#### Flavour physics in the Standard Model

Tobias Huber Universität Siegen





CRC Annual Meeting, May 26th, 2021

#### Outline

- Flavour: What? Why? How?
- Inclusive b decays
- Exclusive b decays
- Other exclusive channels and quantities
- Conclusion

### Introduction

- The majority of the SM parameters resides in the Yukawa sector
  - Quarks and leptons are the principal actors of flavour physics
- Many aspects of flavour physics
  - · Heavy (top, bottom, charm) and light quarks
  - Mesons and baryons
  - Charged leptons, neutrinos



### Introduction

- The majority of the SM parameters resides in the Yukawa sector
  - Quarks and leptons are the principal actors of flavour physics
- Many aspects of flavour physics
  - Heavy (top, bottom, charm) and light quarks
  - Mesons and baryons
  - Charged leptons, neutrinos
- Motivation to study flavour physics
  - Huge amount of experimental data (B-factories, Tevatron, LHC, Belle II, ...)
  - Numerous channels and observables
  - Synergy and complementarity between direct and indirect searches for NP
  - Precise measurements and predictions of SM parameters possible!
  - Probe our understanding of the strong interaction
  - CP-Violation, matter-antimatter asymmetry, ...



#### SM flavour physics

#### Direct and indirect searches

- So far, no signal for NP in direct searches (3)
- Lack of direct NP signal necessitates precision studies in collider physics, flavour physics, low-energy observables
- Puzzling patterns in flavour data: hints for BSM physics from the flavour scale?

#### Direct and indirect searches

- So far, no signal for NP in direct searches (3)
- Lack of direct NP signal necessitates precision studies in collider physics, flavour physics, low-energy observables
- Puzzling patterns in flavour data: hints for BSM physics from the flavour scale?
- In Flavour physics: Mostly indirect search for new physics
  - Look for virtual effects of new phenomena
  - Mostly looked for in rare processes
  - Requires precision in theory and experiment
  - Synergy and complementarity to direct searches



#### Direct and indirect searches

- So far, no signal for NP in direct searches (3)
- Lack of direct NP signal necessitates precision studies in collider physics, flavour physics, low-energy observables
- Puzzling patterns in flavour data: hints for BSM physics from the flavour scale?
- In Flavour physics: Mostly indirect search for new physics
  - Look for virtual effects of new phenomena
  - Mostly looked for in rare processes
  - Requires precision in theory and experiment
  - Synergy and complementarity to direct searches



Even if NP is found in direct searches, want to know the BSM flavour structure

#### SM flavour physics

### Per aspera ad astra (rocky path to the stars)

- Problem: confinement of quarks into hadrons
- For instance, look at generic structure of amplitude for B decays

 $\mathcal{A}(\bar{B} \to f) = \lambda_{\rm CKM} \times C \times \langle f | \mathcal{O} | \bar{B} \rangle_{\rm QCD+QED}$ 

- Computation of hadronic matrix elements highly non-trivial
- Effects from many different scales
- QCD effects could overshadow the interesting fundamental dynamics



- Even if a separation (factorization) is achieved, power corrections of  $\mathcal{O}(\Lambda_{\rm QCD}/m_Q)$  are often the limiting factor
  - Compare to a typical correction of O (Λ<sub>QCD</sub>/√s) to collider observables, also α<sub>s</sub>(m<sub>b</sub>) > α<sub>s</sub>(Q<sup>2</sup>).

#### SM flavour physics

### Tools for precision

- To get control over QCD effects, sophisticated tools have been developed
  - Effective field theories (HQET, SCET, SMEFT, ...)
  - Heavy-Quark Expansion
  - Factorization (also at subleading power!)
  - Perturbative calculations: Loops, ...
  - Non-perturbative techniques: Lattice, Sum rules, ...
- Applications also in Higgs, Collider, Dark Matter, ...

### Tools for precision

- To get control over QCD effects, sophisticated tools have been developed
  - Effective field theories (HQET, SCET, SMEFT, ...)
  - Heavy-Quark Expansion
  - Factorization (also at subleading power!)
  - Perturbative calculations: Loops, ...
  - Non-perturbative techniques: Lattice, Sum rules, ...
- Applications also in Higgs, Collider, Dark Matter, ...
- Other interesting aspects
  - Understanding the general properties of power expansions in EFTs
  - Understand strong-interaction dynamics of heavy quark decays
  - Interplay between different QCD techniques (Lattice, Sum Rules, perturbation theory,...)

#### Effective theory for *B* decays



- $M_W, M_Z, m_t, m_H \gg m_b$ : integrate out heavy gauge bosons, t-quark, Higgs
- Effective Weak Hamiltonian:

[Buras,Buchalla,Lautenbacher'96; Chetyrkin,Misiak,Münz'98]

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \left[ C_1 Q_1^p + C_2 Q_2^p + \sum_{k=3}^{10} C_k Q_k \right] + \text{h.c.}$$

$$\begin{split} Q_1^p &= (\bar{d}_L \gamma^\mu T^a p_L) (\bar{p}_L \gamma_\mu T^a b_L) \qquad Q_4 &= (\bar{d}_L \gamma^\mu T^a b_L) \sum_q (\bar{q} \gamma_\mu T^a q) \\ Q_2^p &= (\bar{d}_L \gamma^\mu p_L) (\bar{p}_L \gamma_\mu b_L) \qquad Q_5 &= (\bar{d}_L \gamma^\mu \gamma^\nu \gamma^\rho b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_\rho q) \\ Q_3 &= (\bar{d}_L \gamma^\mu b_L) \sum_q (\bar{q} \gamma_\mu q) \qquad Q_6 &= (\bar{d}_L \gamma^\mu \gamma^\nu \gamma^\rho T^a b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_\rho T^a q) \\ Q_7 &= \frac{e}{16\pi^2} m_b \, \bar{s}_L \, \sigma_{\mu\nu} F^{\mu\nu} b_R \qquad Q_8 &= \frac{g_s}{16\pi^2} m_b \, \bar{s}_L \, \sigma_{\mu\nu} G^{\mu\nu} b_R \\ Q_9 &= (\bar{s}_L \gamma^\mu b_L) (\bar{\ell} \gamma_\mu \ell) \qquad Q_{10} &= (\bar{s}_L \gamma^\mu b_L) (\bar{\ell} \gamma_\mu \gamma_5 \ell) \qquad \lambda_p = V_{pb} V_{pd}^* \end{split}$$

#### SM flavour physics

#### Effective theory for *B* decays



- $M_W, M_Z, m_t, m_H \gg m_b$ : integrate out heavy gauge bosons, t-quark, Higgs
- Effective Weak Hamiltonian:

[Buras,Buchalla,Lautenbacher'96; Chetyrkin,Misiak,Münz'98]

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \left[ C_1 Q_1^p + C_2 Q_2^p + \sum_{k=3}^{10} C_k Q_k \right] + \text{h.c.}$$

$$\begin{split} Q_1^p &= (\bar{d}_L \gamma^\mu T^a p_L) (\bar{p}_L \gamma_\mu T^a b_L) & Q_4 &= (\bar{d}_L \gamma^\mu T^a b_L) \sum_q (\bar{q} \gamma_\mu T^a q) \\ Q_2^p &= (\bar{d}_L \gamma^\mu p_L) (\bar{p}_L \gamma_\mu b_L) & Q_5 &= (\bar{d}_L \gamma^\mu \gamma^\nu \gamma^\rho b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_\rho q) \\ Q_3 &= (\bar{d}_L \gamma^\mu b_L) \sum_q (\bar{q} \gamma_\mu q) & Q_6 &= (\bar{d}_L \gamma^\mu \gamma^\nu \gamma^\rho T^a b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_\rho T^a q) \\ Q_7 &= \frac{e}{16\pi^2} m_b \, \bar{s}_L \, \sigma_{\mu\nu} F^{\mu\nu} b_R & Q_8 &= \frac{g_s}{16\pi^2} m_b \, \bar{s}_L \, \sigma_{\mu\nu} G^{\mu\nu} b_R \\ Q_9 &= (\bar{s}_L \gamma^\mu b_L) (\bar{\ell} \gamma_\mu \ell) & Q_{10} &= (\bar{s}_L \gamma^\mu b_L) (\bar{\ell} \gamma_\mu \gamma_5 \ell) & \lambda_p = V_{pb} V_{pd}^* \end{split}$$

• Size of Wilson  $C_1 = -0.25$   $|C_{3,5,6}| < 0.01$   $C_7 = -0.30$   $C_9 = 4.06$ coeffcients  $C_2 = 1.01$   $C_4 = -0.08$   $C_8 = -0.15$   $C_{10} = -4.29$ 

T. Huber

# Inclusive *b* decays

### Inclusive B decays, generalities

Main tool for inclusive decays: Heavy Quark Expansion (HQE)

[Khoze,Shifman,Voloshin,Bigi,Uraltsev,Vainshtein,Blok,Chay,Georgi,Grinstein,Luke,Neubert,...'80s and '90s]

$$\Gamma(B_q \to X) = \frac{1}{2m_{B_q}} \sum_X \int_{PS} (2\pi)^4 \delta^{(4)}(p_{B_q} - p_X) |\langle X|\hat{\mathcal{H}}_{eff}|B_q\rangle|^2$$

Use optical theorem

$$\Gamma(B_q \to X) = \frac{1}{2m_{B_q}} \langle B_q | \hat{\mathcal{T}} | B_q \rangle \quad \text{with} \quad \hat{\mathcal{T}} = \text{Im} \; i \int d^4 x \hat{T} \left[ \hat{\mathcal{H}}_{eff}(x) \hat{\mathcal{H}}_{eff}(0) \right]$$

Expand non-local double insertion of effective Hamiltonian in local operators

$$\Gamma = \Gamma_0 \langle O_{D=3} \rangle + \Gamma_2 \frac{\langle O_{D=5} \rangle}{m_b^2} + \tilde{\Gamma}_3 \frac{\langle \tilde{O}_{D=6} \rangle}{m_b^3} + \dots$$

$$+ 16\pi^2 \left[ \Gamma_3 \frac{\langle O_{D=6} \rangle}{m_b^3} + \Gamma_4 \frac{\langle O_{D=7} \rangle}{m_b^4} + \Gamma_5 \frac{\langle O_{D=8} \rangle}{m_b^5} + \dots \right]$$

#### Inclusive *B* decays, generalities

• Main tool for inclusive decays: Heavy Quark Expansion (HQE)

[Khoze,Shifman,Voloshin,Bigi,Uraltsev,Vainshtein,Blok,Chay,Georgi,Grinstein,Luke,Neubert,...'80s and '90s]

$$\Gamma(B_q \to X) = \frac{1}{2m_{B_q}} \sum_X \int_{\text{PS}} (2\pi)^4 \delta^{(4)}(p_{B_q} - p_X) |\langle X|\hat{\mathcal{H}}_{eff}|B_q\rangle|^2$$

Use optical theorem

$$\Gamma(B_q \to X) = \frac{1}{2m_{B_q}} \langle B_q | \hat{\mathcal{T}} | B_q \rangle \quad \text{with} \quad \hat{\mathcal{T}} = \text{Im} \; i \int d^4 x \hat{T} \left[ \hat{\mathcal{H}}_{eff}(x) \hat{\mathcal{H}}_{eff}(0) \right]$$

Expand non-local double insertion of effective Hamiltonian in local operators

$$\Gamma = \Gamma_0 \langle O_{D=3} \rangle + \Gamma_2 \frac{\langle O_{D=5} \rangle}{m_b^2} + \tilde{\Gamma}_3 \frac{\langle \tilde{O}_{D=6} \rangle}{m_b^3} + \dots$$

$$+ 16\pi^2 \left[ \Gamma_3 \frac{\langle O_{D=6} \rangle}{m_b^3} + \Gamma_4 \frac{\langle O_{D=7} \rangle}{m_b^4} + \Gamma_5 \frac{\langle O_{D=8} \rangle}{m_b^5} + \dots \right]$$

- $\Gamma_0$ : Decay of a free quark, known to  $\mathcal{O}(\alpha_s^3)$
- $\Gamma_1$ : Vanishes due to Heavy Quark Symmetry
- Two terms in  $\Gamma_2$ : Kinetic energy  $\mu_{\pi}^2$ , Chromomagnetic moment  $\mu_G^2$
- Two more terms in  $\Gamma_3$ : Darwin term  $\rho_D^3$ , Spin-orbit term  $\rho_{LS}^3$

#### SM flavour physics

#### Background effects in the inclusive $V_{cb}$ determination

[Mannel,Rahimi,Vos'21]

- Measurement at Belle II:  $B \to X\ell$ ,  $\ell = e, \mu$
- $\bar{B} \rightarrow X\ell$  consists of different components:
  - $\bar{B} \to X_c \ell \bar{\nu}$  (which is the process of interest and is  $\propto |V_{cb}|^2$ )
  - $\bar{B} \to X_u \ell \bar{\nu}$
  - $\bar{B} \to X_{c,u} (\tau \to \ell \bar{\nu}_\ell \nu_\tau) \bar{\nu}_\tau$
- Subtraction of the unwanted components by Monte Carlo
- Compare theoretical HQE studies to Monte-Carlo simulations of  $b 
  ightarrow u \ell \bar{
  u}$
- Define moments of the spectrum for any observable  ${\cal O}$

$$\left\langle \mathcal{O}^n \right\rangle_{E_\ell > E_\ell^{\rm cut}} = \frac{\int_{E_\ell > E_\ell^{\rm cut}} \mathrm{d}\mathcal{O} \ \mathcal{O}^n \frac{\mathrm{d}\Gamma}{\mathrm{d}\mathcal{O}}}{\int_{E_\ell > E_\ell^{\rm cut}} \mathrm{d}\mathcal{O} \ \frac{\mathrm{d}\Gamma}{\mathrm{d}\mathcal{O}}}$$

• Choose lepton energy moments  $\langle E_{\ell}^n \rangle$ ,

hadronic mass moments  $\langle M_x^n \rangle$ ,

lepton-invariant mass moments  $\langle (q^2)^n \rangle$ .

## Background effects in the inclusive $V_{cb}$ determination

• Comparison of the  $b \rightarrow u \ell \bar{\nu}$  MC data used for the subtraction with HQE



• HQE expressions can help minimising the exptl. uncertainties from  $b \rightarrow u \ell \bar{\nu}$  and  $b \rightarrow c (\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}) \bar{\nu}_{\tau}$ 

T. Huber

#### SM flavour physics

#### Further topics and activities

- Miniworkshop on Quark Masses in October
- Third order corrections to the semi-leptonic  $b \rightarrow c$  and muon decays

[Fael,Schönwald,Steinhauser'20; Czakon,Czarnecki,Dowling'21]

[Nierste,Shtabovenko,Steinhauser.'20 and w.i.p.]

#### $\implies$ see Kay Schönwald's talk in YSF

- NNLO QCD corrections to the B-meson mixing
  - $n_f$ -terms of penguin contributions are not the dominant ones, need full NNLO  $\implies$  see Vlad Shtabovenko's talk in YSF
- HQE for charm  $\implies$  see Daniel Moreno's talk at annual meeting 2020

[Mannel, Pivovarov, Moreno'21]

Master Integrals for Inclusive Weak Decays at NLO

[Mannel, Pivovarov, Moreno'21]

- Further ongoing projects
  - $\bar{B} \rightarrow X_s \gamma$  (KA+AC+SI)
  - $\bar{B} \to X_s \ell^+ \ell^-$  with an  $M_{X_s}$ -cut
  - Improvement of inclusive determination of  $|V_{cb}|$  and  $|V_{ub}|$

# Exclusive *b* decays

### Exclusive *B* decays, generalities

• Leptonic decays



$$\langle 0|\bar{u}\gamma^{\mu}\gamma_{5}b|B^{-}(p)\rangle = i f_{B} p^{\mu}$$

#### Exclusive *B* decays, generalities



#### Exclusive B decays, generalities



# Rare decays

#### Rare Semileptonic Decays of $\Lambda_b$ Baryons

- Increasing information for b-baryon decays from experiment (LHCb,...)
- Interesting due to half-integer spin d. o. f.
- Matrix elements of weak effective Hamiltonian between fermionic states yield complementary phenomenological observables for NP studies
- But: theory predictions for exclusive baryon decays more challenging than for mesons (two valence spectators, ...) [see e.g. Feldmann'21]

#### Rare Semileptonic Decays of $\Lambda_b$ Baryons

- Increasing information for b-baryon decays from experiment (LHCb,...)
- Interesting due to half-integer spin d. o. f.
- Matrix elements of weak effective Hamiltonian between fermionic states yield complementary phenomenological observables for NP studies
- But: theory predictions for exclusive baryon decays more challenging than for mesons (two valence spectators, ...) [see e.g. Feldmann'21]
- Need transition form factors  $\Lambda_b \to p, \Lambda_b \to \Lambda, \Lambda_b \to \Lambda^*, \ldots$ 
  - from lattice-QCD (small and moderate recoil energy)
  - light-cone sum rules (large recoil)
- Non-factorizable contributions
  - not accessible in lattice-QCD
  - relevant for radiative and non-leptonic decays
  - systematic sum-rule or factorization studies still missing

## $\Lambda_b \rightarrow \Lambda^*(1520)$ form factors

- Consider full set of  $\Lambda_b \to \Lambda^*(1520)$  form factors
- Apply HQE at low recoil, include O (α<sub>s</sub>) and O (1/m<sub>b</sub>) corrections
- Obtain unknown hadronic parameters from a fit to recent lattice data
  - Use data on vector and axial-vector FFs, predict (pseudo)-tensor ones



- Find certain tensions between lattice and HQE in (pseudo)-tensor case
  - Lattice uncertainties underestimated?
  - Higher order terms in the HQE?

### Example: 4-Quark operators in $\Lambda_b \to \Lambda \ell^+ \ell^-$

#### Light-cone sum rule analysis:

[Bordone,Gubernari,Feldmann, w.i.p.]



- replace final-state hadron ( $\Lambda$ ) by interpolating current
- perturbative calculation of a correlation function in the Euclidean

$$\Pi_{\mu}(p',q) \equiv \int d^4x \, e^{iq \cdot x} \int d^4y \, e^{ip' \cdot y} \langle 0| \mathrm{T}\left\{J_{\Lambda}(y), O_{3-6}(0), j_{\mu}^{\mathrm{em}}(x)\right\} |\Lambda_b(p)\rangle$$

- requires  $\Lambda_b$  distribution amplitudes (LCDAs) as hadronic input
- contribution to  $\Lambda_b \to \Lambda \ell^+ \ell^-$  amplitude by dispersion relations
- numerical comparison with factorizable contributions, using same method and same hadronic input

[Feldmann,Yip'12]

# Nonleptonic decays

### Two-body heavy-light final states

• Determine *b*-quark fragmentation fractions  $f_s/f_d$  from hadronic two-body decays into heavy-light final states

• Requires ratio 
$$\mathcal{R}_{s/d}^{P(V)} \equiv \frac{\mathcal{B}(\bar{B}_s^0 \to D_s^{(*)+}\pi^-)}{\mathcal{B}(\bar{B}^0 \to D^{(*)+}K^-)}$$

#### Two-body heavy-light final states

• Determine *b*-quark fragmentation fractions  $f_s/f_d$  from hadronic two-body decays into heavy-light final states

• Requires ratio 
$$\mathcal{R}_{s/d}^{P(V)} \equiv \frac{\mathcal{B}(\bar{B}_s^0 \to D_s^{(*)+} \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^{(*)+} K^-)}$$

QCD factorization for non-leptonic decays

[Beneke,Buchalla,Neubert,Sachrajda'99-'04]

$$\langle D_q^{(*)+}L^- | \mathcal{Q}_i | \bar{B}_q^0 \rangle = \sum_j F_j^{\bar{B}_q \to D_q^{(*)}} (M_L^2) \int_0^1 du \, T_{ij}(u) \phi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

- Particularly clean for heavy-light final states: Only colour-allowed tree amplitude
  - No colour-suppressed tree amplitude, no penguins
  - Spectator scattering and weak annihilation power suppressed
  - Weak annihilation absent if all final-state flavours distinct
    - as in  $\bar{B}^0_s \to D^+_s \pi^-$  and  $\bar{B}^0 \to D^+ K^-$  but not in  $\bar{B}^0 \to D^+ \pi^-$

### Two-body heavy-light final states

• Determine *b*-quark fragmentation fractions  $f_s/f_d$  from hadronic two-body decays into heavy-light final states

• Requires ratio 
$$\mathcal{R}_{s/d}^{P(V)} \equiv \frac{\mathcal{B}(\bar{B}_s^0 \to D_s^{(*)+} \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^{(*)+} K^-)}$$

QCD factorization for non-leptonic decays

[Beneke,Buchalla,Neubert,Sachrajda'99-'04]

$$\langle D_q^{(*)+}L^- | \mathcal{Q}_i | \bar{B}_q^0 \rangle = \sum_j F_j^{\bar{B}_q \to D_q^{(*)}} (M_L^2) \int_0^1 du \, T_{ij}(u) \phi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

Particularly clean for heavy-light final states: Only colour-allowed tree amplitude

- No colour-suppressed tree amplitude, no penguins
- Spectator scattering and weak annihilation power suppressed
- Weak annihilation absent if all final-state flavours distinct
  - as in  $\bar{B}^0_s \to D^+_s \pi^-$  and  $\bar{B}^0 \to D^+ K^-$  but not in  $\bar{B}^0 \to D^+ \pi^-$
- Hard function known to  $\mathcal{O}\left(\alpha_s^2\right)$
- Form factors from recent precision study

[Kränkl,Li,TH'16]

[Bordone,Gubernari,Jung,van Dyk'19]

### Subleading power





- Power corrections arise from several effects
  - Higher twist effects to the light-meson LCDA
  - Hard-collinear gluon emission from the spectator quark q
  - Hard-collinear gluon emission from the heavy quarks b and c
  - Soft-gluon exchange between  $B \rightarrow D$  and light-meson system

### Subleading power





- Power corrections arise from several effects
  - Higher twist effects to the light-meson LCDA
  - Hard-collinear gluon emission from the spectator quark q
  - Hard-collinear gluon emission from the heavy quarks *b* and *c*
  - Soft-gluon exchange between  $B \rightarrow D$  and light-meson system

#### Estimate of total size of power corrections

 $\left. \mathcal{R}^{P}_{s/d} \right|_{\mathsf{NLP}} / \mathcal{R}^{P}_{s/d} \right|_{\mathsf{LP}} - 1 \approx -1.7\%$ 

$$\left. \mathcal{R}^V_{s/d} \right|_{\mathsf{NLP}} / \mathcal{R}^V_{s/d} \right|_{\mathsf{LP}} - 1 \approx -1.7\%$$

Supports the picture of these decays being very clean

T. Huber

#### SM flavour physics

#### Results

| source                                                | PDG               | our fit (w/ Q0            | CDF, no $f_s/f_d$ )         | QCDF prediction           |
|-------------------------------------------------------|-------------------|---------------------------|-----------------------------|---------------------------|
| scenario                                              |                   | ratios only               | SU(3)                       |                           |
| $\chi^2/dof$                                          | —                 | 4.6/6                     | 3.7/4                       | —                         |
| $\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)$            | $3.00\pm0.23$     | $3.11^{+0.21}_{-0.19}$    | $3.20^{+0.20}_{-0.26}$ *    | $4.42 \pm 0.21$           |
| $\mathcal{B}(\bar{B}^0 \to D^+ K^-)$                  | $0.186 \pm 0.020$ | $0.227 \pm 0.012$         | $0.226 \pm 0.012$           | $0.326 \pm 0.015$         |
| $\mathcal{B}(\bar{B}^0 \to D^+ \pi^-)$                | $2.52\pm0.13$     | $2.74 \pm 0.12$           | $2.73^{+0.12}_{-0.11}$      | <u> </u>                  |
| $\mathcal{B}(\bar{B}^0_s \rightarrow D^{*+}_s \pi^-)$ | $2.0 \pm 0.5$     | $2.46^{+0.37}_{-0.32}$    | $2.43^{+0.39}_{-0.32}$      | $4.3^{+0.9}_{-0.8}$       |
| $\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$                | $0.212 \pm 0.015$ | $0.213^{+0.014}_{-0.013}$ | $0.213^{+0.014}_{-0.013}$   | $0.327^{+0.039}_{-0.034}$ |
| $\mathcal{B}(\bar{B}^0 \rightarrow D^{*+}\pi^-)$      | $2.74\pm0.13$     | $2.76^{+0.15}_{-0.14}$    | $2.76^{+0.15}_{-0.14}$      |                           |
| $\mathcal{R}^{P}_{s/d}$                               | $16.1\pm2.1$      | $13.6 \pm 0.6$            | $14.2^{+0.6}_{-1.1}$ *      | $13.5^{+0.6}_{-0.5}$      |
| $\mathcal{R}^{V}_{s/d}$                               | $9.4 \pm 2.5$     | $11.4^{+1.7}_{-1.6}$      | $11.4^{+1.7}_{-1.5}$ *      | $13.1^{+2.3}_{-2.0}$      |
| $\mathcal{R}_{s}^{V/P}$                               | $0.66\pm0.16$     | $0.81^{+0.12}_{-0.11}$    | $0.76^{+0.11}_{-0.10}$      | $0.97^{+0.20}_{-0.17}$    |
| $\mathcal{R}_d^{V/P}$                                 | $1.14\pm0.15$     | $0.97\pm0.06$             | $0.95\pm0.07$               | $1.01 \pm 0.11$           |
| $(f_s/f_d)_{ m LHCb}^{7 { m TeV}}$                    | _                 | $0.261^{+0.018}_{-0.016}$ | $0.252^{+0.023}_{-0.015}$ * |                           |
| $(f_s/f_d)_{\rm Tev}$                                 | —                 | $0.244^{+0.026}_{-0.023}$ | $0.236^{+0.026}_{-0.022}$ * |                           |

BR discrepancies

$$\overline{B}^0_s \to D^+_s \pi^- \to 4\sigma \overline{B}^0 \to D^+ K^- \to 5\sigma \overline{B}^0_s \to D^{*+}_s \pi^- \to 2\sigma \overline{B}^0 \to D^{*+}_s K^- \to 3\sigma$$

Ratios OK

#### Results

| source                                                | PDG               | our fit (w/ Q             | CDF, no $f_s/f_d$ )              | QCDF prediction           |                                                             |
|-------------------------------------------------------|-------------------|---------------------------|----------------------------------|---------------------------|-------------------------------------------------------------|
| scenario                                              |                   | ratios only               | SU(3)                            |                           |                                                             |
| $\chi^2/dof$                                          | —                 | 4.6/6                     | 3.7/4                            |                           | BR discrepancies                                            |
| $\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)$            | $3.00\pm0.23$     | $3.11^{+0.21}_{-0.19}$    | $3.20^{+0.20}_{-0.26}$ *         | $4.42\pm0.21$             |                                                             |
| $\mathcal{B}(\bar{B}^0 \rightarrow D^+ K^-)$          | $0.186 \pm 0.020$ | $0.227 \pm 0.012$         | $0.226 \pm 0.012$                | $0.326 \pm 0.015$         | $\overline{D}^0$ $D^+\pi^ A\pi$                             |
| $\mathcal{B}(\bar{B}^0 \rightarrow D^+ \pi^-)$        | $2.52\pm0.13$     | $2.74 \pm 0.12$           | $2.73^{+0.12}_{-0.11}$           | —                         | $D_S \rightarrow D_S n \rightarrow 40$                      |
| $\mathcal{B}(\bar{B}^0_s \rightarrow D^{*+}_s \pi^-)$ | $2.0 \pm 0.5$     | $2.46^{+0.37}_{-0.32}$    | $2.43^{+0.39}_{-0.32}$           | $4.3^{+0.9}_{-0.8}$       | $\bar{B}^0 \to D^+ K^- \to 5\sigma$                         |
| $\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$                | $0.212 \pm 0.015$ | $0.213^{+0.014}_{-0.013}$ | $0.213\substack{+0.014\\-0.013}$ | $0.327^{+0.039}_{-0.034}$ | = $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$                       |
| $\mathcal{B}(\bar{B}^0 \rightarrow D^{*+}\pi^-)$      | $2.74\pm0.13$     | $2.76^{+0.15}_{-0.14}$    | $2.76^{+0.15}_{-0.14}$           |                           | $B_s^0 \to D_s^{*+}\pi^- \to 2\sigma$                       |
| $\mathcal{R}^{P}_{s/d}$                               | $16.1 \pm 2.1$    | $13.6 \pm 0.6$            | $14.2^{+0.6}_{-1.1}$ *           | $13.5^{+0.6}_{-0.5}$      | $\overline{P}^0 \rightarrow D^{*+} K^- \rightarrow 2\sigma$ |
| $\mathcal{R}^{V}_{s/d}$                               | $9.4 \pm 2.5$     | $11.4^{+1.7}_{-1.6}$      | $11.4^{+1.7}_{-1.5}$ *           | $13.1^{+2.3}_{-2.0}$      | $D \rightarrow D  K \rightarrow 30$                         |
| $\mathcal{R}_{s}^{V/P}$                               | $0.66\pm0.16$     | $0.81^{+0.12}_{-0.11}$    | $0.76^{+0.11}_{-0.10}$           | $0.97^{+0.20}_{-0.17}$    |                                                             |
| $\mathcal{R}_{d}^{V/P}$                               | $1.14\pm0.15$     | $0.97 \pm 0.06$           | $0.95\pm0.07$                    | $1.01 \pm 0.11$           | Batios OK                                                   |
| $(f_s/f_d)_{ m LHCb}^{7 { m TeV}}$                    | —                 | $0.261^{+0.018}_{-0.016}$ | $0.252^{+0.023}_{-0.015}$ *      |                           |                                                             |
| $(f_s/f_d)_{\rm Tev}$                                 | —                 | $0.244^{+0.026}_{-0.023}$ | $0.236^{+0.026}_{-0.022}$ *      | _                         |                                                             |

#### Potential explanations

- Universal non-factorizable contributions of  $\mathcal{O}(-15-20\%)$  to amplitude?
- Experimental issues?
- Shift or larger uncertainties in the input (CKM) parameters?
- BSM physics?
- Combination thereof?
- All not really satisfactory!

#### Further developments

- Result triggered quite some interest ۰
  - New-physics interpretations
  - New tensor structures
  - Collider bounds on BSM explanations of the discrepancy [Bordone,Greljo,Marzocca'20]

[Iguro.Kitahara'20]

[Cai,Deng,Li,Yang'21]

#### Further developments

- Result triggered quite some interest
  - New-physics interpretations
  - New tensor structures

[Iguro,Kitahara'20]

[Cai,Deng,Li,Yang'21]

Collider bounds on BSM explanations of the discrepancy [Bordone, Greljo, Marzocca'20]

Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays

25 March 2021 to 1 April 2021 Europe/Berlin timezone

- Put under scrutiny SM prediction
- Discuss potential BSM explanations

#### Further developments

- Result triggered quite some interest
  - New-physics interpretations
  - New tensor structures

[Iguro,Kitahara'20]

[Cai,Deng,Li,Yang'21]

Collider bounds on BSM explanations of the discrepancy [Bordone, Greljo, Marzocca'20]

# Mini-Workshop on Colour Allowed Non-Leptonic Tree-Level Decays

25 March 2021 to 1 April 2021 Europe/Berlin timezone

- Put under scrutiny SM prediction
- Discuss potential BSM explanations
- The journey goes on ...

#### Power corrections and endpoint divergences

[Bell,Böer,Feldmann,'21]

Factorization at subleading power is spoilt by endpoint divergences

$$\int_0^\infty \mathrm{d}\omega \, \frac{\phi_B^+(\omega)}{\omega^2} \,, \quad \int_0^1 \mathrm{d}u \, \frac{\phi_\pi(u)}{\bar{u}^2} \,, \quad \dots \qquad \text{log-divergent for } \omega, \bar{u} \to 0$$

 $\Rightarrow$  main limitation for precision phenomenology in exclusive B decays

#### Idea: Study problem in a perturbative set-up

 $B_c \rightarrow \eta_c$  form factors for  $m_b \gg m_c \gg \Lambda_{\rm QCD}$ 

- consider  $B_c$  and  $\eta_c$  as non-relativistic bound states
- form factors calculable order-by-order in  $lpha_s$
- soft-collinear factorization requires analytic rapidity regulator
- operator analysis rather involved (operator mixing, 3-particle Fock states, ...)

#### $e^-\mu^-$ backward scattering

#### Cleaner laboratory to study the endpoint dynamics



- count  $\log m_e^2/s \sim \log m_\mu^2/s \sim 1/\alpha_{\rm em}$  and  $\log m_e/m_\mu \sim \mathcal{O}(1)$
- focus on resummation of double logs (set  $m_e = m_\mu$ )
- double logs arise from (twisted) ladder diagrams in specific configuration



- all photon-propagators eikonal
- all lepton-propagators on-shell and ordered in rapidity

#### Bare factorization theorem

- operator definitions of collinear and soft functions
- H(uv),  $J_{hc}(uk_+)$  and  $J_{hc}(k_-v)$  arise from matching QED onto SCET
- $\Rightarrow$  bare factorization theorem is spoilt by endpoint divergences

$$u \to 0, v \to 0, k_+ \to 0, k_- \to 0, k_+ \to \infty, k_- \to \infty$$

#### Resummation of double logs

So far no renormalized factorization theorem

 $\Rightarrow$  cannot use RG techniques to resum logarithmic corrections

Instead use bare factorization theorem in conjunction with



pole cancellation

rapidity divergences generate an infinite tower of collinear anomalies

$$\frac{\mathcal{A}}{\mathcal{A}_0} = r_0(\mu/m) \left(\frac{s}{m^2}\right)^{f_0(\mu/m)} + \frac{\hat{\alpha}}{\epsilon^2} h_1 \left(\frac{\mu^2}{s}\right)^{\epsilon} r_1(\mu/m) \left(\frac{s}{m^2}\right)^{f_1(\mu/m)} + \dots$$

complicated cross-talk of  $1/\epsilon$ -poles, which must cancel in the sum

#### Resummation of double logs

#### Structure of double logs

$$\frac{\mathcal{A}}{\mathcal{A}_0} = 1 + \frac{\hat{\alpha}}{2}L^2 + \frac{\hat{\alpha}^2}{12}L^4 + \dots = \sum_{n=0}^{\infty} \frac{\hat{\alpha}^n}{n!(n+1)!}L^{2n} = \frac{I_1\left(2\sqrt{\hat{\alpha}L^2}\right)}{\sqrt{\hat{\alpha}L^2}} \qquad \qquad \hat{\alpha} = \alpha/2\pi \\ L = \log m^2/s$$

- logs do not exponentiate, but resum to a modified Bessel function
- classical textbook result in QED

[Gorshkov, Gribov, Lipatov, Frolov'67]

• highly non-trivial example of endpoint dynamics in SCET!

#### Resummation of double logs

#### Structure of double logs

$$\frac{\mathcal{A}}{\mathcal{A}_0} = 1 + \frac{\hat{\alpha}}{2}L^2 + \frac{\hat{\alpha}^2}{12}L^4 + \dots = \sum_{n=0}^{\infty} \frac{\hat{\alpha}^n}{n!(n+1)!}L^{2n} = \frac{I_1\left(2\sqrt{\hat{\alpha}L^2}\right)}{\sqrt{\hat{\alpha}L^2}} \qquad \hat{\alpha} = \alpha/2\pi \\ L = \log m^2/s$$

- logs do not exponentiate, but resum to a modified Bessel function
- classical textbook result in QED

[Gorshkov, Gribov, Lipatov, Frolov'67]

• highly non-trivial example of endpoint dynamics in SCET!

First NLL resummation in the presence of endpoint divergences [Neubert et al.'19'20]



- single rapidity divergence to all orders
- renormalized factorization theorem after endpoint subtractions (cutoff-dependent)

[Tetlalmatzi-Xolocotzi,TH'21]

• The amplitudes for  $B \rightarrow PP$  (P a pseudoscalar meson) can be expressed as

 $\mathcal{A}=\mathcal{T}+\mathcal{P}$ 

 $\mathcal{T}$ : Tree sub-amplitudes.  $\mathcal{P}$ : Penguin sub-amplitudes.

• Topological decomposition of the sub-amplitudes

[He,Wang'18]

$$\begin{split} \mathcal{T}^{TDA} &= T B_i(M)^i_j \bar{H}^{jl}_k(M)^k_l + C B_i(M)^i_j \bar{H}^{lj}_k(M)^k_l + A B_i \bar{H}^{il}_j(M)^j_k(M)^k_l \\ &+ E B_i \bar{H}^{li}_j(M)^k_k(M)^k_l + T_{ES} B_i \bar{H}^{ij}_l(M)^l_j(M)^k_k + T_{AS} B_i \bar{H}^{ji}_l(M)^l_j(M)^k_k \\ &+ T_S B_i(M)^i_j \bar{H}^{lj}_l(M)^k_k + T_{PA} B_i \bar{H}^{li}_l(M)^j_k(M)^k_j + T_P B_i(M)^i_j(M)^j_k \bar{H}^{lk}_l \\ &+ T_{SS} B_i \bar{H}^{li}_l(M)^j_j(M)^k_k \end{split}$$



[Tetlalmatzi-Xolocotzi,TH'21]

• The amplitudes for  $B \rightarrow PP$  (P a pseudoscalar meson) can be expressed as

 $\mathcal{A}=\mathcal{T}+\mathcal{P}$ 

 $\mathcal{T}$ : Tree sub-amplitudes.  $\mathcal{P}$ : Penguin sub-amplitudes.

• Topological decomposition of the sub-amplitudes

[He,Wang'18]

$$\mathcal{T}^{TDA} = T B_{i}(M)_{j}^{i} \bar{H}_{l}^{jl}(M)_{l}^{k} + C B_{i}(M)_{j}^{i} \bar{H}_{k}^{lj}(M)_{l}^{k} + A B_{i} \bar{H}_{j}^{il}(M)_{k}^{j}(M)_{l}^{k}$$

$$+ E B_{i} \bar{H}_{j}^{li}(M)_{k}^{j}(M)_{l}^{k} + T_{ES} B_{i} \bar{H}_{l}^{ij}(M)_{j}^{l}(M)_{k}^{k} + T_{AS} B_{i} \bar{H}_{l}^{ji}(M)_{j}^{l}(M)_{k}^{k}$$

$$+ T_{S} B_{i}(M)_{j}^{i} \bar{H}_{l}^{lj}(M)_{k}^{k} + T_{PA} B_{i} \bar{H}_{l}^{li}(M)_{k}^{j}(M)_{j}^{k} + T_{P} B_{i}(M)_{j}^{i}(M)_{k}^{j} \bar{H}_{l}^{lk}$$

$$+ T_{SS} B_{i} \bar{H}_{l}^{li}(M)_{j}^{j}(M)_{k}^{k}$$

$$(B_i) = (B^+, B^0, B_s)$$

$$(M_j^i) = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} & K^0 \\ K^- & \overline{K}^0 & -2\frac{\eta_8}{\sqrt{6}} \end{pmatrix} + \frac{1}{\sqrt{3}} \begin{pmatrix} \eta_1 & 0 & 0 \\ 0 & \eta_1 & 0 \\ 0 & 0 & \eta_1 \end{pmatrix}$$

• The non-zero elements of  $\tilde{H}_k^{ij}$  and  $\bar{H}_k^{ij}$  are

$$\begin{split} b &\to d: \qquad \bar{H}_{1}^{12} = \lambda_{u}^{(d)}, \ \tilde{H}_{1}^{12} = \lambda_{t}^{(d)}, \ \bar{H}^{2} = \lambda_{u}^{(d)}, \ \tilde{H}^{2} = \lambda_{t}^{(d)} \\ b &\to s: \qquad \bar{H}_{1}^{13} = \lambda_{u}^{(s)}, \ \tilde{H}_{1}^{13} = \lambda_{t}^{(s)}, \ \bar{H}^{3} = \lambda_{u}^{(s)}, \ \tilde{H}^{3} = \lambda_{t}^{(s)}. \end{split}$$

• *SU*(3) decomposition:

$$H_{k}^{ij} = \frac{1}{8} \left( H_{\overline{15}} \right)_{k}^{ij} + \frac{1}{4} \left( H_{6} \right)_{k}^{ij} - \frac{1}{8} \left( H_{\overline{3}} \right)^{i} \delta_{k}^{j} + \frac{3}{8} \left( H_{\overline{3}'} \right)^{j} \delta_{k}^{i}$$

• SU(3)-invariant amplitudes (analogous for penguins)

$$A_3^T, B_3^T, C_3^T, D_3^T, A_6^T, B_6^T, C_6^T, A_{15}^T, B_{15}^T, C_{15}^T$$

• Linear relations between topological and SU(3)-invariant amplitudes , e.g.

$$A_3^T = -\frac{A}{8} + \frac{3E}{8} + T_{PA}, \qquad B_3^T = T_{SS} + \frac{3T_{AS} - T_{ES}}{8},$$
$$A_6^T = \frac{1}{4}(A - E), \qquad B_6^T = \frac{1}{4}(T_{ES} - T_{AS})$$

- Determine the SU(3)-invariant amplitudes through a  $\chi^2$ -fit.
  - 20 complex amplitudes (10 for trees, 10 for penguins)
  - One overall phase and the complex amplitudes  $A_6^T$  and  $A_6^P$  can be absorbed
    - $\implies$  35 real parameters.
- Use the following experimental input for branching fractions and CP asymmetries
  - Branching fractions : 23 measurements plus 6-upper bounds
  - CP Asymmetries: 17 measurements plus 1-upper bound
- Implement  $\eta$ - $\eta'$  mixing in the FKS scheme (a single mixing angle) [Feldmann, Kroll, Stech'98]
- The  $\chi^2$ -fit results allow us to predict observables not measured so far

$$\mathcal{B}(B_s \to \pi^0 K^0), \quad \mathcal{B}(B_s \to \eta^0 K^0), \quad A_{\rm CP}(B_s \to \pi^0 \pi^0), \quad A_{\rm CP}(B_s \to \eta' \eta), \text{ etc.}$$

• Sample results (preliminary).  $\chi^2_{\nu} = 0.27$ 

| Observable                           | Experiment $(10^{-6})$ | $\chi^2$ -fit $(10^{-6})$ |
|--------------------------------------|------------------------|---------------------------|
|                                      |                        | (Central value only)      |
| $\mathcal{B}(B^- 	o \pi^0 \pi^-)$    | $5.5 \pm 0.4$          | 5.6                       |
| $\mathcal{B}(B^- \to K^0 K^-)$       | $1.31\pm0.17$          | 1.19                      |
| $\mathcal{B}(B^- \to \pi^+\pi^-)$    | $5.12\pm0.19$          | 5.29                      |
| $\mathcal{B}(B^- 	o \pi^0 \pi^0)$    | $1.59\pm0.26$          | 1.53                      |
| $\mathcal{B}(B^- \to K^+ K^-)$       | $0.078 \pm 0.015$      | 0.087                     |
| $\mathcal{B}(B^- \to K^0 \bar{K}^0)$ | $1.21\pm0.17$          | 1.21                      |
| $\mathcal{B}(B_s \to \pi^- K^+)$     | $5.80\pm0.7$           | 5.93                      |

• Sample results (preliminary).  $\chi^2_{\nu} = 0.27$ 

| Observable                           | Experiment $(10^{-6})$ | $\chi^2$ -fit $(10^{-6})$ |
|--------------------------------------|------------------------|---------------------------|
|                                      |                        | (Central value only)      |
| $\mathcal{B}(B^- 	o \pi^0 \pi^-)$    | $5.5 \pm 0.4$          | 5.6                       |
| $\mathcal{B}(B^- \to K^0 K^-)$       | $1.31\pm0.17$          | 1.19                      |
| $\mathcal{B}(B^- \to \pi^+\pi^-)$    | $5.12\pm0.19$          | 5.29                      |
| $\mathcal{B}(B^- 	o \pi^0 \pi^0)$    | $1.59\pm0.26$          | 1.53                      |
| $\mathcal{B}(B^- \to K^+ K^-)$       | $0.078 \pm 0.015$      | 0.087                     |
| $\mathcal{B}(B^- \to K^0 \bar{K}^0)$ | $1.21\pm0.17$          | 1.21                      |
| $\mathcal{B}(B_s \to \pi^- K^+)$     | $5.80\pm0.7$           | 5.93                      |

• Annihilation contributions at most 10%

$$\begin{split} |A_3^T| &= 0.039, \quad |A_{15}^T| = 0.007, \quad |B_3^T| = 0.023, \quad |B_6^T| = 0.123, \quad |B_{15}^T| = 0.045 \\ |A_3^P| &= 0.019, \quad |A_{15}^P| = 0.011, \quad |B_3^P| = 0.037, \quad |B_6^P| = 0.099, \quad |B_{15}^P| = 0.022 \end{split}$$

- Investigate connection to QCD factorization (QCDF)
- Amplitudes for two body non-leptonic *B*-meson decays in QCDF

$$\begin{split} \mathcal{A}^{\text{QCDF}} &= \sum_{p=u,c} A_{M_1M_2} \left\{ BM_1 \left( \alpha_1 \delta_{pu} \hat{U} + \alpha_4^p \hat{I} + \alpha_{4,\text{EW}}^p \hat{Q} \right) M_2 \Lambda_p \\ &+ BM_1 \Lambda_p \cdot \text{Tr} \left[ \left( \alpha_2 \delta_{pu} \hat{U} + \alpha_3^p \hat{I} + \alpha_{3,\text{EW}}^p \hat{Q} \right) M_2 \right] \\ &+ B \left( \beta_2 \delta_{pu} \hat{U} + \beta_3^p \hat{I} + \beta_{3,\text{EW}}^p \hat{Q} \right) M_1 M_2 \Lambda_p \\ &+ B\Lambda_p \cdot \text{Tr} \left[ \left( \beta_1 \delta_{pu} \hat{U} + \beta_4^p \hat{I} + b_{4,\text{EW}}^p \hat{Q} \right) M_1 M_2 \right] \\ &+ B \left( \beta_{S2} \delta_{pu} \hat{U} + \beta_{S3}^p \hat{I} + \beta_{S3,\text{EW}}^p \hat{Q} \right) M_1 \Lambda_p \cdot \text{Tr} M_2 \\ &+ B\Lambda_p \cdot \text{Tr} \left[ \left( \beta_{S1} \delta_{pu} \hat{U} + \beta_{S4}^p \hat{I} + b_{S4,\text{EW}}^p \hat{Q} \right) M_1 \right] \cdot \text{Tr} M_2 \right\} \end{split}$$

- Establish transformation rules between the QCDF amplitudes  $\{\alpha_i, \beta_i, b_i\}$  and the SU(3) ones
  - Quantify the size of the annihilation amplitudes  $\beta_i$  and  $b_i$  as dictated by data
- Quantify *SU*(3)-breaking (may introduce extra fit parameters)

[Beneke.Neubert'03]

# Other exclusive channels and quantities

## The pion-photon transition form factor at two loops

 Pion-photon transition form factor: theoretically (one of) the simplest hadronic matrix elements

$$\langle \pi(p) | j_{\mu}^{\rm em} | \gamma(p') \rangle = g_{\rm em}^2 \epsilon_{\mu\nu\alpha\beta} q^{\alpha} p^{\beta} \epsilon^{\nu}(p') F_{\gamma^*\gamma \to \pi^0}(Q^2)$$

- Ideally suited for
  - precision studies of the partonic landscape of composite hadrons
  - investigating the factorization properties of hard exclusive QCD reactions

### The pion-photon transition form factor at two loops

 Pion-photon transition form factor: theoretically (one of) the simplest hadronic matrix elements

$$\langle \pi(p) | j^{\rm em}_{\mu} | \gamma(p') \rangle = g^2_{\rm em} \,\epsilon_{\mu\nu\alpha\beta} \, q^{\alpha} \, p^{\beta} \, \epsilon^{\nu}(p') F_{\gamma^*\gamma \to \pi^0}(Q^2)$$

- Ideally suited for
  - precision studies of the partonic landscape of composite hadrons
  - investigating the factorization properties of hard exclusive QCD reactions
- Status of experimental measurements

Asymptotic limit (dashed line)

$$\lim_{Q^2 \to \infty} Q^2 F_{\gamma^* \gamma \to \pi^0}(Q^2) = \sqrt{2} f_{\pi}$$

Scaling violation?



[figures from Wang'18]

#### The pion-photon transition form factor

[Gao,Ji,Wang,TH'21]



• Factorization formula for  $F_{\gamma^*\gamma\to\pi^0}$  at leading power

- $T_2(x)$ : hard function, computable in perturbation theory
- $\phi_{\pi}(x,\mu)$ : leading-twist pion light-cone distribution amplitude (LCDA), universal
- Recently, computed hard function T<sub>2</sub>(x) at two loops
  - Involves standard multi-loop techniques, analytic result in terms of HPLs

[agrees with Braun, Manashov, Moch, Schoenleber'21]

• Subtle point: Mixing of evanescent into physical operators at two loops

#### Numerical results

- Need to model the pion LCDA, choose five models
- Use three-loop evolution of pion LCDA, expand to first 12 Gegenbauer moments



- Only perturbative uncertainties are corrections (twist 4, hadronic photon shown
- Belle II data will allow to distinguish between LCDA models

effect) [Shen,Wang'17]

#### SM flavour physics

# LFU in $\bar{B} \to D^* \ell \nu$

[Bobeth,Bordone,Gubernari,Jung,van Dyk'21]

- Analysis of angular observables in  $\bar{B} \rightarrow D^* \ell \nu$  decays
- Focus on  $\mu e$  lepton-flavour non-universality
- Include LFU-violating mass effects
- Explore BSM sensitivity of observables model-independently in EFT
- Compare SM predictions to 2018 Belle dataset
- Observe a  $4\sigma$  tension between data and predictions in observables that probe  $\mu~-~e~{\rm LFU}$



# LFU in $\bar{B} \to D^* \ell \nu$

- However, inconsistencies in Belle data found
  - Only 37 out of 40 bins linearly independent, but covariance matrix non-singular
- Considered BSM scenarios (despite above caveat). BSM contributions to ...
  - right-handed vector operators
  - left-handed vector operators
  - both pseudoscalar and tensor operators
- Findings
  - To accommodate  $\Delta A_{\rm FB}$ , contributions from RH vector operators or from both pseudoscalar and tensor operators are necessary
  - To describe the dataset well with only real BSM WCs, need LFUV contributions to both the RH and LH vector operators

### $H^*H\pi$ couplings from LCSR

[Khodjamirian,Melic,Wang,Wei'20]

- Consider strong  $H^*H\pi$  coupling  $g_{H^*H\pi}$ , where H = B, D
- Defined via the hadronic matrix element

$$\langle H^*(q)\pi(p)|H(p+q)\rangle = -g_{H^*H\pi} p^{\mu} \epsilon^{(H^*)}_{\mu}$$

- Obtaining the Light-cone sum rule
  - Start with vacuum-to-pion correlation function

$$F_{\mu}(q,p) = i \int d^4 x e^{iqx} \langle \pi(p) | T\{j_{\mu}(x), j_5(0)\} | 0 \rangle = F(q^2, (p+q)^2) p_{\mu} + \dots$$

with two interpolating currents  $j_{\mu}$  for  $H^*$  and  $j_5$  for H

- insert complete set of intermediate states with H and  $H^*$  quantum numbers
- employ analyticity, resulting in double dispersion relation
- match on light-cone OPE in terms of pion DAs
- further steps involve quark-hadron duality approximation and double Borel transformation

#### SM flavour physics

#### $H^*H\pi$ couplings from LCSR

• LCSR predictions  $g_{H^*H\pi}$  are sensitive to  $\phi_{\pi}(u=1/2)$ 



| Method                   | $g_{D^*D\pi}$              | $g_{B^*B\pi}$                                                  |
|--------------------------|----------------------------|----------------------------------------------------------------|
| LQCD, $N_f = 2$ [8]      | $15.9\pm0.7^{+0.2}_{-0.4}$ | -                                                              |
| LQCD, $N_f = 2 + 1$ [9]  | $16.23 \pm 1.71$           | _                                                              |
| LQCD, $N_f = 2 + 1$ [12] | -                          | $\frac{2m_B}{f_\pi}(0.56 \pm 0.03 \pm 0.07) \\ = 45.3 \pm 6.0$ |
| LQCD, $N_f = 2$ [7]      | -                          | _                                                              |
| LQCD, $N_f = 2 + 1$ [10] | -                          | _                                                              |
| LQCD, $N_f = 2$ [11]     | _                          | _                                                              |
| LCSR (this work)         | $14.1^{+1.3}_{-1.2}$       | $30.0^{+2.6}_{-2.4}$                                           |
|                          |                            |                                                                |

Decay constants of heavy mesons are taken from lattice QCD

#### B-meson DA parameters from QCD Sum Rules

[Rahimi, Wald'20]

• Definition of the HQET parameters  $\lambda_E^2(\mu)$ ,  $\lambda_H^2(\mu)$ 

[Grozin,Neubert'96]

$$\begin{aligned} \langle 0 | g_s \bar{q} \ \vec{\alpha} \cdot \vec{E} \ \gamma_5 h_v \ | \bar{B}(v) \rangle &= F(\mu) \ \lambda_E^2 \\ \langle 0 | g_s \bar{q} \ \vec{\sigma} \cdot \vec{H} \ \gamma_5 h_v \ | \bar{B}(v) \rangle &= i F(\mu) \ \lambda_H^2 \end{aligned}$$

- Dirac matrices  $\alpha^i = \gamma^0 \gamma^i$  and  $\sigma^i = \gamma^i \gamma_5$ , HQET decay constant  $F(\mu)$
- Chromoelectric and chromomagnetic fields  $E^i = G^{0i}$  and  $H_i = -\frac{1}{2} \epsilon^{ijk} G^{jk}$
- Appear in the second moments of the B-meson LCDA defined in HQET
- Computation is based on two-point QCD sum rules
  - Derive sum rules for the diagonal  $q \bar{q} g$  three-particle correlation function
  - All contributions up to mass-dimension seven in the OPE are included

#### B-meson DA parameters from QCD Sum Rules

[Rahimi, Wald'20]

• Definition of the HQET parameters  $\lambda_E^2(\mu)$ ,  $\lambda_H^2(\mu)$ 

[Grozin,Neubert'96]

$$\begin{aligned} \langle 0 | g_s \bar{q} \ \vec{\alpha} \cdot \vec{E} \ \gamma_5 h_v \ | \bar{B}(v) \rangle &= F(\mu) \ \lambda_E^2 \\ \langle 0 | g_s \bar{q} \ \vec{\sigma} \cdot \vec{H} \ \gamma_5 h_v \ | \bar{B}(v) \rangle &= i F(\mu) \ \lambda_H^2 \end{aligned}$$

- Dirac matrices  $\alpha^i = \gamma^0 \gamma^i$  and  $\sigma^i = \gamma^i \gamma_5$ , HQET decay constant  $F(\mu)$
- Chromoelectric and chromomagnetic fields  $E^i = G^{0i}$  and  $H_i = -\frac{1}{2} \epsilon^{ijk} G^{jk}$
- Appear in the second moments of the B-meson LCDA defined in HQET
- Computation is based on two-point QCD sum rules
  - Derive sum rules for the diagonal  $q \, \bar{q} \, g$  three-particle correlation function
  - All contributions up to mass-dimension seven in the OPE are included
- Results for  $\lambda_E^2(\mu)$ ,  $\lambda_H^2(\mu)$  and their ratio  $\mathcal{R}(\mu) = \lambda_E^2(\mu)/\lambda_H^2(\mu)$

| Parameters                   | Grozin and Neubert              | Nishikawa and Tanaka            | this work                       |
|------------------------------|---------------------------------|---------------------------------|---------------------------------|
| $\mathcal{R}(1 \text{ GeV})$ | $(0.6 \pm 0.4)$                 | $(0.5 \pm 0.4)$                 | $(0.1 \pm 0.1)$                 |
| $\lambda_H^2$ (1 GeV)        | $(0.18 \pm 0.07) \; { m GeV^2}$ | $(0.06 \pm 0.03) \text{ GeV}^2$ | $(0.11 \pm 0.05) \text{ GeV}^2$ |
| $\lambda_E^2$ (1 GeV)        | $(0.11 \pm 0.06) \ { m GeV^2}$  | $(0.03 \pm 0.02) \ { m GeV^2}$  | $(0.01 \pm 0.01) \ { m GeV^2}$  |

- The CRC explores the flavour sector of the SM to high precision
- We benefit from the interplay of many sophisticated tools, which we also further develop



- The CRC explores the flavour sector of the SM to high precision
- We benefit from the interplay of many sophisticated tools, which we also further develop



Many of these tools and aspects are also important in other projects of the CRC

- The CRC explores the flavour sector of the SM to high precision
- We benefit from the interplay of many sophisticated tools, which we also further develop



- Many of these tools and aspects are also important in other projects of the CRC
- Many more interesting results are underway and expected till the end of FP 1.