, the dijet resonance can be singly produced directly from quark colli-
sions. The representative diagrams of the two production mechanisms are shown in Fig. 1. The
left one corresponds to QCD pair production, in the case of a colored resonance, which is fairly
large at hadron colliders (other diagrams are not shown for simplicity), while the diagram on the
right represents the single dijet resonance production. In the most general case, when additional
(sizeable) interactions are present, the resonance decays (promptly) to either dijet, charged leptons,
top quark, electroweak gauge bosons, or exotic charged particles. For comparable rates, the dijet
final state is hardest to detect at hadron colliders due to the overwhelming QCD background. The
constraints in this section are obtained assuming B(X ! jj) = 1. While the rescaling for dif-
ferent B is straightforward, if other decay channels are present it might be worth considering the
constraints from the corresponding searches since they may be stronger than those from dijets.

The total decay width to mass ratio �X/mX is a crucial parameter in resonance searches. We
will focus mostly on models featuring narrow resonances in which perturbative calculations are
fully under control. By the optical theorem, the total decay width is related to loop corrections to
the propagator. Collider searches for narrow resonances typically imply the following condition,
�X/mX . 0.1, due to the limited detector resolution. In the second part of the study, where we
focus on the NP explanation of b ! cūdi anomalies, the narrow width approximation is valid in a
broad mass range assuming the minimal set of couplings. Nonetheless, we will comment on how
much the collider bounds can be relaxed for a broad resonance, with an increased �X/mX ratio,
while being cautious about the validity of the calculation.

The resonances from new dynamics may or may not be within the kinematical reach of the
LHC. If the resonance mass mX is above the reach for on-shell production at the LHC, its effect
can be studied in the high-pT dijet tails in terms of four-quark contact interactions. From the exper-
imental point of view, this requires a qualitatively different approach since it is no more possible
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broad mass range assuming the minimal set of couplings. Nonetheless, we will comment on how
much the collider bounds can be relaxed for a broad resonance, with an increased �X/mX ratio,
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The main goal of this section is to show how the high-pT searches at the LHC, specifically
those from dijet signatures, can test the solutions of the anomaly for all viable mediators. We
separate the discussion into two subsections based on the pair production dijet resonance searches
from Sect. 2.1. In particular, in Sect. 4.1 we focus on colored resonances which receive important
constraints from the pair production at the LHC, while the colorless doublet �1 is studied in isola-
tion in Sect. 4.2. The colorless mediator can in principle be much lighter since the relevant bound
comes only from the LEP-II collider.

The single dijet resonance searches derived in Section 2.2 can be used in both cases. Non-
leptonic meson decays depend on the product of two couplings when the resonance is integrated
out at tree level. In particular, the product of the couplings entering those decays satisfies

|xqiqj x⇤qkql | = |xqiqj |⇥ |xqkql | , (4.2)

where both terms on the right-hand side are simultaneously constrained from non-observation of
�(pp ! X ! jj) at high-pT . Using this inequality, we can limit NP contributions in B̄q !
D(⇤)+

q {⇡,K} decays.

4.1 Colored mediators

As discussed in Sect. 2.1, the QCD-induced pair production at the LHC sets robust lower limits
on the masses of the colored mediators in the range 0.5 TeV to 1.15 TeV, depending on the repre-
sentation. Note that, complementary to the pair production, the single mechanism is effective for
heavy resonances. The combination of single and pair production dismisses all these mediators as
the explanation of the anomaly, see Fig. 5.

In the following we show the interplay between the dijet bounds and the fit to the anomaly for
each mediator, leaving the details on the models and their EFT matching to App. B.

Color-sextet diquark �6

The SM is extended with the singlet sextet diquark scalar �6 = (6,1, 1/3). The relevant interaction
Lagragian is:

L�6 � yLij�
↵�†
6 q̄c(↵|

Li
(i�2)q

|�)
Lj

+ yRij�
↵�†
6 ūc(↵|

Ri
d|�)
Rj

+ h.c. , (4.3)

where  (↵|
i
 |�)
j

= 1
2( 

↵

i
 �

j
+  �

i
 ↵

j
), and yL is an antisymmetric matrix. The components of the

sextet representations are given as �↵�

6 ⌘ Si

↵�
�i

6, where i = 1, . . . , 6 and the symmetric color
matrices Si

↵�
are given in Eq. (B.2). The anomaly can be addressed by switching on only two

couplings:

yL =

0

B@
0 yL12 0

�yL12 0 0

0 0 0

1

CA , yR =

0

B@
0 0 yR13
0 0 0

0 0 0

1

CA . (4.4)

It is worth noticing that the structure of the left-handed couplings yL of Eq. (4.4) is compatible with
the approximate U(2)q symmetry of the SM Lagrangian, where the first two families transform as a
doublet while the third as a singlet [60]. Indeed, since the antisymmetric combination of the qi=1,2

L

doublets transforms as a singlet, the U(2)q symmetry would predict yL12 ⇠ O(1) while yL13, y
L

23 ⌧
1. Regarding the right-handed couplings, the U(2)u ⇥ U(2)d symmetry would predict yR33 ⇠ 1
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doublets transforms as a singlet, the U(2)q symmetry would predict yL12 ⇠ O(1) while yL13, y
L

23 ⌧
1. Regarding the right-handed couplings, the U(2)u ⇥ U(2)d symmetry would predict yR33 ⇠ 1
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flavor-violation processes at one-loop level. We study the relevant constraints in Appendix C,
which place an upper limit on yL12 as function of the mass. The stronger bound comes from D0

and K0 mixing, and the limit is shown in Fig. 5 (top-left) as dashed and dotted red lines, for two
different assumptions on the right-handed coupling yR13. As shown in the plot, these complementary
constraints from low-energy measurements are not able to probe the interesting parameter space.

The dijet resonance limits become less effective when the resonance is broader,

��6

M�6

=
8|yL12|2 + |yR13|2

16⇡
& 0.1 , (4.6)

but the perturbativity of the model comes into question. Fixing the best-fit value for the product
of the two couplings, the condition above is always violated for M�6 & 2 TeV. The strongest dijet
constraints on the two couplings yL12 and yR13 entering Eq. (4.5), arise from the processes us ! �6

and ub ! �6, respectively. The product of the two couplings, that contributes directly to the
anomaly, is bounded since |yL12yR13| < |yL12|max|yR13|max. Compared to the generic Lagrangian in
Eq. (B.1) the couplings are given by xij = 2yL

ij
for the left-handed quarks and xij = yR

ij
for the

right-handed ones. As shown in Fig. 5 (top-left), the region preferred by the anomaly is excluded
by the dijet searches for all masses where the theory is perturbative.

Color-triplet diquark �3

The scalar triplet �3 = (3̄,1, 1/3) couples to the SM quarks as

L�3 � yqq
ij
✏↵���

↵

3 q̄
�

Li
(i�2)q

c �

Lj
+ yduij ✏↵���

↵

3 d̄
�

Ri
uc �
Rj

+ h.c. , (4.7)

where yqq
ij

is a symmetric matrix. Baryon number conservation must be imposed to suppress the
couplings to quark and leptons, that would otherwise mediate proton decay. The coupling structure
that allows fitting the anomaly with least suppression demands three non-vanishing couplings ydu⇤31 ,
yqq12, and yqq22, such that

acbduSRR
= �2.6

yqq12y
du⇤
31

M2
�3

⇡ 0.26Vud

TeV2 , acbsuSRR
=

(�2.6yqq22 + 0.60yqq12)y
du⇤
31

M2
�3

⇡ 0.31Vus

TeV2 . (4.8)

A good fit requires the relation yqq22 ⇡ 0.50yqq12.
The partonic processes that give the strongest constraints on the couplings relevant to this

model are the same as in the scalar sextet case, as well as the the relations between the yqq/du
ij

and
xij couplings. As shown in Fig. 5 (top-right), the dijet searches firmly exclude the parameter space
relevant for the anomaly in all the perturbative range of the model.

Potentially strong limits from loop-induced flavor-violating processes might require a par-
ticular coupling structure. We do not discuss them further since the dijet searches are already
quite restrictive. The case of the scalar  3 = (3̄,3, 1/3) is discussed in the appendix and shares
analogous features as the scenario where �3 only couples to LH quarks. This scenario is not so
advantageous for the anomaly since it involves a sizable coupling to the top quark, which implies
stronger collider constraints. For this reason, we do not consider it separately, referring to App. B
for more details.

– 18 –

��→
� �
+(*

) {π
- ��

- }

Δ�=� ���� = � π

Δ�=
� � ���

=� ��
�

�����

��� ���� �����

��� �
�����

����

���

�

�����

����

���

�

�Φ� [���]

|�
���
� �
��
|

Figure 5. High-pT constraints from the single dijet resonance production (gray) and the QCD-induced
pair production of dijet resonances (brown) compared with the best-fit region from non-leptonic B decays.
The constraints are imposed on the product of the two relevant couplings as a function of the mass for
colored mediators listed in Eq. (4.1). Note that the constraints from Sect. 2.2 are strictly applicable for
�X/mX . 10% which is not necessarily the case in the upper parts of the plot, depending on the relative
sizes of the couplings. The anomaly in B̄q ! D+(⇤)

q P� selects the best-fit region at 68% CL (green) and
95% CL (yellow). Shown with the red dashed lines in the top-left plot (�6) are the limits from the meson
mixing for two representative choices of yR13 coupling. For more details see Sect. 4.1.

while all other terms should be suppressed. By introducing a spurion Vu = (au, 0), with au ⌧ 1,
transforming as a doublet of U(2)u it is possible to generate a small value of yR13 ⇠ au ⌧ 1.
This spurion is not required by the minimal breaking of the symmetry necessary to generate the
SM Yukawas. We thus conclude that this setup could be compatible with a non-minimally broken
U(2)5 flavor symmetry if yL12 ⇠ 1, yR33 ⇠ 1 and yR13 ⌧ 1.

In the following, we considering the minimal set of couplings introduced in Eq. (4.4). The
non-vanishing aX coefficients for B̄ ! D(⇤)

q P� decays are
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where SRGE ⇡ 1.65 (1.85) for M�6 = 1 (5) TeV. The 1� and 2� regions from the anomaly fit in
the plane of the product of the two couplings and the mediator mass is shown as a green and yellow
band in the top-left panel of Fig. 5, respectively. This state contributes to precisely measured
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t t

Figure 8. Diagrams inducing �F = 2 processes in the sextet diquark model. The dashed line represents
the �6 propagator.

�F = 2

Since the electric charge of �6 is 1/3, no �F = 2 processes are generated at tree-level. However,
meson mixing can arise at the loop level via the diagrams shown schematically in Fig. 8. The boxes
with two �6 propagators are proportional to the structure (yLyL†) or (yRyR†). Given the effective
Hamiltonian for down-quark �F = 2 processes,

H�F=2 �C
qiqj

V LL

⇣
q̄iL�µq

j

L

⌘2
+ C

qiqj

V RR

⇣
q̄iR�µq

j

R

⌘2
+

+ C
qiqj

LR1

⇣
q̄iL�µq

j

L

⌘⇣
q̄iR�

µqj
R

⌘
+ C

qiqj

LR2

⇣
q̄iRq

j

L

⌘⇣
q̄iLq

j

R

⌘
,

(C.1)
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Figure 1. Representative Feynman diagrams for the pair production pp ! XX ! (jj)(jj) (left diagram)
and the single production pp ! X ! jj (right diagram) of a dijet resonance X at the LHC. The constraints
from the existing searches are reported in Section 2 for different representations and flavor interactions.

gauge interactions. Second, the dijet resonance can be singly produced directly from quark colli-
sions. The representative diagrams of the two production mechanisms are shown in Fig. 1. The
left one corresponds to QCD pair production, in the case of a colored resonance, which is fairly
large at hadron colliders (other diagrams are not shown for simplicity), while the diagram on the
right represents the single dijet resonance production. In the most general case, when additional
(sizeable) interactions are present, the resonance decays (promptly) to either dijet, charged leptons,
top quark, electroweak gauge bosons, or exotic charged particles. For comparable rates, the dijet
final state is hardest to detect at hadron colliders due to the overwhelming QCD background. The
constraints in this section are obtained assuming B(X ! jj) = 1. While the rescaling for dif-
ferent B is straightforward, if other decay channels are present it might be worth considering the
constraints from the corresponding searches since they may be stronger than those from dijets.

The total decay width to mass ratio �X/mX is a crucial parameter in resonance searches. We
will focus mostly on models featuring narrow resonances in which perturbative calculations are
fully under control. By the optical theorem, the total decay width is related to loop corrections to
the propagator. Collider searches for narrow resonances typically imply the following condition,
�X/mX . 0.1, due to the limited detector resolution. In the second part of the study, where we
focus on the NP explanation of b ! cūdi anomalies, the narrow width approximation is valid in a
broad mass range assuming the minimal set of couplings. Nonetheless, we will comment on how
much the collider bounds can be relaxed for a broad resonance, with an increased �X/mX ratio,
while being cautious about the validity of the calculation.

The resonances from new dynamics may or may not be within the kinematical reach of the
LHC. If the resonance mass mX is above the reach for on-shell production at the LHC, its effect
can be studied in the high-pT dijet tails in terms of four-quark contact interactions. From the exper-
imental point of view, this requires a qualitatively different approach since it is no more possible

– 4 –

X

X

X

j

j

j

j

j

j

q

qj

i

Figure 1. Representative Feynman diagrams for the pair production pp ! XX ! (jj)(jj) (left diagram)
and the single production pp ! X ! jj (right diagram) of a dijet resonance X at the LHC. The constraints
from the existing searches are reported in Section 2 for different representations and flavor interactions.

gauge interactions. Second, the dijet resonance can be singly produced directly from quark colli-
sions. The representative diagrams of the two production mechanisms are shown in Fig. 1. The
left one corresponds to QCD pair production, in the case of a colored resonance, which is fairly
large at hadron colliders (other diagrams are not shown for simplicity), while the diagram on the
right represents the single dijet resonance production. In the most general case, when additional
(sizeable) interactions are present, the resonance decays (promptly) to either dijet, charged leptons,
top quark, electroweak gauge bosons, or exotic charged particles. For comparable rates, the dijet
final state is hardest to detect at hadron colliders due to the overwhelming QCD background. The
constraints in this section are obtained assuming B(X ! jj) = 1. While the rescaling for dif-
ferent B is straightforward, if other decay channels are present it might be worth considering the
constraints from the corresponding searches since they may be stronger than those from dijets.

The total decay width to mass ratio �X/mX is a crucial parameter in resonance searches. We
will focus mostly on models featuring narrow resonances in which perturbative calculations are
fully under control. By the optical theorem, the total decay width is related to loop corrections to
the propagator. Collider searches for narrow resonances typically imply the following condition,
�X/mX . 0.1, due to the limited detector resolution. In the second part of the study, where we
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The main goal of this section is to show how the high-pT searches at the LHC, specifically
those from dijet signatures, can test the solutions of the anomaly for all viable mediators. We
separate the discussion into two subsections based on the pair production dijet resonance searches
from Sect. 2.1. In particular, in Sect. 4.1 we focus on colored resonances which receive important
constraints from the pair production at the LHC, while the colorless doublet �1 is studied in isola-
tion in Sect. 4.2. The colorless mediator can in principle be much lighter since the relevant bound
comes only from the LEP-II collider.

The single dijet resonance searches derived in Section 2.2 can be used in both cases. Non-
leptonic meson decays depend on the product of two couplings when the resonance is integrated
out at tree level. In particular, the product of the couplings entering those decays satisfies

|xqiqj x⇤qkql | = |xqiqj |⇥ |xqkql | , (4.2)

where both terms on the right-hand side are simultaneously constrained from non-observation of
�(pp ! X ! jj) at high-pT . Using this inequality, we can limit NP contributions in B̄q !
D(⇤)+

q {⇡,K} decays.

4.1 Colored mediators

As discussed in Sect. 2.1, the QCD-induced pair production at the LHC sets robust lower limits
on the masses of the colored mediators in the range 0.5 TeV to 1.15 TeV, depending on the repre-
sentation. Note that, complementary to the pair production, the single mechanism is effective for
heavy resonances. The combination of single and pair production dismisses all these mediators as
the explanation of the anomaly, see Fig. 5.

In the following we show the interplay between the dijet bounds and the fit to the anomaly for
each mediator, leaving the details on the models and their EFT matching to App. B.

Color-sextet diquark �6

The SM is extended with the singlet sextet diquark scalar �6 = (6,1, 1/3). The relevant interaction
Lagragian is:

L�6 � yLij�
↵�†
6 q̄c(↵|

Li
(i�2)q

|�)
Lj

+ yRij�
↵�†
6 ūc(↵|

Ri
d|�)
Rj

+ h.c. , (4.3)

where  (↵|
i
 |�)
j

= 1
2( 

↵

i
 �

j
+  �

i
 ↵

j
), and yL is an antisymmetric matrix. The components of the

sextet representations are given as �↵�

6 ⌘ Si

↵�
�i

6, where i = 1, . . . , 6 and the symmetric color
matrices Si

↵�
are given in Eq. (B.2). The anomaly can be addressed by switching on only two

couplings:

yL =

0

B@
0 yL12 0

�yL12 0 0

0 0 0

1

CA , yR =

0

B@
0 0 yR13
0 0 0

0 0 0

1

CA . (4.4)

It is worth noticing that the structure of the left-handed couplings yL of Eq. (4.4) is compatible with
the approximate U(2)q symmetry of the SM Lagrangian, where the first two families transform as a
doublet while the third as a singlet [60]. Indeed, since the antisymmetric combination of the qi=1,2

L

doublets transforms as a singlet, the U(2)q symmetry would predict yL12 ⇠ O(1) while yL13, y
L

23 ⌧
1. Regarding the right-handed couplings, the U(2)u ⇥ U(2)d symmetry would predict yR33 ⇠ 1
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Figure 5. High-pT constraints from the single dijet resonance production (gray) and the QCD-induced
pair production of dijet resonances (brown) compared with the best-fit region from non-leptonic B decays.
The constraints are imposed on the product of the two relevant couplings as a function of the mass for
colored mediators listed in Eq. (4.1). Note that the constraints from Sect. 2.2 are strictly applicable for
�X/mX . 10% which is not necessarily the case in the upper parts of the plot, depending on the relative
sizes of the couplings. The anomaly in B̄q ! D+(⇤)

q P� selects the best-fit region at 68% CL (green) and
95% CL (yellow). Shown with the red dashed lines in the top-left plot (�6) are the limits from the meson
mixing for two representative choices of yR13 coupling. For more details see Sect. 4.1.

while all other terms should be suppressed. By introducing a spurion Vu = (au, 0), with au ⌧ 1,
transforming as a doublet of U(2)u it is possible to generate a small value of yR13 ⇠ au ⌧ 1.
This spurion is not required by the minimal breaking of the symmetry necessary to generate the
SM Yukawas. We thus conclude that this setup could be compatible with a non-minimally broken
U(2)5 flavor symmetry if yL12 ⇠ 1, yR33 ⇠ 1 and yR13 ⌧ 1.

In the following, we considering the minimal set of couplings introduced in Eq. (4.4). The
non-vanishing aX coefficients for B̄ ! D(⇤)

q P� decays are

acbduSRR
⇡ 2

3
SRGEVcs

yL⇤12 y
R

13

M2
�6

⇡ 0.26Vcs

TeV2 , acbsuSRR
⇡ �2

3
SRGEVcd

yL⇤12 y
R

13

M2
�6

⇡ �0.31Vcd

TeV2 , (4.5)

where SRGE ⇡ 1.65 (1.85) for M�6 = 1 (5) TeV. The 1� and 2� regions from the anomaly fit in
the plane of the product of the two couplings and the mediator mass is shown as a green and yellow
band in the top-left panel of Fig. 5, respectively. This state contributes to precisely measured
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4.2 Colorless scalar doublet model

The scalar doublet �1 = (1,2, 1/2) is among the possible tree-level mediators capable to fit the
anomaly, Eq. (4.1). It is, however, a unique mediator in the list since it is not charged under QCD
and therefore not sufficiently constrained by the pair production at the LHC. For generic Yukawa
couplings, its neutral component will mediate �F = 2 transitions at tree-level. This can be avoided
by a suitable alignment in flavor space. While such alignment is theoretically rather unappealing, it
is still motivated to consider this option as it opens up a qualitatively different region of parameter
space where the mediator mass is comparable to the heaviest particles in the SM. In the case of
colored mediators discussed above, pp ! XX ! (jj)(jj) searches imply a mass gap from the
SM states, and to fit the anomaly, this means larger couplings, such that pp ! X ! jj becomes
important. For this reason, we study the simplified �1 model in details.

Having the same quantum numbers as the SM Higgs boson, the two states will mix in general.
This would disrupt the precise flavor alignment required to pass the meson mixing constraints and
must be forbidden. For the sake of this simplified analysis, we just assume that �1 is the mass
eigenstate corresponding to the doublet which does not take a vacuum expectation value and that
no mixing is present at tree-level. Regarding its Yukawa couplings, we consider two different
benchmark scenarios, designed ad-hoc to avoid tree-level contributions to meson mixing:

Benchmark I — The couplings of the extra scalar �1 are exclusively to the right-handed down
quarks and are diagonal in the down-quark mass basis,

LYuk
�1

= ydi �
†
1d̄

i

Rq
i

L + h.c., (4.14)

where qi
L
= (V ⇤

ji
uj
L
, di

L
)T . Integrating out the scalar �1, the LEFT operators LV 1(8),LR

ud
are gener-

ated at low energies, which contribute to the aijkl
SRL

coefficients as

acbiuSRL
= RGEVcbV

⇤
ui

yd⇤3 yd
i

M2
�1

, (4.15)

where RGE ⇡ 2.0 for M�1 = 200GeV, derived using DsixTools 2.0 [61]. This structure is
compatible with the fit in the right panel of Fig. 4, where the relation yd1 = yd2 allows to simplify
the analysis.

Benchmark II — The couplings of �1 are aligned to the right-handed bottom quark and to
the right-handed up quark:

LYuk
�1

= yd3 �
†
1b̄Rq

3
L + yu1 ¯̃q1LuR �̃1 + h.c., (4.16)

where q3
L
= (V ⇤

jb
uj
L
, bL)T , q̃1

L
= (uL, Vujd

j

L
)T , and yu1 and yd3 are complex numbers. In this setup

the relevant LEFT coefficients generated at low energies are LS1,RR

uddu
, which contribute as

acbiuSRR
= RGEVcbVui

yd⇤3 yu1
M2

�1

, (4.17)

where RGE ⇡ 2.07 for M�1 = 200GeV. Also this benchmark fits very well the excess in the
hadronic B decays.
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where RGE ⇡ 2.0 for M�1 = 200GeV, derived using DsixTools 2.0 [61]. This structure is
compatible with the fit in the right panel of Fig. 4, where the relation yd1 = yd2 allows to simplify
the analysis.

Benchmark II — The couplings of �1 are aligned to the right-handed bottom quark and to
the right-handed up quark:
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the relevant LEFT coefficients generated at low energies are LS1,RR
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, which contribute as
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, (4.17)

where RGE ⇡ 2.07 for M�1 = 200GeV. Also this benchmark fits very well the excess in the
hadronic B decays.
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Figure 7. The compilation of the high-pT collider constraints on the �1 model (Benchmark I) together
with the best-fit region from non-leptonic B decays. See Section 4.2 for details.

already leads to very strong bounds. In particular, searches for �1 ! tb, when m�1 > mt, and
for t ! b�1, when m�1 < mt, exclude most of the remaining parameter space except for a small
window around m�1 ⇡ mt, where the two processes are kinematically suppressed. The bounds on
yb from top decays are extracted from the dedicated ATLAS search [63]. Similarly, the limits on
|y⇤

d
yb| from the �1 production are a combination of the ATLAS search in the tt̄b final state [64],

the CDF search for a resonance in pp ! tb [65, 66] and the single dijet searches from Fig. 7.
Regarding the blind spot, the single dijet limits on the couplings are:

m�1 ⇡ mt : |yd1 | < 0.22 , |yd3 | < 0.88 , (|yu1 | < 0.20) . (4.19)

This is the benchmark that we will consider in our flavor study. Before that, let us comment on
other relevant collider probes of this blind spot. We used MadGraph5_aMC@NLO [42] to calculate
processes with off-shell �1 and/or top quark. We identify the following signatures at the LHC
which could further squeeze the interesting parameter space in the future: tt̄�1, single top, and
V �1 where V = W,Z.

Flavour Constraints

Concerning constraints from low-energy observables, we note that in Benchmark II flavor chang-
ing processes from a b to lighter down-type quarks are always proportional to yu1 and are then
suppressed by the up-quark mass. Similar arguments can be applied to charm physics, where only
the coupling yd3 enters. However, in this case, the strong suppression comes from the CKM. There-
fore we conclude that Benchmark II is insensitive to flavor constraints. In the case of Benchmark
I, it is not straightforward to draw analogous conclusions. In Appendix D we investigate a specific
parameter-space point for m�1 ⇡ mt and yd

i
, finding that also Benchmark I cannot be excluded by

low-energy flavour constraints. Small variations around this point do not change our conclusions.
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4.2 Colorless scalar doublet model

The scalar doublet �1 = (1,2, 1/2) is among the possible tree-level mediators capable to fit the
anomaly, Eq. (4.1). It is, however, a unique mediator in the list since it is not charged under QCD
and therefore not sufficiently constrained by the pair production at the LHC. For generic Yukawa
couplings, its neutral component will mediate �F = 2 transitions at tree-level. This can be avoided
by a suitable alignment in flavor space. While such alignment is theoretically rather unappealing, it
is still motivated to consider this option as it opens up a qualitatively different region of parameter
space where the mediator mass is comparable to the heaviest particles in the SM. In the case of
colored mediators discussed above, pp ! XX ! (jj)(jj) searches imply a mass gap from the
SM states, and to fit the anomaly, this means larger couplings, such that pp ! X ! jj becomes
important. For this reason, we study the simplified �1 model in details.

Having the same quantum numbers as the SM Higgs boson, the two states will mix in general.
This would disrupt the precise flavor alignment required to pass the meson mixing constraints and
must be forbidden. For the sake of this simplified analysis, we just assume that �1 is the mass
eigenstate corresponding to the doublet which does not take a vacuum expectation value and that
no mixing is present at tree-level. Regarding its Yukawa couplings, we consider two different
benchmark scenarios, designed ad-hoc to avoid tree-level contributions to meson mixing:

Benchmark I — The couplings of the extra scalar �1 are exclusively to the right-handed down
quarks and are diagonal in the down-quark mass basis,

LYuk
�1

= ydi �
†
1d̄

i

Rq
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L + h.c., (4.14)

where qi
L
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uj
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, di

L
)T . Integrating out the scalar �1, the LEFT operators LV 1(8),LR

ud
are gener-

ated at low energies, which contribute to the aijkl
SRL

coefficients as

acbiuSRL
= RGEVcbV

⇤
ui

yd⇤3 yd
i

M2
�1

, (4.15)

where RGE ⇡ 2.0 for M�1 = 200GeV, derived using DsixTools 2.0 [61]. This structure is
compatible with the fit in the right panel of Fig. 4, where the relation yd1 = yd2 allows to simplify
the analysis.

Benchmark II — The couplings of �1 are aligned to the right-handed bottom quark and to
the right-handed up quark:

LYuk
�1

= yd3 �
†
1b̄Rq

3
L + yu1 ¯̃q1LuR �̃1 + h.c., (4.16)

where q3
L
= (V ⇤

jb
uj
L
, bL)T , q̃1

L
= (uL, Vujd

j

L
)T , and yu1 and yd3 are complex numbers. In this setup

the relevant LEFT coefficients generated at low energies are LS1,RR

uddu
, which contribute as

acbiuSRR
= RGEVcbVui

yd⇤3 yu1
M2

�1

, (4.17)

where RGE ⇡ 2.07 for M�1 = 200GeV. Also this benchmark fits very well the excess in the
hadronic B decays.
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where RGE ⇡ 2.07 for M�1 = 200GeV. Also this benchmark fits very well the excess in the
hadronic B decays.
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where RGE ⇡ 2.07 for M�1 = 200GeV. Also this benchmark fits very well the excess in the
hadronic B decays.
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✏0/✏

The decay amplitude s ! duū is induced at tree-level in our setup, the imaginary part is strongly
constrained by the direct CP violation effects in ✏0/✏. A general master formula of ✏0/✏ in terms
of EFT coefficients evaluated at the EW scale has been obtained in Ref. [74]. With the active
couplings yL12 and yR13, the relevant operators are the purely left-handed vector-vector ones. In the
notation of [74] one has

(✏0/✏)BSM =
X

ui=u,c

⇣
P ui
V LL

Im
⇥
Cui
V LL

⇤
+ eP q

V LL
Im

h
eCq

V LL

i⌘
, (C.12)

where the numerical coefficients are P u

V LL
⇡ �4.3, eP u

V LL
⇡ 1.5, P c

V LL
⇡ 0.7, and eP c

V LL
⇡ 0.2.

The rotation to the LEFT operator basis in Eq. (A.1) is given by

NCui
V LL

= [LV 1LL
ud

]ii21 �
1

6
[LV 8LL

ud
]ii21 ,

N eCui
V LL

=
1

2
[LV 8LL

ud
]ii21 ,

(C.13)

where N = (1 TeV)�2. Matching to the SMEFT, Eq. (A.10), and then to the diquark model using
Eq. (B.5) and keeping only yL12 we get:

(✏0/✏)BSM ⇡ 1.3⇥ 10�4 |yL12|2

M2
�6
/ TeV2 , (C.14)

where the phase is only due to the CKM. Using the approximate upper bound for the BSM con-
tribution of (✏0/✏)BSM . 10 ⇥ 10�4 we get the constraint shown in Fig. 9 as a blue line, which is
weaker than those discussed above.

D Flavor constraints on the colorless scalar �1

We discuss possible constraints from low-energy processes for the �1. In particular, we focus on a
specific benchmark point for the solution of the anomaly which is not excluded by dijet constraints:
M�1 ⇠ mt, yd3 ⇠ 0.6 and yd2 = yd1 ⇠ 0.17.

�F = 2 The scalar �1 generates contributions to neutral meson mixing at loop level through
box diagrams. In the notation of Eq. (C.1), only the Wilson coefficients C

qiqj

V RR
and C

qiqj

LR2
are

non-zero. Using the results in Refs. [75, 76] we get

C
qiqj

V RR
=

1

128⇡2M2
�1

(VtiV
⇤
tj)

2(yd⇤j )2(ydi )
2ytI1(yt) , (D.1)

C
qiqj

LR2
=

1

16
p
2⇡2M2

�1

GFm
2
W (VtiV

⇤
tj)

2(yd⇤j )(ydi )F (yt, xt) , (D.2)

where yq = m2
q/M

2
�1

, xq = m2
q/m

2
w. Using our benchmark point and the expression of the loop

functions in Refs. [75, 76], we have I1(1) = 1/3 and F (1, xt) = 8.09. We use the low-energy
matrix elements from [70], finding that our results for this scenario are compatible with the current
limits by UTFit [71] in both the Bd and Bs cases. Similar conclusions can be drawn in the case of
neutral K and D mixings.
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Z ! bb̄ The contributions to Z ! bb̄ decays come from penguin type diagrams. In particular,
the �1 generates right-handed vector interactions, which yield

gR
b
⌘ (gR

b
)SM � (yd3)

2

32⇡2

h
f1(yt) +

↵s

3⇡
f2(yt)

i
. (D.3)

The loop functions f1(yt) and f2(yt) are reported in Refs. [76, 77] and in our benchmark point they
assume the values f1(1) = 1/2 and f2(1) = �13/6. We compare with the current value extracted
by electroweak fits. In Ref. [78], the fitted value of gR

b
= 0.0962 ± 0.0063 is obtained. In this

scenario, the contribution due to NP to gR
b

is well below the uncertainty reported in Ref. [78].

b ! s`+`� The contributions to b ! s`+`� decays come from penguin type diagrams. We
follow the conventions for the effective low-energy Hamiltonian in Ref. [79]. The �1 generates the
NP Wilson coefficients C70 , C90 and C100 , which are lepton-flavour universal. Concerning C90 and
C100 , using the results in [80], we get

C90(µW ) = �C100(µW ) = � 1

g2 sin2 ✓w
yd2y

d
⇤

3 B(yt) , (D.4)

where B(1) = �1/8 and µW = mW . At the low scale µb = mb we get

C90(µb) = �C100(µb) ⇠ 0.13 . (D.5)

The best sensitivity to these Wilson coefficients is achieved in b ! sµ+µ� data, which show
interesting deviations w.r.t. the SM expectations. The current status is found in [81–83], where
several NP scenarios are analysed. Our predictions for C90 and C100 are not excluded, but are also
not able to explain the tensions in b ! sµ+µ� data.

The �1 generates also dipole operators and in particular O70 receives mb enhanced contribu-
tions. Following [84], we get

C70(µW ) = �1

2
yd2y

d

3
v2

M2
�1


2

3
F1(yt) + F2(yt)

�
, (D.6)

where F1(yt) = F2(yt) ! 1/24. The RGE evolution of C70 is the same as for C7. At the low scale
µb = mb and at leading order in QCD, we have [85]

C70(µb)

C7(µb)
= 1.6% , (D.7)

which is below the current bound in Ref. [86].
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b ! s`+`� The contributions to b ! s`+`� decays come from penguin type diagrams. We
follow the conventions for the effective low-energy Hamiltonian in Ref. [79]. The �1 generates the
NP Wilson coefficients C70 , C90 and C100 , which are lepton-flavour universal. Concerning C90 and
C100 , using the results in [80], we get

C90(µW ) = �C100(µW ) = � 1

g2 sin2 ✓w
yd2y

d
⇤

3 B(yt) , (D.4)

where B(1) = �1/8 and µW = mW . At the low scale µb = mb we get

C90(µb) = �C100(µb) ⇠ 0.13 . (D.5)

The best sensitivity to these Wilson coefficients is achieved in b ! sµ+µ� data, which show
interesting deviations w.r.t. the SM expectations. The current status is found in [81–83], where
several NP scenarios are analysed. Our predictions for C90 and C100 are not excluded, but are also
not able to explain the tensions in b ! sµ+µ� data.

The �1 generates also dipole operators and in particular O70 receives mb enhanced contribu-
tions. Following [84], we get

C70(µW ) = �1

2
yd2y

d

3
v2

M2
�1


2

3
F1(yt) + F2(yt)

�
, (D.6)

where F1(yt) = F2(yt) ! 1/24. The RGE evolution of C70 is the same as for C7. At the low scale
µb = mb and at leading order in QCD, we have [85]

C70(µb)

C7(µb)
= 1.6% , (D.7)

which is below the current bound in Ref. [86].
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