NP in class-I B decays into heavy-light final states

Xin-Qiang Li

Central China Normal University

Tobias Huber, Susanne Kränkl, Xin-Qiang Li, 1606.02888

Fang-Min Cai, Wei-Jun Deng, Xin-Qiang Li, Ya-Dong Yang, 2103.04138

Mini-workshop on non-leptonic colour-allowed tree-level decays, Siegen, April 1, 2021

Outline

- **□** Brief introduction
- NNLO predictions at leading power in QCDF
- **□** Possible NP effects from four-quark operators
- **□** Summary

Why hadronic B decays

□ direct access to the CKM parameters, especially to the three angles of UT.

☐ further insight into strong-interaction effects involved in these decays.

□ Thanks to BaBar, Belle, LHCb and Belle-II, we are now entering a *precision era!*

- ☐ From the theory side, we need also keep up with the same precision.
 - very difficult but necessary!

Main theoretical issues

□ Precision theory predictions challenged by complicated strong interactions!

$$\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle = ip_\mu f_P$$

$$\langle D | \bar{c}\gamma^{\mu}b | \bar{B} \rangle \equiv f_{+}(q^{2})(p_{B} + p_{D})^{\mu} + [f_{0}(q^{2}) - f_{+}(q^{2})] \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}} q^{\mu}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}b | \bar{B} \rangle \equiv -ig(q^{2}) \epsilon^{\mu\nu\rho\sigma} \varepsilon_{\nu}^{*} (p_{B} + p_{D^{*}})_{\rho} q_{\sigma} ,$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | \bar{B} \rangle \equiv \varepsilon^{*\mu}f(q^{2}) + a_{+}(q^{2}) \varepsilon^{*} \cdot p_{B} (p_{B} + p_{D^{*}})^{\mu} + a_{-}(q^{2}) \varepsilon^{*} \cdot p_{B} q^{\mu}$$

reduced to simpler objects by factorization:

$$\mathcal{A}(\bar{B}^0 \to D^+ \pi^-) = i \frac{G_F}{\sqrt{2}} V_{cb} V_{uq}^* a_1(D^+ \pi^-) f_\pi F_0^{B \to D}(m_\pi^2)$$

develop strategies where hadronic uncertainties largely cancelled.

$$R(D^{(*)}) = \frac{Br(B \to D^{(*)}\tau\nu_{\tau})}{Br(B \to D^{(*)}\ell\nu_{\ell})}$$

$$R(K^{(*)}) = \frac{Br(B \to K^{(*)}\mu^{+}\mu^{-})}{Br(B \to K^{(*)}e^{+}e^{-})}$$

- need further progress from nonpert. methods like LQCD & LCSR.
- \blacktriangleright work out sub-leading corrections in α_s and $1/m_b$ in QCD or EFTs.
- need collaboration all together!

Effective Hamiltonian for B decays

□ Hadronic decays: the most difficult!

□ The starting point $\mathcal{H}_{eff} = -\mathcal{L}_{eff}$: obtained after integrating out the heavy d.o.f. $(m_{W,Z,t} \gg m_b)$;

[Buras, Buchalla, Lautenbacher '96; Chetyrkin, Misiak, Munz '98]

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pb} V_{pD}^* \Big(C_1 \mathcal{O}_1 + C_2 \mathcal{O}_2 + \sum_{i=\text{pen}} C_i \mathcal{O}_{i,\text{pen}} \Big)$$

■ Wilson coefficients C_i : all physics above m_b ; perturbatively calculable, and NNLL program now complete; [Gorbahn, Haisch '04]

Hadronic matrix elements

□ Decay amplitude for a given decay mode:

$$\mathcal{A}(\bar{B} \to f) = \sum_{i} \left[\lambda_{\text{CKM}} \times C \times \langle f | \mathcal{O} | \bar{B} \rangle_{\text{QCD+QED}} \right]_{i}$$

 $\square \langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$: depend on spin and parity of $M_{1,2}$; final-state re-scattering introduces strong phases, and hence direct CPV; \longrightarrow A quite difficult, multi-scale, strong-interaction problem!

□ Different methods:

- Dynamical approaches based on factorization theorems: PQCD, QCDF, SCET, · · · [Keum, Li, Sanda, Lü, Yang '00;

Beneke, Buchalla, Neubert, Sachrajda, '00;

Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02]

- Symmetries of QCD: Isospin, U-Spin, V-Spin, and flavour SU(3) symmetries, · · · [Zeppenfeld, '81;

London, Gronau, Rosner, He, Chiang, Cheng et al.]

QCDF: systematic framework to all orders in α_s , but precision limited by $1/m_b$ corrections. [BBNS '99-

QCD factorization

□ QCDF formulae for a two-body decay:

■ **SCET point of view:** SCET diagrams reproduce precisely QCD diagrams in collinear and soft momentum region; [Beneke 1501.07374]

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle = F^{BM_1}(0) \int_0^1 du \, T_i^I(u) \Phi_{M_2}(u) \quad \text{form-factor term}$$

$$+ \int_0^\infty d\omega \int_0^1 du dv \, T_i^{II}(\omega, u, v) \, \Phi_B(\omega) \Phi_{M_1}(v) \Phi_{M_2}(u)$$
spectator-scattering term

□ For hard kernel T^I : one-step matching, QCD \rightarrow SCET_I(hc, c, s)!

□ For hard kernel T^{II} : two-step matching, QCD \rightarrow SCET_I(hc, c, s) \rightarrow SCET_{II}(c, s)!

Class-I $B \rightarrow D^{(*)}L$ decays

☐ For B decays into heavy-light final states:

all four flavors different from each other, no penguin operators & no penguin topologies!

☐ For class-I decays: QCDF formulae much simpler;

[Beneke, Buchalla, Neubert, Sachrajda '99-'03; Bauer, Pirjol, Stewart '01]

$$\langle D_q^{(*)+}L^-| \mathcal{Q}_i | \bar{B}_q^0 \rangle = \sum_j F_j^{\bar{B}_q \to D_q^{(*)}} (M_L^2)$$

$$\times \int_0^1 du \, T_{ij}(u) \phi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

☐ Hard kernel T: both NLO and NNLO results known;

[Beneke, Buchalla, Neubert, Sachrajda '01; Huber, Kränkl, XQL '16]

$$egin{aligned} \mathcal{Q}_2 &= ar{d}\gamma_\mu (1-\gamma_5) u \ ar{c}\gamma^\mu (1-\gamma_5) b \ \mathcal{Q}_1 &= ar{d}\gamma_\mu (1-\gamma_5) \emph{\emph{T}}^{m{A}} u \ ar{c}\gamma^\mu (1-\gamma_5) \emph{\emph{\emph{T}}}^{m{A}} b \end{aligned}$$

- i) only color-allowed tree topology a_1 ;
- ii) spectator & annihilation power-suppressed;
- ii) annihilation even absent in $B_s^0 \to D_s^- \pi^+$ etal;
- iv) they are theoretically much cleaner!

$$T = T^{(0)} + \alpha_s T^{(1)} + \alpha_s^2 T^{(2)} + O(\alpha_s^3)$$

Calculation of T:

$$T = T^{(0)} + \alpha_s T^{(1)} + \alpha_s^2 T^{(2)} + O(\alpha_s^3)$$

□ LO:

■ NLO: [Beneke, Buchalla, Neubert, Sachrajda '01]

■ NNLO: [Huber, Kränkl, XQL '16]

O(70) two-loop two-scale non-factorizable QCD diagrams; their calculations need advanced analytical techniques! [Huber, Kränkl '15]

Calculation of T:

☐ Matching QCD onto SCET: [Huber, Kränkl, XQL '16]

 m_c is also heavy, keep m_c/m_b fixed as $m_b \to \infty$, thus needing two sets of SCET operator basis.

$$\langle \mathcal{Q}_i \rangle = \hat{T}_i \langle \mathcal{Q}^{\text{QCD}} \rangle + \hat{T}_i' \langle \mathcal{Q}^{'\text{QCD}} \rangle + \sum_{a>1} \left[H_{ia} \langle \mathcal{O}_a \rangle + H_{ia}' \langle \mathcal{O}_a' \rangle \right]$$

□ Renormalized on-shell QCD amplitudes:

$$\begin{split} \langle \mathcal{Q}_{i} \rangle &= \left\{ A_{ia}^{(0)} + \frac{\alpha_{s}}{4\pi} \left[A_{ia}^{(1)} + Z_{ext}^{(1)} A_{ia}^{(0)} + Z_{ij}^{(1)} A_{ja}^{(0)} \right] \right. \quad \text{on QCD side} \\ &+ \left(\frac{\alpha_{s}}{4\pi} \right)^{2} \left[A_{ia}^{(2)} + Z_{ij}^{(1)} A_{ja}^{(1)} + Z_{ij}^{(2)} A_{ja}^{(0)} + Z_{ext}^{(1)} A_{ia}^{(1)} + Z_{ext}^{(2)} A_{ia}^{(0)} + Z_{ext}^{(1)} Z_{ij}^{(1)} A_{ja}^{(0)} \right. \\ &+ \left. \left(-i \right) \delta m_{b}^{(1)} A_{ia}^{*(1)} + \left(-i \right) \delta m_{c}^{(1)} A_{ia}^{**(1)} + Z_{\alpha}^{(1)} A_{ia}^{(1)} \right] + \mathcal{O} \left(\alpha_{s}^{3} \right) \right\} \langle \mathcal{O}_{a} \rangle^{(0)} \\ &+ \left. \left(A \leftrightarrow A' \right) \langle \mathcal{O}_{a}' \rangle^{(0)} \,. \end{split}$$

□ Renormalized on-shell SCET amplitudes:

$$\langle \mathcal{O}_{a} \rangle = \left\{ \delta_{ab} + \frac{\hat{\alpha}_{s}}{4\pi} \left[M_{ab}^{(1)} + Y_{ext}^{(1)} \delta_{ab} + Y_{ab}^{(1)} \right] \quad \text{on SCET side} \right. \\ + \left. \left(\frac{\hat{\alpha}_{s}}{4\pi} \right)^{2} \left[M_{ab}^{(2)} + Y_{ext}^{(1)} M_{ab}^{(1)} + Y_{ac}^{(1)} M_{cb}^{(1)} + \hat{Z}_{\alpha}^{(1)} M_{ab}^{(1)} + Y_{ext}^{(2)} \delta_{ab} \right. \\ + \left. Y_{ext}^{(1)} Y_{ab}^{(1)} + Y_{ab}^{(2)} \right] + \mathcal{O}(\hat{\alpha}_{s}^{3}) \right\} \langle \mathcal{O}_{b} \rangle^{(0)} ,$$

$$\mathcal{O}_{1} = \overline{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 - \gamma_{5}) h_{v} ,$$

$$\mathcal{O}_{2} = \overline{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 - \gamma_{5}) \gamma_{\perp,\beta} \gamma_{\perp,\alpha} h_{v} ,$$

$$\mathcal{O}_{3} = \overline{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 - \gamma_{5}) \gamma_{\perp,\delta} \gamma_{\perp,\gamma} \gamma_{\perp,\beta} \gamma_{\perp,\alpha} h_{v}$$

$$\mathcal{O}'_{1} = \overline{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 + \gamma_{5}) h_{v} ,$$

$$\mathcal{O}'_{2} = \overline{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 + \gamma_{5}) \gamma_{\perp,\alpha} \gamma_{\perp,\beta} h_{v} ,$$

$$\mathcal{O}'_{3} = \overline{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 + \gamma_{5}) \gamma_{\perp,\alpha} \gamma_{\perp,\beta} \gamma_{\perp,\gamma} \gamma_{\perp,\delta} h_{v}$$

■ Master formulas for hard kernels:

$$T = T^{(0)} + \alpha_s T^{(1)} + \alpha_s^2 T^{(2)} + O(\alpha_s^3)$$

$$\begin{split} \hat{T}_i^{(0)} &= A_{i1}^{(0)} \\ \hat{T}_i^{(1)} &= A_{i1}^{(1)nf} + Z_{ij}^{(1)} A_{j1}^{(0)} \\ \hat{T}_i^{(2)} &= A_{i1}^{(2)nf} + Z_{ij}^{(1)} A_{j1}^{(1)} + Z_{ij}^{(2)} A_{j1}^{(0)} + Z_{\alpha}^{(1)} A_{i1}^{(1)nf} - \hat{T}_i^{(1)} \left[C_{FF}^{\mathrm{D}(1)} + Y_{11}^{(1)} - Z_{\mathrm{ext}}^{(1)} \right] \\ &- C_{FF}^{\mathrm{ND}(1)} \hat{T}_i^{\prime(1)} + (-i) \delta m_b^{(1)} A_{i1}^{*(1)nf} + (-i) \delta m_c^{(1)} A_{i1}^{**(1)nf} - \sum_{b \neq 1} H_{ib}^{(1)} Y_{b1}^{(1)} \,. \end{split}$$

Decay amplitudes for $B_q^0 \rightarrow D_q^- L^+$

\square Decay amplitude at leading power in $1/m_b$:

$$\mathcal{A}(\bar{B}_{(s)}^{0} \to D_{(s)}^{+}P^{-}) = i \frac{G_{F}}{\sqrt{2}} V_{cb} V_{uq}^{*} a_{1} (D_{(s)}^{+}P^{-}) f_{P} F_{0}^{B_{(s)} \to D_{(s)}} (m_{P}^{2}) \left(m_{B_{(s)}}^{2} - m_{D_{(s)}^{+}}^{2}\right),$$

$$\mathcal{A}(\bar{B}_{(s)}^{0} \to D_{(s)}^{*+}P^{-}) = -i \frac{G_{F}}{\sqrt{2}} V_{cb} V_{uq}^{*} a_{1} (D_{(s)}^{*+}P^{-}) f_{P} A_{0}^{B_{(s)} \to D_{(s)}^{*}} (m_{P}^{2}) 2m_{D_{(s)}^{*+}} (\epsilon^{*} \cdot p),$$

$$\mathcal{A}(\bar{B}_{(s)}^{0} \to D_{(s)}^{+}V^{-}) = -i \frac{G_{F}}{\sqrt{2}} V_{cb} V_{uq}^{*} a_{1} (D_{(s)}^{+}V^{-}) f_{V} F_{+}^{B_{(s)} \to D_{(s)}} (m_{V}^{2}) 2m_{V} (\eta^{*} \cdot p),$$

□ Numerical result:

$$a_1(D^+K^-) = 1.025 + [0.029 + 0.018i]_{NLO} + [0.016 + 0.028i]_{NNLO}$$

= $(1.069^{+0.009}_{-0.012}) + (0.046^{+0.023}_{-0.015})i$,

- ◆ both NLO and NNLO add always constructively to LO result!
- ◆ NNLO corrections quite small in the real (2%), but rather large in the imaginary part (60%).
- ♦ within QCDF, imaginary part appears firstly at NLO term and is color-suppressed and \propto small $C_1 = -0.29$ vs $C_2 = 1.01$.

$$a_1(D^+L^-) = \sum_{i=1}^2 C_i(\mu) \int_0^1 du \left[\hat{T}_i(u,\mu) + \hat{T}'_i(u,\mu) \right] \Phi_L(u,\mu),$$

$$a_1(D^{*+}L^-) = \sum_{i=1}^2 C_i(\mu) \int_0^1 du \left[\hat{T}_i(u,\mu) - \hat{T}'_i(u,\mu) \right] \Phi_L(u,\mu),$$

Scale dependence of a_1 $a_1 = \sum_i C_i(\mu) \int_0^1 du \left[T_i(u, \mu) + T_i'(u, \mu) \right] \Phi_{\pi}(u, \mu)$

$$\Phi_1 = \sum_i C_i(\mu) \int_0^1 du \left[T_i(u, \mu) + T_i'(u, \mu) \right] \Phi_{\pi}(u, \mu)$$

 \square Due to perturbative truncation, a_1 depends on the renormalization scale.

- blue: pole scheme for m_c and m_b
- red: MS scheme for m_c and m_b

- scale dependence @ NNLO reduced for the real part, but not so obvious for the imaginary part.
- dependence on the b- and c-quark mass scheme is quite small, especially for the real part.

$$a_1(D^+K^-) = (1.069^{+0.009}_{-0.012}) + (0.046^{+0.023}_{-0.015})i,$$

$$a_1(D^+\pi^-) = (1.072^{+0.011}_{-0.013}) + (0.043^{+0.022}_{-0.014})i,$$

$$a_1(D^{*+}K^-) = (1.068^{+0.010}_{-0.012}) + (0.034^{+0.017}_{-0.011})i,$$

$$a_1(D^{*+}\pi^-) = (1.071^{+0.012}_{-0.013}) + (0.032^{+0.016}_{-0.010})i.$$

☐ For different decay modes: quasi-universal, with small process-dep. from non-fact. correction.

Absolute branching ratios for $B_q^0 o D_q^- L^+$

\square $B \rightarrow D^{(*)}$ transition form factors:

Precision results available based on LQCD & LCSR

calculations, together with data on $B_q^0 \to D_q^- l^+ \nu$;

[Bernlochner, Ligeti, Papucci, Robinson '17; Bordone, Gubernari, Jung, van Dyk '19]

$\mathcal{A}(\bar{B}^{0}_{(s)} \to D^{+}_{(s)}P^{-}) = i \frac{G_{F}}{\sqrt{2}} V_{cb} V^{*}_{uq} a_{1}(D^{+}_{(s)}P^{-}) f_{P} F_{0}^{B_{(s)} \to D_{(s)}}(m_{P}^{2}) \left(m_{B_{(s)}}^{2} - m_{D^{+}_{(s)}}^{2}\right),$
$\mathcal{A}(\bar{B}_{(s)}^{0} \to D_{(s)}^{*+}P^{-}) = -i\frac{G_{F}}{\sqrt{2}}V_{cb}V_{uq}^{*} a_{1}(D_{(s)}^{*+}P^{-}) f_{P} A_{0}^{B_{(s)} \to D_{(s)}^{*}}(m_{P}^{2}) 2m_{D_{(s)}^{*+}}(\epsilon^{*} \cdot p),$
$\mathcal{A}(\bar{B}_{(s)}^{0} \to D_{(s)}^{+} V^{-}) = -i \frac{G_F}{\sqrt{2}} V_{cb} V_{uq}^{*} \ a_1(D_{(s)}^{+} V^{-}) f_V F_{+}^{B_{(s)} \to D_{(s)}}(m_V^2) 2m_V (\eta^* \cdot p) ,$

□ Updated predictions vs data:

[Huber, Kränkl, XQL '16; Cai, Deng, XQL, Yang '21]

 $|V_{cb}|$ and $B \to D^{(*)}$ form factors

LO	NLO	NNLO	Ref. [36]	Exp. [7, 8]
4.07	$4.32^{+0.23}_{-0.42}$	$4.43^{+0.20}_{-0.41}$	$3.93^{+0.43}_{-0.42}$	2.65 ± 0.15
3.65	$3.88^{+0.27}_{-0.41}$	$4.00_{-0.41}^{+0.25}$	$3.45^{+0.53}_{-0.50}$	2.58 ± 0.13
10.63	$11.28^{+0.84}_{-1.23}$	$11.59_{-1.21}^{+0.79}$	$10.42^{+1.24}_{-1.20}$	7.6 ± 1.2
9.99	$10.61^{+1.35}_{-1.56}$	$10.93^{+1.35}_{-1.57}$	$9.24_{-0.71}^{+0.72}$	6.0 ± 0.8
3.09	$3.28^{+0.16}_{-0.31}$	$3.38^{+0.13}_{-0.30}$	$3.01^{+0.32}_{-0.31}$	2.19 ± 0.13
2.75	$2.92^{+0.19}_{-0.30}$	$3.02^{+0.18}_{-0.30}$	$2.59_{-0.37}^{+0.39}$	2.04 ± 0.47
5.33	$5.65^{+0.47}_{-0.64}$	$5.78^{+0.44}_{-0.63}$	$5.25^{+0.65}_{-0.63}$	4.6 ± 0.8
4.10	$4.35^{+0.24}_{-0.43}$	$4.47^{+0.21}_{-0.42}$	$4.39^{+1.36}_{-1.19}$	3.03 ± 0.25
3.12	$3.32^{+0.17}_{-0.32}$	$3.42^{+0.14}_{-0.31}$	$3.34^{+1.04}_{-0.90}$	1.92 ± 0.22
	4.07 3.65 10.63 9.99 3.09 2.75 5.33 4.10	$4.07 4.32_{-0.42}^{+0.23}$ $3.65 3.88_{-0.41}^{+0.27}$ $10.63 11.28_{-1.23}^{+0.84}$ $9.99 10.61_{-1.56}^{+1.35}$ $3.09 3.28_{-0.31}^{+0.16}$ $2.75 2.92_{-0.30}^{+0.19}$ $5.33 5.65_{-0.64}^{+0.47}$ $4.10 4.35_{-0.43}^{+0.24}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Non-leptonic/semi-leptonic ratios

■ Non-leptonic/semi-leptonic ratios: [Bjorken '89; Neubert, Stech '97; Beneke, Buchalla, Neubert, Sachrajda '01]

$$R_{(s)L}^{(*)} \equiv \frac{\Gamma(\bar{B}_{(s)}^{0} \to D_{(s)}^{(*)+}L^{-})}{d\Gamma(\bar{B}_{(s)}^{0} \to D_{(s)}^{(*)+}\ell^{-}\bar{\nu}_{\ell})/dq^{2} \left[q^{2} = m_{L}^{2}\right]} = 6\pi^{2} |V_{uq}|^{2} f_{L}^{2} |a_{1}(D_{(s)}^{(*)+}L^{-})|^{2} X_{L}^{(*)}$$

□ Updated predictions vs data: [Huber, Kränkl, XQL '16; Cai, Deng, XQL, Yang '21]

$R_{(s)L}^{(*)}$	LO	NLO	NNLO	Exp.	Deviation (σ)	
R_{π}	1.01	$1.07^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.74 ± 0.06	5.4	
R_{π}^*	1.00	$1.06^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.80 ± 0.06	4.5	
$R_{ ho}$	2.77	$2.94^{+0.19}_{-0.19}$	$3.02^{+0.17}_{-0.18}$	2.23 ± 0.37	1.9	
R_K	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.62 ± 0.05	4.4	
R_K^*	0.72	$0.76^{+0.03}_{-0.03}$	$0.79_{-0.02}^{+0.01}$	0.60 ± 0.14	1.3	
R_{K^*}	1.41	$1.50^{+0.11}_{-0.11}$	$1.53_{-0.10}^{+0.10}$	1.38 ± 0.25	0.6	
$R_{s\pi}$	1.01	$1.07^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.72 ± 0.08	4.4	
R_{sK}	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.46 ± 0.06	6.3	

free from uncertainties from

 $|V_{cb}| \& B \rightarrow D^{(*)}$ form factors.

Measurement of $|V_{cb}|$ with $B_s^0 o D_s^{(*)-} \mu^+
u_\mu$ decays

2001.03225

LHCb collaboration[†]

Power corrections

☐ Sources of sub-leading power corrections: [Beneke,

Buchalla, Neubert, Sachrajda '01; Bordone, Gubernari, Huber, Jung, van Dyk '20]

Non-factorizable spectator interactions;

☐ Scaling of the leading-power contribution: [BBNS '01]

$$\mathcal{A}(\bar{B}_d \to D^+\pi^-) \sim G_F m_b^2 F^{B\to D}(0) f_\pi \sim G_F m_b^2 \Lambda_{\rm QCD}$$

Annihilation topologies;

Non-leading Fock-state contributions;

- Based on general power counting and rough ESTIMATES, all are power-suppressed!
- Current data could not be easily explained within the SM, at least within QCDF.

Possible NP in $B_q^0 \rightarrow D_q^- L^+$?

□ Impossible or at least quite difficult to explain the data within the SM.

□ Possible NP four-quark operators with different Dirac structures: [Buras, Misiak, Urban '00]

$$\mathcal{L}_{\text{WET}} = -\frac{4G_F}{\sqrt{2}} V_{cb} V_{uq}^* [\mathcal{C}_1^{SM}(\mu) \mathcal{Q}_1^{SM} + \mathcal{C}_2^{SM}(\mu) \mathcal{Q}_2^{SM} \qquad \text{SM current-current operators} \\ + \sum_{\substack{i=1,2;\\j=1,2,3,4.}} (\mathcal{C}_i^{VLL} \mathcal{Q}_i^{VLL} + \mathcal{C}_i^{VLR} \mathcal{Q}_i^{VLR} + \mathcal{C}_i^{SLR} \mathcal{Q}_i^{SLR} + \mathcal{C}_j^{SLL} \mathcal{Q}_j^{SLL})] + [L \leftrightarrow R] \\ \mathcal{Q}_1^{VLL} = \left(\overline{c}_{\alpha} \gamma^{\mu} P_L b_{\beta}\right) \left(\overline{q}_{\beta} \gamma_{\mu} P_L u_{\alpha}\right) \qquad \qquad \mathcal{Q}_1^{VLR} = \left(\overline{c}_{\alpha} \gamma^{\mu} P_L b_{\beta}\right) \left(\overline{q}_{\beta} \gamma_{\mu} P_R u_{\alpha}\right) \\ \mathcal{Q}_2^{VLL} = \left(\overline{c}_{\alpha} \gamma^{\mu} P_L b_{\alpha}\right) \left(\overline{q}_{\beta} \gamma_{\mu} P_L u_{\beta}\right) \qquad \qquad \mathcal{Q}_2^{VLR} = \left(\overline{c}_{\alpha} \gamma^{\mu} P_L b_{\alpha}\right) \left(\overline{q}_{\beta} \gamma_{\mu} P_R u_{\beta}\right) \\ \mathcal{Q}_2^{SLL} = \left(\overline{c}_{\alpha} P_L b_{\beta}\right) \left(\overline{q}_{\beta} P_L u_{\alpha}\right) \qquad \qquad \mathcal{Q}_2^{SLR} = \left(\overline{c}_{\alpha} P_L b_{\beta}\right) \left(\overline{q}_{\beta} P_R u_{\alpha}\right) \\ \mathcal{Q}_3^{SLL} = \left(\overline{c}_{\alpha} \sigma^{\mu\nu} P_L b_{\beta}\right) \left(\overline{q}_{\beta} \sigma_{\mu\nu} P_L u_{\alpha}\right) \qquad \qquad \text{totally 20 linearly-independent operators,} \\ \mathcal{Q}_4^{SLL} = \left(\overline{c}_{\alpha} \sigma^{\mu\nu} P_L b_{\alpha}\right) \left(\overline{q}_{\beta} \sigma_{\mu\nu} P_L u_{\beta}\right) \qquad \qquad \text{further split into 8 separate sectors!}$$

Possible sources of these NP operators

□ For VLL, VRR, VLR, VRL sectors: generated by a colorless charged gauge boson A+;

$$i\frac{g_2}{\sqrt{2}}V_{ij}\gamma^{\mu}\delta_{\alpha\beta}\left[\Delta_{ij}^L(A)P_L + \Delta_{ij}^R(A)P_R\right]$$

$$\mathcal{H}_{\text{eff}}^{\text{gauge}} = \frac{G_F}{\sqrt{2}} V_{cb} V_{uq}^* \left\{ \lambda_{LL}(A) \left[C_1^{VLL}(\mu) Q_1^{VLL}(\mu) + C_2^{VLL}(\mu) Q_2^{VLL}(\mu) \right] + \lambda_{LR}(A) \left[C_1^{VLR}(\mu) Q_1^{VLR}(\mu) + C_2^{VLR}(\mu) Q_2^{VLR}(\mu) \right] + (L \leftrightarrow R) \right\}$$

$$\lambda_{LL}(A) = \frac{m_W^2}{m_A^2} \, \Delta_{cb}^L(A) \, \left(\Delta_{uq}^L(A)\right)^*, \qquad \lambda_{LR}(A) = \frac{m_W^2}{m_A^2} \, \Delta_{cb}^L(A) \, \left(\Delta_{uq}^R(A)\right)^*$$

□ For SLL, SRR, SLR, SRL sectors: generated by a colorless charged scalar H⁺;

$$i\frac{g_2}{\sqrt{2}}V_{ij}\delta_{\alpha\beta}\left[\Delta_{ij}^L(H)P_L + \Delta_{ij}^R(H)P_R\right]$$

$$\mathcal{H}_{\text{eff}}^{\text{scalar}} = -\frac{G_F}{\sqrt{2}} V_{cb} V_{uq}^* \left\{ \lambda_{LL}(H) \left[C_1^{SLL}(\mu) Q_1^{SLL}(\mu) + C_2^{SLL}(\mu) Q_2^{SLL}(\mu) + C_3^{SLL}(\mu) Q_3^{SLL}(\mu) + C_4^{SLL}(\mu) Q_4^{SLL}(\mu) \right] + \lambda_{LR}(H) \left[C_1^{SLR}(\mu) Q_1^{SLR}(\mu) + C_2^{SLR}(\mu) Q_2^{SLR}(\mu) \right] + (L \leftrightarrow R) \right\}$$

$$\lambda_{LL}(H) = \frac{m_W^2}{m_H^2} \, \Delta_{cb}^L(H) \, \left(\Delta_{uq}^L(H)\right)^* \,, \qquad \lambda_{LR}(H) = \frac{m_W^2}{m_H^2} \, \Delta_{cb}^L(H) \, \left(\Delta_{uq}^R(H)\right)^*$$

Possible sources of these NP operators

☐ Both 1-loop matching conditions & 2-loop QCD ADMs known; [Buras, Misiak, Urban '00; Buras, Girrbach '12]

$$C_1^{\rm SLR}(\mu) = 3 \frac{\alpha_s}{4\pi} \,,$$

$$C_2^{\rm SLR}(\mu) = 1 - \frac{\alpha_s}{4\pi} \frac{3}{N} = 1 - \frac{\alpha_s}{4\pi},$$

$$C_1^{\mathrm{SLL}}(\mu) = 0\,,$$

a colorless charged

$$C_2^{\mathrm{SLL}}(\mu) = 1\,,$$

scalar H+.

$$C_3^{\rm SLL}(\mu) = \frac{\alpha_s}{4\pi} \left(-\frac{1}{2} \log \frac{M_H^2}{\mu^2} + \frac{3}{4} \right) ,$$

$$C_4^{\text{SLL}}(\mu) = \frac{\alpha_s}{4\pi} \left(\frac{1}{2N} \log \frac{M_H^2}{\mu^2} - \frac{3}{4N} \right) = \frac{\alpha_s}{4\pi} \left(\frac{1}{6} \log \frac{M_H^2}{\mu^2} - \frac{1}{4} \right) .$$

\square RG evolution from down m_A to m_b ;

[Buras, Misiak, Urban '00; Buras, Girrbach '12]

$$\vec{C}(\mu_b) = \left(\mathbb{1} + \frac{\alpha_s(\mu_b)}{4\pi}\hat{J}\right)\hat{U}^{(0)}(\mu_b, \mu_{\rm in})\left(\mathbb{1} - \frac{\alpha_s(\mu_{\rm in})}{4\pi}\left(\vec{C}_1 + \hat{J}\vec{C}_0\right)\right)$$

$$\hat{U}^{(0)}(\mu_b, \mu_{\rm in}) = \hat{V} \left(\left[\frac{\alpha_s(\mu_{\rm in})}{\alpha_s(\mu_b)} \right]^{\frac{\vec{\gamma}^{(0)}}{2\beta_0}} \right)_D \hat{V}^{-1}$$

$$C_1^{\text{VLL}}(\mu) = \frac{\alpha_s}{4\pi} \left(-3 \log \frac{M_A^2}{\mu^2} + \frac{11}{2} \right) ,$$

$$C_2^{\text{VLL}}(\mu) = 1 + \frac{\alpha_s}{4\pi} \left(\frac{3}{N} \log \frac{M_A^2}{\mu^2} - \frac{11}{2N} \right) = 1 + \frac{\alpha_s}{4\pi} \left(\log \frac{M_A^2}{\mu^2} - \frac{11}{6} \right) ,$$

$$C_1^{\text{VLR}}(\mu) = \frac{\alpha_s}{4\pi} \left(3\log \frac{M_A^2}{\mu^2} + \frac{1}{2} \right) ,$$

a colorless charged

gauge boson A+.

$$C_2^{\text{VLR}}(\mu) = 1 + \frac{\alpha_s}{4\pi} \left(-\frac{3}{N} \log \frac{M_A^2}{\mu^2} - \frac{1}{2N} \right) = 1 + \frac{\alpha_s}{4\pi} \left(-\log \frac{M_A^2}{\mu^2} - \frac{1}{6} \right) .$$

Matrix elements of NP operators

 \square NP Wilson coefficients easily obtained at NLO in α_s ;

[Buras, Misiak, Urban '00; Buras, Girrbach '12]

$$\vec{C}(\mu_b) = \left(\mathbb{1} + \frac{\alpha_s(\mu_b)}{4\pi}\hat{J}\right)\hat{U}^{(0)}(\mu_b, \mu_{\rm in})\left(\mathbb{1} - \frac{\alpha_s(\mu_{\rm in})}{4\pi}\left(\vec{C}_1 + \hat{J}\vec{C}_0\right)\right)$$

 \square $\langle D^+L^-|\mathcal{O}_i|\overline{B}{}^0\rangle$: calculated in QCDF at leading-power in $1/m_b$, but including $\mathcal{O}(\alpha_s)$ vertex correction.

unphysical scale- & scheme-dependences cancelled in the final decay amplitude.

Model-independent analysis

 \square NP C_i^{NP} : real and take a CKM-like flavor structure for $b \to c\overline{u}d$ and $b \to c\overline{u}s$ transitions.

$$\mathcal{L}_{\mathsf{WET}} = -\frac{4G_F}{\sqrt{2}} V_{cb} V_{uq}^* [\mathcal{C}_1^{SM}(\mu) \mathcal{Q}_1^{SM} + \mathcal{C}_2^{SM}(\mu) \mathcal{Q}_2^{SM} + \sum_{\substack{i = 1, 2; \\ j = 1, 2, 3, 4.}} (\mathcal{C}_i^{VLL} \mathcal{Q}_i^{VLL} + \mathcal{C}_i^{VLR} \mathcal{Q}_i^{VLR} + \mathcal{C}_i^{SLR} \mathcal{Q}_i^{SLR} + \mathcal{C}_j^{SLL} \mathcal{Q}_j^{SLL})] + L \leftrightarrow R$$

\square Use 8 ratios to constrain C_i^{NP} ;

■ Note: different modes show different

$R_{(s)L}^{(*)}$	LO	NLO	NNLO	Exp.	Deviation (σ)	
R_{π}	1.01	$1.07^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.74 ± 0.06	5.4	
R_{π}^*	1.00	$1.06_{-0.04}^{+0.04}$	$1.10^{+0.03}_{-0.03}$	0.80 ± 0.06	4.5	
$R_{ ho}$	2.77	$2.94^{+0.19}_{-0.19}$	$3.02^{+0.17}_{-0.18}$	2.23 ± 0.37	1.9	
R_K	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.62 ± 0.05	4.4	
R_K^*	0.72	$0.76^{+0.03}_{-0.03}$	$0.79_{-0.02}^{+0.01}$	0.60 ± 0.14	1.3	
R_{K^*}	1.41	$1.50^{+0.11}_{-0.11}$	$1.53_{-0.10}^{+0.10}$	1.38 ± 0.25	0.6	
$R_{s\pi}$	1.01	$1.07^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.72 ± 0.08	4.4	
R_{sK}	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.46 ± 0.06	6.3	

dependences on NP WCs!

$$\langle \pi^-(q)|\bar{d}\gamma_\mu\gamma_5u|0\rangle = -if_\pi q_\mu$$

$$\langle \rho^{-}(q)|\bar{d}\gamma_{\mu}u|0\rangle = -if_{\rho}m_{\rho}\epsilon_{\mu}^{*}$$

$$\langle D^+|\bar{c}\phi b|\bar{B}^0\rangle = (m_B^2 - m_D^2)F_0^{B\to D}(q^2)$$

$$\langle D^{*+}|\bar{c}q\gamma_5b|\bar{B}^0\rangle = 2m_{D^*}(\epsilon^*\cdot q)A_0^{B\to D^*}(q^2)$$

 \square Keep only C_2^{VLL} nonzero;

SM: $C_1(m_b) = -0.143 \text{ and } C_2(m_b) = 1.058$

 \square Keep only C_2^{SRL} nonzero;

SM: $C_1(m_b) = -0.143$ and $C_2(m_b) = 1.058$

 \square Keep only C_2^{SRR} nonzero;

SM: $C_1(m_b) = -0.143 \text{ and } C_2(m_b) = 1.058$

R_K	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.62 ± 0.05	4.4
R_{sK}	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.46 ± 0.06	6.3

\square With only one NP C_i^{NP} in each time, NP four-quark operators with three Dirac structures;

N	C.L.\Obs.	C.L.	R_{π}	R_{π}^*	$R_{ ho}$	R_K	R_K^*	R_{K^*}	$R_{s\pi}$	R_{sK}	Combined
	C_1^{VLL}	1σ	[-1.40,-0.847]	[-1.18,-0.626]	[-1.50,-0.267]	[-1.18,-0.662]	[-1.54,-0.145]	[-1.05,0.392]	[-1.57,-0.835]	[-2.12,-1.31]	Ø
	C_1	2σ	[-1.63,-0.656]	[-1.41,-0.426]	[-2.06,0.135]	[-1.42,-0.462]	[-2.41,0.402]	[-1.70,0.856]	[-1.92,-0.567]	[-2.55,-1.02]	[-1.41,-1.02]
	C_2^{VLL}	1σ	[-0.237,-0.148]	[-0.205,-0.111]	[-0.254,-0.047]	[-0.198,-0.116]	[-0.261,-0.026]	[-0.183,0.070]	[-0.264,-0.146]	[-0.345,-0.226]	Ø
	C_2	2σ	[-0.273,-0.115]	[-0.244,-0.075]	[-0.340,0.024]	[-0.237,-0.081]	[-0.401,0.071]	[-0.288,0.155]	[-0.318,-0.099]	[-0.406,-0.176]	[-0.237,-0.176]
	C_1^{SRR}	1σ	[-0.748,-0.418]	[-1.03,-0.502]	Ø	[-0.711,-0.368]	[-1.50,-0.133]	R	[-0.839,-0.412]	[-1.25,-0.712]	Ø
	C_1	2σ	[-0.867,-0.326]	[-1.23,-0.344]	R	[-0.854,-0.259]	[-2.32,0.395]	R	[-1.02,-0.283]	[-1.48,-0.556]	[-0.854,-0.556]
	C_2^{SRR}	1σ	[-0.249,-0.139]	[-0.343,-0.167]	Ø	[-0.237,-0.123]	[-0.500,-0.044]	R	[-0.280,-0.137]	[-0.417,-0.237]	Ø
	C_2	2σ [[-0.289,-0.109]	[-0.410,-0.115]	R	[-0.285,-0.086]	[-0.773,0.132]	R	[-0.339,-0.094]	[-0.492,-0.185]	[-0.285,-0.185]
	C_1^{SRL}	1σ	[0.487,0.873]	[0.585,1.20]	Ø	[0.429,0.829]	[0.155,1.75]	R	[0.480,0.979]	[0.830,1.46]	Ø
	C_1	2σ	[0.381,1.01]	[0.401,1.44]	R	[0.302,0.996]	[-0.460,2.71]	R	[0.330,1.18]	[0.648,1.72]	[0.648,0.996]
	C_2^{SRL}	1σ	[0.139,0.249]	[0.167,0.343]	Ø	[0.123,0.237]	[0.044,0.500]	R	[0.137,0.280]	[0.237,0.416]	Ø
	C_2	2σ	[0.109,0.289]	[0.115,0.410]	R	[0.086,0.285]	[-0.132,0.773]	R	[0.094,0.339]	[0.185, 0.492]	[0.185,0.285]

$$\mathcal{Q}_{1,2}^{VLL} = \overline{c}_{\alpha} \gamma_{\mu} (1 - \gamma_{5}) b_{\beta(\alpha)} \, \overline{q}_{\beta} \gamma^{\mu} (1 - \gamma_{5}) u_{\alpha(\beta)}$$

$$(V - A) \otimes (V - A)$$

$$\mathcal{Q}_{1,2}^{SRL} = \overline{c}_{\alpha} (1 + \gamma_{5}) b_{\beta(\alpha)} \, \overline{q}_{\beta} (1 - \gamma_{5}) u_{\alpha(\beta)}$$

$$(S + P) \otimes (S - P)$$

$$\mathcal{Q}_{1,2}^{SRR} = \overline{c}_{\alpha} (1 + \gamma_{5}) b_{\beta(\alpha)} \, \overline{q}_{\beta} (1 + \gamma_{5}) u_{\alpha(\beta)}$$

$$(S + P) \otimes (S + P)$$

- \triangleright Constraints on C_2^{NP} much
 - stronger than on C_1^{NP} :
 - C_1^{NP} suppressed by $1/N_C$
 - at LO and further by
 - $C_F/4\pi$ at NLO in QCDF;

- Pseudo-)scalar operators associated with a chirally-enhanced factor $\frac{2m_L^2}{(m_b \pm m_c)(m_u + m_{d,s})}$;
- > NP operators with other Dirac structures already ruled out by combined constraints from eight ratios;

□ Two NP operators with the same Dirac but different color structures;

$$C_2^{NP} + C_1^{NP}/N_C$$

- \triangleright Due to partial cancellation between $C_2^{NP} \& C_1^{NP}$, allowed regions potentially larger than in previous case.
- For NP operators with other Dirac structures, no allowed regions even at the 2σ level.

□ Variable solutions: NP four-quark operators with the following three Dirac structures;

$$Q_{1,2}^{SRL} = \overline{c}_{\alpha}(1+\gamma_5)b_{\beta(\alpha)}\,\overline{q}_{\beta}(1-\gamma_5)u_{\alpha(\beta)}$$

$$(S+P)\otimes(S-P)$$

$$Q_{1,2}^{SRR} = \overline{c}_{\alpha}(1 + \gamma_5)b_{\beta(\alpha)}\,\overline{q}_{\beta}(1 + \gamma_5)u_{\alpha(\beta)}$$

$$(S + P) \otimes (S + P)$$

What implications for the NP Wilson coefficients at the higher scale m_W ?

 \square With RG evolutions for C_i^{NP} taken into account, the following regions obtained:

$$C_2^{VLL}(M_W) \in [-0.220, -0.164]$$
 vs

$$C_2^{VLL}(m_b) \in [-0.237, -0.176]$$

→ small RG evolution effect!

$$C_2^{SRL}(m_W) \in [0.091, 0.139]$$

$$C_2^{SRL}(m_b) \in [0.185, 0.285]$$

$$C_2^{SRR}(m_W) \in [-0.129, -0.084]$$

$$C_2^{SRR}(m_b) \in [-0.285, -0.185]$$

→ large RG evolution effect!

Case with a colorless gauge boson

☐ Heff mediated by a colorless charged gauge boson A+;

$$\mathcal{H}_{\text{eff}}^{\text{gauge}} = \frac{G_F}{\sqrt{2}} V_{cb} V_{uq}^* \left\{ \lambda_{LL}(A) \left[C_1^{VLL}(\mu) Q_1^{VLL}(\mu) + C_2^{VLL}(\mu) Q_2^{VLL}(\mu) \right] + \lambda_{LR}(A) \left[C_1^{VLR}(\mu) Q_1^{VLR}(\mu) + C_2^{VLR}(\mu) Q_2^{VLR}(\mu) \right] + (L \leftrightarrow R) \right\}$$

$$\lambda_{LL}(A) = \frac{m_W^2}{m_A^2} \, \Delta_{cb}^L(A) \, \left(\Delta_{uq}^L(A)\right)^*, \qquad \lambda_{LR}(A) = \frac{m_W^2}{m_A^2} \, \Delta_{cb}^L(A) \, \left(\Delta_{uq}^R(A)\right)^*$$

$$i\frac{g_2}{\sqrt{2}}V_{ij}\gamma^{\mu}\delta_{\alpha\beta}\left[\Delta_{ij}^L(A)P_L + \Delta_{ij}^R(A)P_R\right]$$

\square With $m_A=1$ TeV, 1- & 2-loop ADMs and 1-loop matching conditions: [Buras, Misiak, Urban '00; Buras,

Girrbach '12]

$$\vec{C}(\mu_b) = \hat{U}(\mu_b, \mu_W) \, \hat{U}(\mu_W, \mu_0) \, \vec{C}(\mu_0)$$

$$\lambda_{LL}(A) \in [-0.211, -0.154]$$

A+ coupling to quarks either vectorial or axial-vectorial!

$$ightharpoonup$$
 Scenario II: $\Delta_{cb}^L(A) = \Delta_{cb}^R(A)$, $\Delta_{uq}^L(A) = \Delta_{uq}^R(A)$; \longrightarrow $\lambda_{LL}(A) = \lambda_{RR}(A) = \lambda_{LR}(A) = \lambda_{RL}(A)$

$$ightharpoonup$$
 Scenario III: $\Delta_{cb}^L(A) = -\Delta_{cb}^R(A)$, $\Delta_{uq}^L(A) = -\Delta_{uq}^R(A)$; \longrightarrow $\lambda_{LL}(A) = \lambda_{RR}(A) = -\lambda_{LR}(A) = -\lambda_{RL}(A)$

Case with a colorless gauge boson

 \square Scenario I: only $\lambda_{LL}(A)$ nonzero;

Case with a colorless gauge boson

 \square Scenario I: only $\lambda_{RR}(A)$ nonzero;

Case with a colorless scalar

□ Heff mediated by a colorless charged scalar H⁺;

$$\mathcal{H}_{\text{eff}}^{\text{scalar}} = -\frac{G_F}{\sqrt{2}} V_{cb} V_{uq}^* \left\{ \lambda_{LL}(H) \left[C_1^{SLL}(\mu) Q_1^{SLL}(\mu) + C_2^{SLL}(\mu) Q_2^{SLL}(\mu) + C_3^{SLL}(\mu) Q_3^{SLL}(\mu) + C_4^{SLL}(\mu) Q_4^{SLL}(\mu) \right] \right\}$$

$$i\frac{g_2}{\sqrt{2}}V_{ij}\delta_{\alpha\beta}\left[\Delta_{ij}^L(H)P_L + \Delta_{ij}^R(H)P_R\right]$$

$$+ \lambda_{LR}(H) \left[C_1^{SLR}(\mu) Q_1^{SLR}(\mu) + C_2^{SLR}(\mu) Q_2^{SLR}(\mu) \right] + (L \leftrightarrow R) \right\}^{\lambda_{LL}(H)} = \frac{m_W^2}{m_H^2} \Delta_{cb}^L(H) \left(\Delta_{uq}^L(H) \right)^*, \quad \lambda_{LR}(H) = \frac{m_W^2}{m_H^2} \Delta_{cb}^L(H) \left(\Delta_{uq}^L(H) \right)^*$$

$$\lambda_{LL}(H) = \frac{m_W^2}{m_H^2} \, \Delta_{cb}^L(H) \, \left(\Delta_{uq}^L(H) \right)^* \,, \qquad \lambda_{LR}(H) = \frac{m_W^2}{m_H^2} \, \Delta_{cb}^L(H) \, \left(\Delta_{uq}^R(H) \right)^*$$

\square With $m_H = 1$ TeV, 1- & 2-loop ADMs and 1-loop matching conditions: [Buras, Misiak, Urban '00; Buras,

Girrbach '12]

$$\vec{C}(\mu_b) = \hat{U}(\mu_b, \mu_W) \, \hat{U}(\mu_W, \mu_0) \, \vec{C}(\mu_0)$$

 $\lambda_{RL}(H) \in [0.059, 0.100]$

□ 4 NP parameters:
$$\lambda_{LL}(H)$$
, $\lambda_{LR}(H)$, $\lambda_{RR}(H)$, $\lambda_{RL}(H)$;

 $\lambda_{RR}(H) \in [-0.090, -0.054]$

> Scenario I: only one effective coefficient nonzero;

H⁺ coupling to quarks either scalar or pseudo-scalar!

$$ightharpoonup$$
 Scenario II: $\Delta_{cb}^L(H) = \Delta_{cb}^R(H)$, $\Delta_{uq}^L(H) = \Delta_{uq}^R(H)$; \longrightarrow $\lambda_{LL}(H) = \lambda_{RR}(H) = \lambda_{LR}(H) = \lambda_{RL}(H)$

$$ightharpoonup$$
 Scenario III: $\Delta_{cb}^L(H) = -\Delta_{cb}^R(H)$, $\Delta_{uq}^L(H) = -\Delta_{uq}^R(H)$; $\longrightarrow \lambda_{LL}(H) = \lambda_{RR}(H) = -\lambda_{LR}(H) = -\lambda_{RL}(H)$

Case with a colorless scalar

□ Scenario I: only $\lambda_{RL}(H)$ nonzero;

Case with a colorless scalar

□ Scenario I: only $\lambda_{RR}(H)$ nonzero;

Summary

- \square NNLO predictions for class-I $B_q^0 \to D_q^- L^+$ decays at leading power within QCDF complete.
- \square Thanks to improved measurements and updated SM predictions, $O(4-5\sigma)$ discrepancies sub-leading power corrections in QCDF or possible NP beyond the SM?
- □ Model-indep. analysis reveals that only NP operators with 3 Dirac structures possible:

$$Q_{1,2}^{VLL} = \overline{c}_{\alpha} \gamma_{\mu} (1 - \gamma_5) b_{\beta(\alpha)} \, \overline{q}_{\beta} \gamma^{\mu} (1 - \gamma_5) u_{\alpha(\beta)}$$

$$(V-A)\otimes (V-A)$$

$$Q_{1,2}^{SRL} = \overline{c}_{\alpha}(1+\gamma_5)b_{\beta(\alpha)}\,\overline{q}_{\beta}(1-\gamma_5)u_{\alpha(\beta)} \qquad Q_{1,2}^{SRR} = \overline{c}_{\alpha}(1+\gamma_5)b_{\beta(\alpha)}\,\overline{q}_{\beta}(1+\gamma_5)u_{\alpha(\beta)}$$

$$(S+P)\otimes (S-P)$$

$$Q_{1,2}^{SRR} = \overline{c}_{\alpha}(1+\gamma_5)b_{\beta(\alpha)}\,\overline{q}_{\beta}(1+\gamma_5)u_{\alpha(\beta)}$$

$$(S+P)\otimes (S+P)$$

generated by a colorless charged gauge boson or by a colorless charged scalar.

□ Once additional flavor-university assumptions were made, how about constraints from other $b \to c\overline{c}d(s)$ and $b \to d(s)q\overline{q}$ processes? see the following talks

Thank You for your attention!

For questions, email me:

xqli@mail.ccnu.edu.cn