
Random number generation in massivelly parallel platforms for
CORSIKA 8

An iterator and counter-based approach

A. Augusto Alves Jr

Presented at 3rd CORSIKA 8 Parallelism & Performance Meeting - KIT, Karlshuhe
March 25, 2021

1/15

Conventional pseudorandom number generators

• Most of the conventional pseudorandom number generators (PRNGs) scale poorly on
massively parallel platforms (modern CPUs and GPUs).

• Inherently sequential algorithms:
si+1 = f (si),

where si is the i-th PRNG state.

• The statistical properties of the generated numbers are dependent on the function f and
of the size of si in bits. Usually f needs to be complicated and si large.

• PRNGs can be deployed in parallel workloads following two approaches: multistream and
substream.

• Both approaches are problematic due pressure on memory, impossibility to jump into far
away states skipping the intermediate ones, correlations between streams.

2/15

Counter-based pseudorandom number generators

The so called “counter-based pseudorandom number generator” (CBPRNG) produces sequences
of pseudorandom numbers following the equation

xn = g(n),

where g is a bijection and n a counter. Basic features:

• High quality output.

• Very efficient. Actually, it allows trade-off performance for efficiency in a transparent way.

• Have null or low pressure on memory since they can be implemented in a stateless fashion.

• Very suitable for parallelism, since they allow to jump directly to an arbitrary sequence
member in constant time.

3/15

Categories of CBPRNGs

• Cipher-based generators:
• ARS (Advanced Randomization System) is based on the AES cryptographic block cipher

and relies on AES-NI.
• Threefry is based on Threefish a cryptographic block cipher and relies only on common

bitwise operators and integer addition.

• Non-cryptographic bijective transformation generators:
• Philox. Deploys a non-cryptographic bijection based on multiplication instructions

computing the high and low halves of operands to produce wider words.
• Squares. This algorithm is derived using ideas from “Middle Squares” algorithm, originally

discussed by Von Neuman, coupled with Weyl sequences. Three or four rounds of squaring
are enough to achieve high statistical quality. Squares implementation here is original and
supports 128 bit counters with 64 bit output.

The current implementation uses ARS, Threefry and Philox from Random123 library. Squares
implementation is native. 4/15

https://www.deshawresearch.com/resources_random123.html

Iterator-based design for parallelism

Iterators are a generalization of pointers and constitutes the basic interface connecting all STL
containers with algorithms.

• Iterators are lightweight objects that can be copied with insignificant computing costs.

• Iterator-based designs very convenient for parallelism.

• A very popular choice for implementing designs based on lazy evaluation.

These features considered all together make an iterator-pair idiom the natural design choice for
handling the counters and the CBPRNG output, in combination with lazy-evaluation to avoid
pressure on memory and unnecessary calculations. The current implementation uses iterators
from TBB library.

5/15

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-threading-building-blocks-onetbb.html

Iterator-based API

The streams are represented by
Stream<Distribution, Engine> class:

• It is thread-safe and handles multistream
and substream parallelism.

• Produces pseudorandom numbers
distributed according with Distribution

template parameter.

• Handles 232 streams with length 264 ,
corresponding to 2048 PB of data, in
uint64_t output mode.

• Compatible with C++ standard
distributions.

1 template<typename Distribution, typename Engine>
2 class Stream
3 {
4 public:
5
6 //constructor
7 Stream(Distribution const& dist, uint64_t seed, uint32_t stream);
8
9 //stl-like iterators

10 iterator_type begin() const;
11 iterator_type end() const;
12
13 //increment and decrement operators
14 iterator_type operator--() const;
15 iterator_type operator++() const;
16
17 //access operators
18 return_type operator[](size_t n) const;
19 return_type operator()(void);
20 return_type operator()(size_t);
21 return_type operator*(void) const;
22 };

6/15

Example 1: iterating over streams

Creating and iterating over uniform and exponential streams:

1 #include <random_iterator/Stream.hpp>
2 #include <random>
3 ...
4 //generator
5 random_iterator::squares3_128 RNG(0x548c9decbce65295);
6 //std distributions
7 std::uniform_real_distribution<double> uniform_dist(0.0, 1.0);
8 std::exponential_distribution<double> exponential_dist(1.0);
9 //streams

10 auto uniform_stream = random_iterator::make_stream(uniform_dist, RNG, 0);
11 auto exponential_stream = random_iterator::make_stream(exponential_dist, RNG, 1);
12
13 //this will run forever
14 for(auto unf : uniform_stream){
15 for(auto exp : exponential_stream) {
16 std::cout << unf << ", " << exp << std::endl;
17 }
18 }
19 ...

7/15

Example 2: full random access

1 #include <random_iterator/Stream.hpp>
2 #include <random>
3 ...
4 //generators
5 random_iterator::squares3_128 RNG1(0x548c9decbce65295);
6 //std distributions
7 std::uniform_real_distribution<double> uniform_dist(0.0, 1.0);
8 std::exponential_distribution<double> exponential_dist(1.0);
9 //streams

10 auto uniform_stream = random_iterator::make_stream(uniform_dist, RNG1, 0);
11 auto exponential_stream = random_iterator::make_stream(exponential_dist, RNG1, 1);
12
13 //secondary generator
14 random_iterator::philox RNG2(0x148c9decade547892);
15 std::uniform_int_distribution<uint64_t> uint_dist(RNG.min(), RNG.max());
16 auto uint_stream = random_iterator::make_stream(uint_dist, RNG2, 0);
17
18 //this will run quickly
19 for(size_t i; i< 1024 ; ++i)
20 std::cout << uniform_stream[uint_dist[i]] << ", "
21 << exponential_stream[uint_dist[i]]
22 << std::endl;
23 ...

8/15

Statistical tests

• The CBPRNGs pass all the pre-defined statistical test batteries in TestU01, which includes
SmallCrush (10 tests, 16 p-values), Crush (96 tests, 187 p-values) and BigCrush (106
tests, 254 p-values).

• BigCrush takes a few hours to run on a modern CPU and it consumes approximately 238

random numbers.

• Additionally, all CBPRNGs have been tested using PractRand, using up to 32 TB of
random data. No issues have been found.

9/15

http://simul.iro.umontreal.ca/testu01/tu01.html
https://sourceforge.net/projects/pracrand/

Testing streaming scheme consistency

1. For each generator, using the same seed, instantiate two different
std::uniform_int_distribution<uint64_t> streams (A and B), picked-up randomly in the
range [0, 232] .

2. Get a random integer i in the range [0, 264] from a different generator (different seed
also).

3. Make the comparison A[i] != B[i] .

4. Test will fail if any of the numbers in the same, random, position are the equal over
different streams.

I introduced an intentional bug and the test got it quickly enough. I removed the bug and all
tests passes. I tested as much as 216 streams pairs. For each stream pair, 216 pseudorandom
number pairs.

10/15

Performance measurements

CBPRNG Time - stream (ns) Time - stl distribution (ns)

Philox 8.853 8.062

ARS 9.031 8.684

Threefry 11.458 12.145

Squares3 8.691 7.956

Squares4 10.891 10.024

The second column lists the time spent calling the method
Stream<std::uniform_real_distribution<double>, Engine>::operaror[](size_t i) . The third
column lists the time for calling the distribution directly. Measurements taken in a Intel Core
i7-4790 CPU, running at 3.60GHz with 8 threads (four cores) machine.

11/15

Integration into CORSIKA 8

• Currently CORSIKA 8 uses std::mt19937_64 , the Mersenne Twister (MT) implementation
of the C++17 Standard Library, as its primary pseudorandom number generator.

• MT is known to fail statistical tests. It also stores a huge state, of almost 2.5 kB, and
operates strictly sequentially.

The integration of the iterator-based Stream API into CORSIKA 8 is straightforward:

• Refactory of the internal algorithms is not required.
• The distribution and management of multiple instances of CORSIKA 8, configured with

different seeds and running in parallel on clusters and other distributed systems is not
impacted.

• Enables further development of more fine-grained parallelism into the existing algorithms
in a transparent way.

12/15

Examples of showers

Philox

1010 1011 1012 1013 1014 1015 1016

E in eV

10 18

10 16

10 14

10 12

10 10

10 8

dN
/d

E
in

 e
V

1

+

MT

1010 1011 1012 1013 1014 1015 1016

E in eV

10 18

10 16

10 14

10 12

10 10

10 8

dN
/d

E
in

 e
V

1

+

CORSIKA 8 simulation of energy spectra at sea level for a single proton primary particle at 40
deg with 1017 eV and cutoff at 60 GeV.

13/15

Comments

How much data can a stream to handle?

1. Each stream has a length of 264 . It means, can produce 264 uint64_t numbers.

2. Each uint64_t has 8 bytes.

3. Make the math: 264 × 23 = 267 bytes or...

128 Exabyte !!!

For each {seed, generator} combination we have 232 of such streams.

14/15

Conclusions

• The deployment of CBPRNGs for the production of high-quality pseudorandom numbers
in CORSIKA 8, using an iterator-based and multi-thread friendly API has been described.

• The API is STL compliant, lightweight and does not introduce any significant overhead for
calling the underlying generators and distributions.

• The API allows the efficient management of parallelism using the substream approach,
providing up to 232 sub-sequences of length 264 , configured with the same seed.

• The streams can be accessed sequentially or in parallel using the API components.
• In addition to the generators from Random123 library:

• An upgraded version of the Squares algorithm with highly efficient internal 128 bit counters
is introduced.

• New ARS engine able to handle 64bit arithmetic.

• A public repository is being organized to share the code under a liberal license.

15/15

Thanks

	Appendix

