Implications for new physics from a novel puzzle in $\overline{B}^0_{(s)} \to D^{(*)+}_{(s)} \{ K^-, \pi^- \}$ decays

Teppei Kitahara (Nagoya Univ.)

- collaboration with Syuhei Iguro (\rightarrow Karlsruhe)
- PRD Rapid Communication 102, 071701 (2020) [arXiv:2008.01086]
- Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, Universität Siegen, April 1, 2021, ONLINE

On the menu today: $B^0_{(s)} \to D^-_{(s)}h^+, \Lambda^0_b \to \Lambda^+_c h^-$

- **Non-leptonic tree-level:** $b \rightarrow c \bar{u} d(s)$ or $b \rightarrow u \bar{c} d(s)$ transitions
- **Colour allowed:** separate colour indices for $X_h - X_c$ and h systems

Main decay modes (focus of today):

- $B^0 \to D^{(*)-}\{K^+, \pi^+\}$
- $B^+ \rightarrow \overline{D}^{(*)0}\{K^+, \pi^+\}$ (w. colour-suppressed contributions)
- $B_{\rm s}^0 \to D_{\rm s}^{(*)-}\{K^+, \pi^+\}$
- $\Lambda_h^0 \to \Lambda_c^+ \{ K^-, \pi^- \}$
- Two types of transitions: •
 - $B^0 \rightarrow D^{(*)-}K^+, B^0_s \rightarrow D^{(*)-}_s \pi^+$: tree-only decays
 - $B^0 \rightarrow D^{(*)-}\pi^+, B^0_s \rightarrow D^{(*)-}_s K^+$: tree + exchange decays

Implications for new physics from a novel puzzle in $\overline{B}_{(s)}^0 \to D_{(s)}^{(*)+} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

Example decay: $B^0 \rightarrow D^-K^+$

Slide from Nico Gubernari

Fits to the available data

source	PDG	our fits (w	$/_{0}$ OCDF)	OCDF prediction
	120		(c (c) 7 TeV)	QUDI prediction
scenario		no f_s/f_d	$(f_s/f_d)_{\rm LHCb,sl}$	
χ^2/dof		2.5/4	3.1/5	
$\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)$	3.00 ± 0.23	3.6 ± 0.7	3.11 ± 0.25	4.42 ± 0.21
$\mathcal{B}(\bar{B}^0 \to D^+ K^-)$	0.186 ± 0.020	0.222 ± 0.012	0.224 ± 0.012	0.326 ± 0.015
$\mathcal{B}(\bar{B}^0 \to D^+ \pi^-)$	2.52 ± 0.13	2.71 ± 0.12	2.73 ± 0.12	
$\mathcal{B}(\bar{B}^0_s \to D^{*+}_s \pi^-)$	2.0 ± 0.5	2.4 ± 0.7	2.1 ± 0.5	$4.3^{+0.9}_{-0.8}$
$\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$	0.212 ± 0.015	0.216 ± 0.014	0.216 ± 0.014	$0.327^{+0.039}_{-0.034}$
$\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$	2.74 ± 0.13	2.78 ± 0.15	2.79 ± 0.15	
$\mathcal{R}^P_{s/d}$	16.1 ± 2.1	16.2 ± 3.3	14.0 ± 1.1	$13.5^{+0.6}_{-0.5}$
$\mathcal{R}^V_{s/d}$	9.4 ± 2.5	11.4 ± 3.6	9.6 ± 2.5	$13.1^{+2.3}_{-2.0}$
$\mathcal{R}^{V/P}_{s}$	0.66 ± 0.16	0.66 ± 0.16	0.66 ± 0.16	$0.97^{+0.20}_{-0.17}$
$\mathcal{R}_d^{V/P}$	1.14 ± 0.15	0.97 ± 0.08	0.97 ± 0.08	1.01 ± 0.11
$(f_s/f_d)^{7 \text{ TeV}}_{\text{LHCb}}$		$0.223^{+0.056}_{-0.038}$ *	0.260 ± 0.019	
$(f_s/f_d)_{\rm Tev}$		$0.208^{+0.056}_{-0.038}$ *	0.243 ± 0.028	

BR(exp.) **<** BR(SM pred. from QCDF)

SM amplitudes are uniformly larger by O(15%)

Implications for new physics from a novel puzzle in $\overline{B}^0_{(s)} \to D^{(*)+}_{(s)} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

- fits indicate that measurements are consistent
- discrepancy between measurements and theoretical predictions:

$$\begin{split} \bar{B}^0_s &\to D^+_s \pi^- &\to 4\sigma \\ \bar{B}^0 &\to D^+ K^- &\to 5\sigma \\ \bar{B}^0_s &\to D^{*+}_s \pi^- &\to 2\sigma \\ \bar{B}^0 &\to D^{*+}_s K^- &\to 3\sigma \end{split}$$

 4.4σ level deviation

Explanation without new physics

- Vcb dependence?
 - - [average of inclusive and exclusive].

 - Then, however, 4.2 σ tension appears in \mathcal{E}_{K} [LANL-SWME lattice,
- Higher-order QCD corrections?
 - Unlikely. It has been estimated as $\mathcal{O}(1\%)$

Implications for new physics from a novel puzzle in $\overline{B}^0_{(s)} \to D^{(*)+}_{(s)} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

[Bordone, Gubernari, Huber, Jung, van Dyk, 2007.10338] uses $|Vcb| \times 10^3 = 41.1(5)$

If the exclusive value, e.g., $|Vcb| \times 10^3 = 39.25(56)$, the SM amplitudes are reduces by 4.5%

New physics interpretation

Implications for new physics from a novel puzzle in $\overline{B}_{(s)}^0 \to D_{(s)}^{(*)+} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

Compatible with lifetime measurements [Bordone, Gubernari, Huber, Jung, van Dyk, 2007.10338]

$$\begin{array}{cc} .36 & -0.87 \\ 0.19 & 1.07 \end{array} \begin{pmatrix} C_1^{\rm NP} (1 \,{\rm TeV}) \\ C_2^{\rm NP} (1 \,{\rm TeV}) \end{pmatrix}$$

We consider W' model

Implications for new physics from a novel puzzle in $\overline{B}^0_{(s)} \to D^{(*)+}_{(s)} \{K^-, \pi^-\}$ decays Teppei Kitahara: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

Just assuming no leptonic coupling

Sanity check from kaon

How about $s \rightarrow u\bar{u}d$ bound from the kaon decays? Assuming CP-conserving W' contribution;

$$A_{I} = \langle (\pi\pi)_{I} | \mathcal{H}_{\text{eff}}^{|\Delta S|=1} | K \rangle \text{ for } I = 0, 2$$

$$\operatorname{Re} A_{0}^{\exp} = (3.3201 \pm 0.0018) \times 10^{-7} \text{ GeV}, \qquad \operatorname{Re} A_{0}^{\mathrm{SM}} = (2.99 \pm 0.67) \times 10^{-7} \text{ GeV},$$

$$\operatorname{Re} A_{2}^{\exp} = (1.4787 \pm 0.0031) \times 10^{-8} \text{ GeV}. \qquad \operatorname{Re} A_{2}^{\mathrm{SM}} = (1.50 \pm 0.15) \times 10^{-8} \text{ GeV},$$

$$\operatorname{Re} A_{2}^{\mathrm{SM}} = (1.50 \pm 0.15) \times 10^{-8} \text{ GeV},$$

$$\operatorname{Re} A_{2}^{\mathrm{SM}} = (1.50 \pm 0.15) \times 10^{-8} \text{ GeV},$$

$$\operatorname{Re} A_{2}^{\mathrm{SM}} = (1.50 \pm 0.15) \times 10^{-8} \text{ GeV},$$

Implications for new physics from a novel puzzle in $\overline{B}^0_{(s)} \to D^{(*)+}_{(s)} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

 $\pm 20\%$ new physics contribution to $s \rightarrow u\bar{u}d$ amplitudes could be compatible with data

$ASU(2)_1 \times SU(2)_2 \times U(1)_V$ model

• which contains heavy vector-like quarks and heavy SU(2) gauge multiplet ٠

$$\mathcal{L} = + \frac{g_{ij}}{2} Z'_{\mu} \bar{d}^{i}_{L} \gamma^{\mu} d^{j}_{L} - \frac{\left(VgV^{\dagger}\right)_{ij}}{2} Z'_{\mu} \bar{u}^{i}_{L} \gamma^{\mu} u^{j}_{L} - \frac{\left(Vg\right)_{ij}}{\sqrt{2}} W'^{+}_{\mu} \bar{u}^{i}_{L} \gamma^{\mu} d^{j}_{L} + \text{H.c.},$$

$$g_{ij} \text{ basis is defined by the first term}$$

$$C^{q,W'}_{2} (M_{V}) = \frac{1}{4\sqrt{2}G_{F}M_{V}^{2}} \frac{\left(Vg\right)_{23}\left(Vg\right)^{*}_{1q}}{V_{cb}V^{*}_{uq}}.$$

Implications for new physics from a novel puzzle in $\overline{B}_{(s)}^0 \to D_{(s)}^{(*)+} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

- We consider an extended electroweak gauge group $SU(2)_1 \times SU(2)_2 \times U(1)_V$ model,
- After integrating out the vector-like quarks, the following effective Lagrangian is generated [Boucenna, Celis, Fuentes-Martin, Vicente, Virto, 1608.01349]

Three scenarios

Scenario1

Here, U(2) symmetry is imposed to avoid strong constraints from K- and D-meson mixings

Implications for new physics from a novel puzzle in $\overline{B}^0_{(s)} \to D^{(*)+}_{(s)} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

$$\frac{j}{\sqrt{2}} Z'_{\mu} \bar{u}_{L}^{i} \gamma^{\mu} u_{L}^{j} - \frac{(Vg)_{ij}}{\sqrt{2}} W'^{+}_{\mu} \bar{u}_{L}^{i} \gamma^{\mu} d_{L}^{j} + \text{H.c.},$$

 $g_{ij} = \begin{pmatrix} g_{11} & 0 & 0 \\ 0 & g_{11} & 0 \\ 0 & 0 & g_{22} \end{pmatrix}, \quad g_{ij} = \begin{pmatrix} g_{11} & 0 & 0 \\ 0 & g_{11} & g_{23} \\ 0 & g_{22} & 0 \end{pmatrix}, \quad g_{ij} = \begin{pmatrix} g_{11} & 0 & 0 \\ 0 & g_{11} & g_{23} \\ 0 & g_{22} & g_{22} \end{pmatrix},$

Scenario2

Scenario3

Scenario1

Implications for new physics from a novel puzzle in $\overline{B}^0_{(s)} \to D^{(*)+}_{(s)} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

[CMS 1911.03947]

Implications for new physics from a novel puzzle in $\overline{B}^0_{(s)} \to D^{(*)+}_{(s)} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

Implications for new physics from a novel puzzle in $\overline{B}^0_{(s)} \to D^{(*)+}_{(s)} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

$$\frac{C_2^{NP}(\Lambda_{NP})}{C_2^{SM}} \sim \frac{g_{11} \times g_{23}}{4\sqrt{2}G_F M_V^2 V}$$

Enhancement by $\frac{1}{V_{1}} \sim 25$

 g_{23} is saturated under the flavor constraints on this plane

Implications for new physics from a novel puzzle in $\overline{B}_{(s)}^0 \to D_{(s)}^{(*)+} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

Scenario3

Contribution to ΔM_s can be cancelled $\Delta M_s^{W'} < 0, \ \Delta M_s^{Z'} > 0$ W-W' box Z' tree level Then constraint from ΔM_d is important!

 $\Delta M_d / \Delta M_s$ would give additional bound

 $C_2(NP)/C_2(SM) \sim -0.10$

would be possible

Conclusions

• W' from an additional SU(2) can partiall amplitude by $C_2^{\rm NP}/C_2^{\rm SM} = - \mathcal{O}(10\%)$

as long as the collider constraint can be evaded.

 The more dedicated collider analysis for low-dijet mass and the broad width regime would be important to exclude such W'

Implications for new physics from a novel puzzle in $\overline{B}_{(s)}^0 \to D_{(s)}^{(*)+} \{K^-, \pi^-\}$ decays **Teppei Kitahara**: Nagoya University, Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays, April 1, 2021, online talk

W' from an additional SU(2) can partially cancel the large SM colour-allowed tree-level

Backup