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Axions and axion-like particles (ALPs) are well motivated theoretically:

Motivation
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‣ Peccei-Quinn solution to strong CP problem


‣ ALPs as pseudo Nambu-Goldstone bosons


‣ Light but weakly-coupled new particles are 
an interesting alternative to heavy new 
particles and might provide hints about 
physics at energies scales out of the reach 
for direct searches at the LHC


‣ Importance of low-energy processes in 
constraining ALP couplings

[Peccei, Quinn (1977); Weinberg (1978); Wilczek (1978)]



Assume the scale of global symmetry breaking   is above the weak 
scale, and consider the most general effective Lagrangian for a pseudoscalar 
boson  coupled to the SM via classically shift-invariant interactions, broken 
only by a soft mass term:

Λ = 4π f

a

2.1 Choice of the operator basis

The most general e↵ective Lagrangian for this particle including operators of up to dimension 5
reads [36]1
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Here G
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A
µ⌫ and Bµ⌫ are the field-strength tensors of SU(3)c, SU(2)L and U(1)Y , and
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B↵� etc. (with ✏0123 = 1) are the dual field-strength tensors. The sum in the first
line extends over the chiral fermion multiplets F of the SM. The quantities cF are hermitian
matrices in generation space. For the couplings of a to the U(1)Y and SU(2)L gauge fields,
the additional terms arising from a constant shift a ! a+ c of the ALP field can be removed
by field redefinitions. The coupling to QCD gauge fields is not invariant under a continuous
shift transformation because of instanton e↵ects, which however preserve a discrete version
of the shift symmetry, under which a ! a + n⇡f/cGG with integer n [3, 4]. Above we have
indicated the suppression of the dimension-5 operators with the ALP decay constant f , which
is related to the relevant new-physics scale by ⇤ = 4⇡f . This is the characteristic scale of global
symmetry breaking, assumed to be far above the weak scale. It is then a good approximation
to neglect contributions from higher-dimensional operators, which are suppressed by higher
powers of 1/f .2 Since our e↵ective theory only contains the SM particles and the ALP as
degrees of freedom, it would need to be modified in scenarios with a new-physics sector between
the weak scale and the scale of global symmetry breaking (v < MNP < 4⇡f). Even in this
case, the e↵ective Lagrangian (1) o↵ers a model-independent description of the physics below
the intermediate scale MNP.

The physical ALP mass is given by the sum of the explicit soft breaking term m
2
a,0 and the

contribution to the mass generated by non-perturbative QCD dynamics [6, 37, 38], such that
at lowest order in chiral perturbation theory
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where f⇡ ' 130MeV is the pion decay constant. The correction to the first term in this
relation will be discussed in Section 7. Whereas for the classical QCD axion (with m

2
a,0 = 0)

there is a strict relation between the mass and the coupling to gluons, the presence of the
additional contribution m

2
a,0 allows for heavier ALPs, which however are still naturally much

lighter than the scale f as long as the ALP is a pseudo Nambu–Goldstone boson and the shift
symmetry is e↵ective. It is possible to generate this additional contribution dynamically using

1The ALP couplings to fermions and gauge bosons in (1) are related to the analogous couplings introduced
in [22] by f = ⇤/(4⇡), cF = CF /(4⇡) and cV V = 4⇡ CV V with V = G, W, B.

2In the literature on QCD axions f is often eliminated in favor of the axion decay constant fa, defined such
that 1/fa ⌘ �2cGG/f . The parameter 1/fa then determines the strength of the axion–gluon coupling.

3

Effective Lagrangian in the UV 

hermitian matrices

Couplings to Higgs bosons only arise in higher orders:

where cw ⌘ cos ✓w denotes the cosine of the weak mixing angle, and the last expression holds
in unitary gauge. Despite appearance, this operator does not give rise to a tree-level h ! Za

matrix element; the resulting tree-level graphs precisely cancel each other [42]. Indeed, a term
CZhOZh in the Lagrangian is redundant, because it can be reduced to the fermionic operators
in (1) using the equations of motion for the Higgs doublet and the SM fermions [42]. The field
redefinitions

� ! e
i⇠a

� , uR ! e
i⇠a

uR , dR ! e
�i⇠a

dR , eR ! e
�i⇠a

eR , (3)

with ⇠ = CZh/⇤, eliminate OZh and shift the flavor matrices CF of the SU(2)L singlet fermions
by1

Cu ! Cu � CZh 1 , Cd ! Cd + CZh 1 , Ce ! Ce + CZh 1 , (4)

while the matrices CQ and CL of the SU(2)L doublets remain unchanged. There are no addi-
tional contributions to the operators in (1) involving the gauge fields, because the combination
of axial-vector currents induced by the shifts in (4) is anomaly free.

In this work we will be agnostic about the values of the Wilson coe�cients. We will
show that ALP searches at high-energy colliders are sensitive to couplings Ci/⇤ ranging from
(1TeV)�1 to (100TeV)�1. In weakly-coupled UV completions one expects that the operators
describing ALP couplings to SM bosons have loop-suppressed couplings (see e.g. [48] for a
recent discussion). This is in line with estimates based on naive dimensional analysis, which
we briefly discuss in Appendix A. Departures from these estimates can arise in models involving
e.g. large multiplicities of new particles in loops. It is common practice in the ALP literature
to absorb potential loop factors that may arise into the Wilson coe�cients Ci. As we will
discuss in Section 4, the puzzle of the anomalous magnetic moment of the muon can be
resolved within our framework if C��/⇤ = O(1/TeV). Probing this region at colliders is thus
a particularly well motivated target [41]. We emphasize, though, that by using the search
strategies developed here it will be possible to probe even loop-suppressed couplings as long
as the new-physics scale ⇤ is in the TeV range.

The ALP can receive a mass by means of either an explicit soft breaking of the shift
symmetry or through non-perturbative dynamics, like in the case of the QCD axion [3, 4]. In
the absence of an explicit breaking, QCD dynamics generates a mass term given by [49–51]
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
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�
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�
. (5)

When an explicit symmetry-breaking mass term ma,0 is included in the e↵ective Lagrangian
(1), the resulting mass squared m

2

a = m
2

a,0+m
2

a, dyn becomes a free parameter. We will assume
that ma ⌧ v. At dimension-6 order and higher, several additional operators can arise. The
ALP couplings to the Higgs field are those most relevant to our analysis. They are
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The first two terms are the leading Higgs portal interactions, which give rise to the decay
h ! aa. Note that the second term, which explicitly violates the shift symmetry, is allowed

1In addition, the coe�cient Cah of the Higgs-portal operator in (6) is shifted by Cah ! Cah � (CZh)2.

5

[Georgi, Kaplan, Randall (1986)]

[Dobrescu, Landsberg, Matchev (2000);

Bauer, MN, Thamm (2017)]
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• The only possible dimension-5 coupling to the Higgs doublet


is a redundant operator, which can be removed by means of the field 
redefinitions                            and                                as long as:


 


• This adds                            to the ALP-fermion couplings, i.e.:  

non-abelian extensions of the SM, in which additional instanton contributions arise [9, 39–51],
or using the recently proposed mechanism of axion kinetic misalignment, in which the axion
shift symmetry is explicitly broken in the early universe [52]. It is thus possible to generate
an ALP mass significantly larger than the contribution from QCD instantons while preserving
the Peccei–Quinn solution of the strong CP problem.

The ALP couplings cF to the SM fermions can, in principle, have a non-trivial structure in
generation space, thereby giving rise to flavor-changing neutral current interactions mediated
by ALP exchange. The phenomenological constraints on such couplings are very strong,
especially for light ALPs, which can be produced in the decays of kaons or B mesons [53–59],
and which can give sizable contributions to flavor-changing transitions in the lepton sector
[60–62] and to electric dipole moments [63, 64]. In extensions of the SM in which the new-
physics scale ⇤ = 4⇡f is not very far above the TeV scale, the coupling matrices cF must have
a hierarchical structure in order to be consistent with these constraints. From the point of
view of model building, such a structure can be ensured by imposing the principle of minimal
flavor violation [65]. Under this hypothesis, the matrices cQ and cq in the quark sector can
be expanded as
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where ✏ counts the order in the spurion expansion. Analogous expressions apply in the lepton
sector. The phenomenological implications of these results will be discussed later.

2.2 A redundant operator

The form of the e↵ective Lagrangian (1) is not unique. At dimension-5 order one can also
write down an ALP coupling to the Higgs doublet �, given by
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The operator O� is redundant, however, because it can be reduced to the fermionic operators
in (1) using the field equations for the Higgs doublet and the SM fermions [36]. Indeed, the
field redefinitions � ! e
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eliminate the term c� O� from the Lagrangian at the expense of shifting the flavor matrices
cF by

cF ! cF + �F c� . (6)
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The first three relations in (5) ensure that the SM Yukawa interactions are invariant under the
field redefinitions. The fourth relation guarantees that the combination of fermion currents
induced by the field redefinitions is anomaly free, and hence no additional contributions to
the coe�cients of the operators in (1) involving the gauge fields are generated.

The conditions (5) define a one-parameter class of field redefinitions, which one can use to
eliminate the operatorO� from the e↵ective Lagrangian. One particular solution is given by the
choice �u = �1, �d = �e = 1 and �Q = �L = 0, which was adopted in [66, 67] and eliminates
O� in favor of a linear combination of operators involving right-handed quark currents. A
di↵erent solution consists of the choice �F = �2YF , where YF denotes the hypercharge of the
fermion multiplet F [36, 58]. In general, the derivative couplings of the ALP are only defined
modulo generators of exact global symmetries of the SM, which include baryon and lepton
number. We will see later that physical quantities are independent of the particular choice of
�F values as long as the conditions (5) are satisfied.

It follows from this discussion that the redundant operator O� can be re-expressed in the
form

O� = O� +
X

F

�F OF , with OF =
@
µ
a

f
 ̄

i
F �µ 

i
F , (7)

where a sum over the generation index i is implied, and the new operator O� vanishes by the
equations of motion. It is a well-known fact that such operators do not need to be included
in the renormalization of the basis operators in an e↵ective field theory [68, 69]. Hence, it is
consistent to leave out the operator O� from the e↵ective Lagrangian (1). As we will see in
Section 3, the original operator O� is needed as a counterterm to absorb some UV divergences
of loop diagrams involving the fermionic operators OF . The correct treatment then consists
of projecting O� back onto our basis using the replacement rule [70–72]

O� !

X

F

�F OF . (8)

2.3 Equivalent forms of the e↵ective Lagrangian

Another important freedom in writing down the e↵ective Lagrangian concerns the structure
of the ALP couplings to fermions. One can integrate by parts in the third term in (1) and use
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, Ỹu = i

�
Yu cu � cQYu

�
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A useful alternative form of the Lagrangian involves non-derivative couplings:
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Alternative operator basis
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⌘

+ c̃GG
↵s

4⇡

a

f
G

a
µ⌫ G̃

µ⌫,a + c̃WW
↵2

4⇡

a

f
W

A
µ⌫ W̃

µ⌫,A + c̃BB
↵1

4⇡

a

f
Bµ⌫ B̃

µ⌫
,

(9)

where
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, Ỹu = i

�
Yu cu � cQYu

�
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Figure 1: Contributions to the a ! gg decay amplitude involving the ALP–gluon coupling (left)
and the ALP couplings to quarks (right). The ALP is drawn as a dotted line. The black circles
indicate vertices deriving from the dimension-5 operators in the e↵ective Lagrangian (1).

and
c̃GG = cGG + TF Tr (cu + cd �NL cQ) ,

c̃WW = cWW � TF Tr (Nc cQ + cL) ,

c̃BB = cBB + Tr
h
Nc

�
Y

2
u cu + Y

2
d cd �NL Y

2
Q cQ

�
+ Y

2
e ce �NL Y

2
L cL

i
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(11)

Here the traces are over generation indices. TF = 1
2 fixes the normalization of the SU(N) group

generators, Nc = 3 is the number of colors, and NL = 2 denotes the number of weak isospin
components. YQ = 1

6 , Yu = 2
3 , Yd = �

1
3 , YL = �

1
2 and Ye = �1 denote the hypercharge

quantum numbers of the SM quarks and leptons. The e↵ective Lagrangians (1) and (9) are
equivalent as long as these relations are taken into account. Note, however, that in (9) there
is no apparent reason for the complex matrices Ỹf to have any particular structure. It is the
shift symmetry encoded in the e↵ective ALP Lagrangian (1) that gives rise to the hierarchical
structure of these matrices, which results from the appearance of the SM Yukawa matrices
in (10). This feature distinguishes an ALP from a generic pseudoscalar boson a. We thus
prefer to take the Lagrangian (1) as the starting point of our calculations. Nevertheless, we
will see that the combinations c̃V V of ALP–boson and ALP–fermion couplings shown in (11)
play an important role in phenomenological applications of the e↵ective Lagrangian and in
the evolution of the ALP couplings from the new-physics scale ⇤ down to lower energies.

It is instructive to illustrate the equivalence of the e↵ective Lagrangians (1) and (9) with
a concrete example. Consider the decay of an ALP with mass ma � ⇤QCD into two gluons,
which manifest themselves as two jets in the final state. The relevant contributions to the
decay amplitude are shown in Figure 1. Calculating the decay rate at one-loop order in
perturbation theory, taking into account radiative corrections calculated in [73], one obtains
[22]
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Here nq is the number of light quark flavors with mass below the ALP mass, and
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where
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Factoring out the gauge couplings from cVV ensures that (at least to 2 loops):


For the ALP-fermion couplings, we have computed:

section captures the leading contributions in each coupling irrespective of the relative magni-
tude of the ALP–boson and ALP–fermion couplings in the high-energy theory. We emphasize,
however, that in cases where the coe�cients cV V and cF are of similar magnitude, one-loop
diagrams involving the coe�cients cV V have the same scaling as two-loop diagrams involving
the coe�cients cF , see Figure 2. For consistency, we thus include all two-loop contributions
in the gauge couplings in the RG equations for the ALP–fermion couplings.

3 Renormalization-group evolution to the weak scale

The e↵ective Lagrangian (1) is assumed to arise from integrating out some new heavy par-
ticles at a scale ⇤ = 4⇡f far above the weak scale. Assuming the ALP mass is small – of
order 100GeV or less – we can evolve the Wilson coe�cients and operators in the e↵ective
Lagrangian down to the scale of electroweak symmetry breaking by solving their RG equa-
tions. We now derive the explicit form of these equations, working consistently at two-loop
order in gauge couplings and one-loop order in Yukawa interactions. These are the lowest or-
ders at which these interactions contribute to the evolution equations for the ALP couplings.
In models in which the boson couplings are enhanced over the fermion ones, the two-loop
gauge contributions can give rise to the dominant evolution e↵ects. Two-loop corrections in
the Yukawa couplings, or mixed two-loop gauge–Yukawa contributions, are neglected in our
approach. They would give rise to small multiplicative corrections of the fermion couplings,
but they do not introduce new ALP coupling parameters on the right-hand side of the evo-
lution equations. Thus, there is no scenario in which these neglected two-loop contributions
could give rise to dominant e↵ects. Some technical details of our derivations are relegated to
Appendix A. The RG equations for the ALP couplings appearing in the alternative form of
the e↵ective Lagrangian in (9) can be derived from the equations below in a straightforward
way. They are discussed in Appendix B.

3.1 Derivation of the RG evolution equations

Pulling out one factor of ↵i in the definitions of the ALP couplings to gauge fields in (1)
ensures that the Wilson coe�cients cV V are scale independent (at least up to two-loop order
in gauge couplings), i.e.

d

d lnµ
cV V (µ) = 0 ; V = G,W,B . (17)

For the QCD coe�cient cGG this follows from the explicit calculations performed in [77], and
an analogous statement holds for cWW and cBB. This is di↵erent from the case of a scalar
(CP-even) field coupled to two gauge fields, in which the corresponding couplings exhibit a
non-trivial RG evolution starting at two-loop order [78, 79]. We have checked explicitly that
the one-loop diagrams involving the scalar Higgs doublet do not give rise to a scale dependence
of the coe�cients cWW and cBB either. The contributions from these graphs are absorbed by
the renormalization of the gauge couplings.

The Wilson coe�cients cF of the ALP interactions with fermions in (1) are scale-dependent
quantities and satisfy rather complicated RG equations. At one-loop order there are contri-
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Figure 3: One-loop diagrams accounting for operator mixing through Yukawa interactions and
gauge interactions.

representation of SU(N), and we have abbreviated

X = Tr
h
3cQ

�
YuY

†
u � YdY

†
d

�
� 3cuY

†
u Yu + 3cdY

†
d Yd � cLYeY

†
e + ceY

†
e Ye

i
. (19)

All quantities on the right-hand side of (18) must be evaluated at the scale µ. Note that
the ALP–boson and ALP–fermion couplings entering at O(↵2

i ) appear precisely in the linear
combinations already encountered in (11), i.e.

c̃GG = cGG +
1

2
Tr (cu + cd � 2cQ) ,

c̃WW = cWW �
1

2
Tr (3cQ + cL) ,

c̃BB = cBB + Tr
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◆
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(20)

To the best of our knowledge, the contributions proportional to the quantity X, which descend
from the redundant operator O�, as well as the two-loop contributions to the RG evolution
equations for the ALP couplings have been derived here for the first time. The appearance of
the coe�cients �F in the above relations, which are constrained by the conditions (5) but are
otherwise arbitrary, appears puzzling at first sight. However, all contributions proportional
to the unit matrix in the RG equations give rise to flavor-diagonal contributions after trans-
formation to the mass basis. We will see in Sections 4 and 5 that in predictions for physical
quantity any ambiguity in the choice of the �F parameters cancels out.

The relations in (17)–(20) form a set of coupled di↵erential equations, from which the
scale dependence of the various ALP couplings can be derived. We can simplify the structure
of the evolution equations by making use of the freedom to redefine the fermion fields in
the SM Lagrangian. The SM Yukawa matrices can be diagonalized by means of bi-unitary
transformations, such that

U †
u Yu Wu = Y diag

u = diag(yu, yc, yt) ,

U †
d Yd Wd = Y diag

d = diag(yd, ys, yb) ,

U †
e Ye We = Y diag

e = diag(ye, yµ, y⌧ ) .

(21)
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quantity any ambiguity in the choice of the �F parameters cancels out.

The relations in (17)–(20) form a set of coupled di↵erential equations, from which the
scale dependence of the various ALP couplings can be derived. We can simplify the structure
of the evolution equations by making use of the freedom to redefine the fermion fields in
the SM Lagrangian. The SM Yukawa matrices can be diagonalized by means of bi-unitary
transformations, such that

U †
u Yu Wu = Y diag

u = diag(yu, yc, yt) ,

U †
d Yd Wd = Y diag

d = diag(yd, ys, yb) ,

U †
e Ye We = Y diag

e = diag(ye, yµ, y⌧ ) .

(21)
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Figure 2: Examples of one-loop and two-loop diagrams contributing at the same order in pertur-
bation theory if cV V and cF have similar magnitude.

The sum runs over the six quark species of the SM. The parameters cqq(ma) describe the
flavor-diagonal ALP couplings to the quark mass eigenstates and will be defined later in
(50). They are connected with the ALP–fermion couplings cq and cQ after these have been
transformed into the mass basis of the SM quarks. The above result is obtained based on the
e↵ective Lagrangian (1). If instead the calculations are starting from the alternative form of
the e↵ective Lagrangian shown in (9), one finds

C
e↵
gg = c̃GG +

1

2

X

q

cqq(ma)


B1

✓
4m2

q

m2
a

◆
� 1

�
. (15)

The “�1” inside the bracket accounts for the di↵erence in the fermion loop function, which
is a consequence of the di↵erence in the Feynman rules for the ALP–fermion vertices derived
from the two Lagrangians. At the same time, the coe�cient c̃GG di↵ers from cGG by the
terms shown in the first equation in (11). Because of the trace, the di↵erence between the two
parameters is invariant under the unitary transformation to the mass basis, and one finds

c̃GG = cGG +
1

2
Tr (cu + cd � 2cQ) = cGG +

1

2

X

q

cqq . (16)

We thus find that the above two relations for Ce↵
gg are indeed equivalent.

It is possible to work with a hybrid form of the e↵ective ALP Lagrangian, in which the
ALP–fermion interactions consist of both derivative terms, such as in (1), and non-derivative
terms, such as in (4). This is useful, in particular, for low-energy applications in the context
of the chiral e↵ective Lagrangian. We will come back to this point in Section 7.

Our definitions of the ALP couplings in (1) are such that the parameters cV V and cF are
expected to be of O(1) when one applies the counting rules of naive dimensional analysis
[74–76]. These rules imply, in particular, that the ALP–boson couplings cV V should be ac-
companied by a loop factor ⇠ ↵i/(4⇡), as shown in (1). However, one can conceive models
in which these couplings are induced by loops involving a parametrically large number Nf

of new heavy fermions, such that cV V / Nf � 1 can (at least partially) compensate for
the loop suppression. In our analysis below, we account for this possibility by including the
one-loop corrections proportional to the ALP–boson couplings in the RG equations for the
ALP–fermion couplings, even though they provide two-loop contributions ⇠ (↵i/⇡)2 to these
equations. A second rationale for this approach lies in the fact that in many concrete ALP
models only certain ALP couplings are non-zero at the UV scale. Our treatment in the next

7
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Figure 3: One-loop diagrams accounting for operator mixing through Yukawa interactions and
gauge interactions.

representation of SU(N), and we have abbreviated

X = Tr
h
3cQ

�
YuY

†
u � YdY

†
d

�
� 3cuY

†
u Yu + 3cdY

†
d Yd � cLYeY

†
e + ceY

†
e Ye

i
. (19)

All quantities on the right-hand side of (18) must be evaluated at the scale µ. Note that
the ALP–boson and ALP–fermion couplings entering at O(↵2

i ) appear precisely in the linear
combinations already encountered in (11), i.e.

c̃GG = cGG +
1

2
Tr (cu + cd � 2cQ) ,

c̃WW = cWW �
1

2
Tr (3cQ + cL) ,

c̃BB = cBB + Tr

✓
4

3
cu +

1

3
cd �

1

6
cQ + ce �

1

2
cL

◆
.

(20)

To the best of our knowledge, the contributions proportional to the quantity X, which descend
from the redundant operator O�, as well as the two-loop contributions to the RG evolution
equations for the ALP couplings have been derived here for the first time. The appearance of
the coe�cients �F in the above relations, which are constrained by the conditions (5) but are
otherwise arbitrary, appears puzzling at first sight. However, all contributions proportional
to the unit matrix in the RG equations give rise to flavor-diagonal contributions after trans-
formation to the mass basis. We will see in Sections 4 and 5 that in predictions for physical
quantity any ambiguity in the choice of the �F parameters cancels out.

The relations in (17)–(20) form a set of coupled di↵erential equations, from which the
scale dependence of the various ALP couplings can be derived. We can simplify the structure
of the evolution equations by making use of the freedom to redefine the fermion fields in
the SM Lagrangian. The SM Yukawa matrices can be diagonalized by means of bi-unitary
transformations, such that

U †
u Yu Wu = Y diag

u = diag(yu, yc, yt) ,

U †
d Yd Wd = Y diag

d = diag(yd, ys, yb) ,

U †
e Ye We = Y diag

e = diag(ye, yµ, y⌧ ) .

(21)

10

1-loop Yukawa int.

2-loop gauge int.

Evolution to the weak scale

[Chetyrkin, Kniehl, Steinhauser, Bardeen (1998)] 

[Choi, Im, Park, Yun (2017); 

Martin Camalich, Pospelov, Vuong, Ziegler, Zupan (2020);


Heiles, König, MN (2020)] 

[Altarelli, Ross (1988);

Chetyrkin, Kniehl, Steinhauser, Bardeen (1998)] [Kodaira (1980); Larin (1993)] 
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Figure 3: One-loop diagrams accounting for operator mixing through Yukawa interactions and
gauge interactions.

representation of SU(N), and we have abbreviated

X = Tr
h
3cQ

�
YuY

†
u � YdY

†
d

�
� 3cuY

†
u Yu + 3cdY

†
d Yd � cLYeY

†
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†
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i
. (19)

All quantities on the right-hand side of (18) must be evaluated at the scale µ. Note that
the ALP–boson and ALP–fermion couplings entering at O(↵2

i ) appear precisely in the linear
combinations already encountered in (11), i.e.
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1

2
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(20)

To the best of our knowledge, the contributions proportional to the quantity X, which descend
from the redundant operator O�, as well as the two-loop contributions to the RG evolution
equations for the ALP couplings have been derived here for the first time. The appearance of
the coe�cients �F in the above relations, which are constrained by the conditions (5) but are
otherwise arbitrary, appears puzzling at first sight. However, all contributions proportional
to the unit matrix in the RG equations give rise to flavor-diagonal contributions after trans-
formation to the mass basis. We will see in Sections 4 and 5 that in predictions for physical
quantity any ambiguity in the choice of the �F parameters cancels out.

The relations in (17)–(20) form a set of coupled di↵erential equations, from which the
scale dependence of the various ALP couplings can be derived. We can simplify the structure
of the evolution equations by making use of the freedom to redefine the fermion fields in
the SM Lagrangian. The SM Yukawa matrices can be diagonalized by means of bi-unitary
transformations, such that

U †
u Yu Wu = Y diag

u = diag(yu, yc, yt) ,

U †
d Yd Wd = Y diag

d = diag(yd, ys, yb) ,

U †
e Ye We = Y diag

e = diag(ye, yµ, y⌧ ) .

(21)

10

with:

Evolution to the weak scale

butions from Yukawa interactions, which result from the first three graphs shown in Figure 3.
While the external-leg corrections (first two graphs) give rise to multiplicative renormaliza-
tion e↵ects, which in general are not diagonal in generation space, the vertex diagram (third
graph) leads to a mixing of the SU(2)L singlet and doublet coe�cients cQ and cu,d, as well
as cL and ce. Our results for these contributions to the RG equations agree with the corre-
sponding expressions derived in [55, 58, 80]. The first diagram in the second row of Figure 3
shows a class of UV-divergent one-loop diagrams which require the operator O� in (4) as a
counterterm. As we have discussed in Section 2 this operator is redundant. It is therefore
required to map it back onto our operator basis using the replacement rule (8). This gives rise
to universal contributions in the RG equations proportional to the parameters �F in (5). In
previous studies the operator O� was included as a basis operator, and its coe�cient C� not
only entered the evolution equations for the ALP–fermion couplings, but in fact was assumed
to obey an independent RG equation itself [55, 58]. Such a treatment gives rise to ambiguous
results (see e.g. the discussion in Section 3 of [72]), because it is impossible to distinguish the
matrix elements of O� from the matrix elements of the fermionic operators OF in (8).3

In addition, there is a mixing of the Wilson coe�cients cV V of the ALP–boson interactions
into the coe�cients cF , shown by the last diagram in Figure 3. For the case of QCD this mixing
has been studied in [77, 81],4 and we agree with the findings of these authors. Note that, owing
to our normalization of the coe�cients cV V , the corresponding terms in the evolution equations
are proportional to ↵

2
i , and they are diagonal in generation space. Finally, at two-loop order in

gauge interactions there are additional generation-independent contributions to the evolution
equations, which are proportional to the ALP–fermion couplings. They arise from the second
diagram shown in Figure 2 and are diagonal in generation space. We have derived these
contributions by generalizing the corresponding results obtained for QCD in [82, 83] to the
gauge group of the SM. Combining all e↵ects, we obtain (with q = u, d)

d

d lnµ
cQ(µ) =

1

32⇡2

�
YuY

†
u + YdY

†
d , cQ

 
�

1

16⇡2

�
Yu cuY

†
u + Yd cdY

†
d

�

+


�Q

8⇡2
X �

3↵2
s

4⇡2
C

(3)
F c̃GG �

3↵2
2

4⇡2
C

(2)
F c̃WW �

3↵2
1

4⇡2
Y

2
Q c̃BB

�
,

d

d lnµ
cq(µ) =
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�
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q Yq, cq
 
�
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8⇡2
Y †

q cQYq +


�q

8⇡2
X +

3↵2
s

4⇡2
C

(3)
F c̃GG +

3↵2
1

4⇡2
Y

2
q c̃BB

�
,

d

d lnµ
cL(µ) =

1
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†
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†
e +


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4⇡2
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(2)
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3↵2
1

4⇡2
Y

2
L c̃BB

�
,

d

d lnµ
ce(µ) =

1

16⇡2

�
Y †

e Ye, ce
 
�

1

8⇡2
Y †

e cLYe +


�e

8⇡2
X +

3↵2
1

4⇡2
Y

2
e c̃BB

�
, (18)

where C
(N)
F = N2�1

2N is the eigenvalue of the quadratic Casimir operator in the fundamental

3This distinction is possible in related models, in which the analogue of the operator O� is not redundant.
An example is provided by the Z

0 model studied in [80], in which @
µ
a in (1) and (4) is replaced by Z

0µ.
4Note that these authors define the dual field-strength tensor as well as the Levi–Civita symbol di↵erently

from us. As a result, their quantity G̃
µ⌫,a di↵ers from ours by a factor (�2).

9

We find: [Bauer, MN, Renner, Schnubel, Thamm (2020); see also: Chala, Guedes, Ramos, Santiago (2020)]
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Lagrangian at the weak scale4 Transformation to the mass basis

Once the e↵ective Lagrangian has been evolved to the weak scale µw, it is appropriate to
express it in terms of fields defined in the broken phase of the electroweak symmetry, which
correspond to the mass eigenstates of physical particles. This leads to

Le↵(µw) =
1

2
(@µa)(@

µ
a)�

m
2
a,0

2
a
2 + Lferm(µw) + cGG

↵s

4⇡

a

f
G

a
µ⌫ G̃

µ⌫,a + c��
↵

4⇡

a

f
Fµ⌫ F̃

µ⌫

+ c�Z
↵

2⇡sw cw

a

f
Fµ⌫ Z̃

µ⌫ + cZZ
↵

4⇡s2w c
2
w

a

f
Zµ⌫ Z̃

µ⌫ + cWW
↵

2⇡s2w

a

f
W

+
µ⌫ W̃

�µ⌫
,

(39)
where sw ⌘ sin ✓W and cw ⌘ cos ✓W denote the sine and cosine of the weak mixing angle, and
we have defined [22]

c�� = cWW + cBB , c�Z = c
2
w cWW � s

2
w cBB , cZZ = c

4
w cWW + s

4
w cBB . (40)

All coupling parameters and operators in (39) are now defined at the weak scale µw. Recall
that the Wilson coe�cients cV V are scale independent.

To obtain the ALP interactions with fermions contained in Lferm we must transform the
fermion fields to the mass basis, in which the Yukawa matrices are diagonalized, see (21).
Under the corresponding field redefinitions the flavor matrices cF transform into new hermitian
matrices

kU = U †
ucQUu , kD = U †

d cQUd , kE = U †
e cLUe ,

kf = W †
f cfWf ; f = u, d, e .

(41)

Note that the two matrices kU and kD are connected via the CKM matrix V , such that

kD = V †kUV , (42)

and are therefore not independent. Likewise, the ALP couplings to the neutrinos are identical
to those to the left-handed charged leptons, i.e. k⌫ = kE. In terms of these matrices we obtain

Lferm(µw) =
@
µ
a

f

h
ūLkU �µuL + ūRku�µuR + d̄LkD�µdL + d̄Rkd�µdR

+ ⌫̄Lk⌫ �µ⌫L + ēLkE�µeL + ēRke�µeR

i
.

(43)

The matrices kF and kf are evaluated at the scale µw. The corresponding expressions can be
obtained from the results compiled in Section 3.2 by recalling that these relations have been
derived in a basis for which all transformation matrices are equal to the unit matrix except
for Ud = V . It thus follows that kU = cQ, kE = k⌫ = cL, ku,d,e = cu,d,e, while kD = V †cQV .

It is instructive to study what the hypothesis of minimal flavor violation [65] implies for the
structure of the ALP–fermion couplings after electroweak symmetry breaking. Transforming
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that the Wilson coe�cients cV V are scale independent.

To obtain the ALP interactions with fermions contained in Lferm we must transform the
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The matrices kF and kf are evaluated at the scale µw. The corresponding expressions can be
obtained from the results compiled in Section 3.2 by recalling that these relations have been
derived in a basis for which all transformation matrices are equal to the unit matrix except
for Ud = V . It thus follows that kU = cQ, kE = k⌫ = cL, ku,d,e = cu,d,e, while kD = V †cQV .

It is instructive to study what the hypothesis of minimal flavor violation [65] implies for the
structure of the ALP–fermion couplings after electroweak symmetry breaking. Transforming
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matrices cQ, cu etc. rotated to the mass basis

Effective Lagrangian in the broken phase:


with:


In the next step, we integrate out the heavy particles t, W, Z and h.
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Peccei-Quinn symmetry breaking

Electroweak symmetry breaking

Chiral symmetry breaking

Effective ALP Lagrangian 
in the UV

Effective ALP Lagrangian 
after EWSB

Effective chiral Lagrangian 
coupled to ALP
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Matching contributions to the ALP-boson couplings are absent in the 
standard basis (for a light ALP): 


but there are non-trivial matching conditions to the ALP-fermion couplings:
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Figure 5: One-loop matching contributions to the ALP–fermion couplings. In the second diagram
(V1V2) = (WW ), (ZZ), (Z�) or (�Z). In the last two diagrams V = W, Z, but in the sum of all
contributions only the W -boson graphs with internal top quarks (plus the corresponding graphs with
Goldstone bosons) give rise to non-zero contributions.

diagrams involving Higgs bosons give contributions proportional to the Yukawa couplings of
the external fermions. Since the top quark is integrated out in the e↵ective theory below the
weak scale, these graphs are proportional to y

2
f for some light SM fermion f and hence can

be neglected. The first diagram in Figure 5 arises from ALP mixing with the Z boson via a
top-quark loop. The second graph gives rise to matching contributions proportional to the
ALP–boson couplings. The corresponding e↵ects were calculated in [22] for the case where
the external fermions are leptons. Here we generalize these results to the case of quarks,
where however contributions involving virtual top quarks require a special treatment. The
remaining diagrams contain vertex and external-leg corrections from loops involving heavy W

and Z bosons. We have calculated these diagrams in a general R⇠ gauge, finding that the sum
of all contributions yields a gauge-invariant answer. Moreover, the sum of all contributions
involving Z bosons and their Goldstone bosons vanishes. For the diagrams involving W

bosons a non-zero contribution remains, which arises from graphs containing internal top
quarks. These diagrams contribute to the couplings kD(µw) in the left-handed down-quark
sector only, and they are the only source of flavor o↵-diagonal e↵ects. Combining all terms,
we find the matching contributions (with F = U,D,E, ⌫ and f = u, d, e)
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These contributions must be added to the RG-evolved coe�cients at µ = µw, so that one
obtains kF,f (µw) +�kF,f (µw) for the ALP–fermion couplings just below the weak scale. All
scale-dependent parameters on the right-hand side of the above relations are evaluated at the
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Weak-scale matching
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Figure 4: Examples of one-loop matching contributions to the ALP–boson couplings. These
diagrams do not give rise to matching contributions when the form of the e↵ective Lagrangian in (1)
is employed.

Matching corrections of order m2
a/m

2
t or m2

a/m
2
W , which arise from the Taylor expansions of

the functions B1(⌧) and B2(⌧) in (48) in the region where ⌧ � 1, would contribute to the
Wilson coe�cients of dimension-7 operators in the low-energy e↵ective theory below the weak
scale, which we neglect for simplicity.

As a side remark, let us mention briefly that the situation would be di↵erent if we were to
perform the calculations based on the alternative form of the e↵ective Lagrangian shown in
(9). In this case there are non-vanishing matching contributions from top-quark loop diagrams,
which lead to
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Recall that, according to (11) and (40), the coe�cients c̃GG and c̃�� above the weak scale are
related to the corresponding unprimed coe�cients by
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where the sum in the first (second) equation runs over all quark (fermion) species in the SM.
When crossing the weak scale, one needs to add the matching contributions given above, and
this has the e↵ect of removing the contributions from the top quark in these relations. We
thus obtain
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(58)

The same procedure repeats itself as µ is evolved to lower energies and one crosses the threshold
of other heavy fermions.

5.2 Matching contributions to the ALP–fermion couplings

One-loop matching corrections to the ALP–fermion couplings arise from graphs containing
heavy electroweak gauge bosons. Some representative diagrams are shown in Figure 5. Loop
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These include, in particular, flavor-violating contributions to     : 

Weak-scale matching
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Figure 6: One-loop matching contributions to the ALP–fermion couplings. In the second diagram
(V1V2) = (WW ), (ZZ), (Z�) or (�Z). In the last two diagrams V = W, Z, but in the sum of all
contributions only the W -boson graphs with internal top quarks (plus the corresponding graphs with
Goldstone bosons) give rise to non-zero contributions.

diagrams involving Higgs bosons give contributions proportional to the Yukawa couplings of
the external fermions. Since the top quark is integrated out in the e↵ective theory below the
weak scale, these graphs are proportional to y

2
f for some light SM fermion f and hence can

be neglected. The first diagram in Figure 6 arises from ALP mixing with the Z boson via a
top-quark loop. The second graph gives rise to matching contributions proportional to the
ALP–boson couplings. The corresponding e↵ects were calculated in [22] for the case where
the external fermions are leptons. Here we generalize these results to the case of quarks,
where however contributions involving virtual top quarks require a special treatment. The
remaining diagrams contain vertex and external-leg corrections from loops involving heavy W

and Z bosons. We have calculated these diagrams in a general R⇠ gauge, finding that the sum
of all contributions yields a gauge-invariant answer. Moreover, the sum of all contributions
involving Z bosons and their Goldstone bosons vanishes. For the diagrams involving W

bosons a non-zero contribution remains, which arises from graphs containing internal top
quarks. These diagrams contribute to the couplings kD(µw) in the left-handed down-quark
sector only, and they are the only source of flavor o↵-diagonal e↵ects. Combining all terms,
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These contributions must be added to the RG-evolved coe�cients at µ = µw, so that one
obtains kF,f (µw) +�kF,f (µw) for the ALP–fermion couplings just below the weak scale. All
scale-dependent parameters on the right-hand side of the above relations are evaluated at the
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scale µw. RG invariance requires that the ALP–boson couplings entering in these relations
must appear in the form of the couplings c̃V1V2 , at least in the coe�cients of the ln(µ2

w/m
2
W,Z)

terms. Hence, via the substitution cV1V2 ! c̃V1V2 we can account for an important subclass of
two-loop matching contributions. The scheme-dependent constant �1 arises from the treatment
of the Levi–Civita symbol in d dimensions. We obtain �1 = �

11
3 in a scheme where ✏

µ⌫↵� is
treated as a d-dimensional object, and �1 = 0 if it is instead treated as a 4-dimensional
quantity.

The non-trivial flavor structure is captured by the quantity
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where xt = m
2
t/m

2
W . These matching contributions are sources of flavor-changing ALP inter-

actions even if the underlying UV theory does not contain new sources of flavor or CP violation
beyond those present in the SM. We have neglected the Yukawa couplings of the light quarks
and leptons. In this approximation there are no flavor o↵-diagonal matching contributions in
the up-quark and lepton sectors.

5.3 ALP–fermion couplings below the electroweak scale

Flavor-diagonal couplings

The flavor-diagonal ALP–fermion interactions in (43) can be expressed in terms of vector and
axial-vector currents. The vector currents are conserved below the weak scale and thus do not
contribute to physical matrix elements. It follows that we can rewrite this Lagrangian in the
equivalent form (for µ . µw)

L
diag
ferm(µ) =

X

f 6=t

cff (µ)

2

@
µ
a

f
f̄ �µ�5f , (61)

where the sum runs over all charged fermion species in the low-energy theory (the quarks
u, d, s, c, b and the leptons e, µ, ⌧). The couplings cff have been defined in (50) in terms of
the diagonal elements of the matrices kf and kF . Note that the ALP–neutrino interactions
can be dropped in the low-energy Lagrangian (but not in the theory above the weak scale,
where they contribute at one-loop order to the ALP couplings to W and Z bosons). Using
integration by parts, the derivative on the neutrino axial-vector current vanishes because the
neutrinos are massless in the SM.

At the matching scale µw, the coe�cients cff (µw) are given by the sum of the contributions
from RG evolution, shown in (51) and (53), and weak-scale matching, see (59) and (60). In
this sum the dependence on the matching scale µw partially cancels out; however, some scale
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the up-quark and lepton sectors.
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u, d, s, c, b and the leptons e, µ, ⌧). The couplings cff have been defined in (50) in terms of
the diagonal elements of the matrices kf and kF . Note that the ALP–neutrino interactions
can be dropped in the low-energy Lagrangian (but not in the theory above the weak scale,
where they contribute at one-loop order to the ALP couplings to W and Z bosons). Using
integration by parts, the derivative on the neutrino axial-vector current vanishes because the
neutrinos are massless in the SM.

At the matching scale µw, the coe�cients cff (µw) are given by the sum of the contributions
from RG evolution, shown in (51) and (53), and weak-scale matching, see (59) and (60). In
this sum the dependence on the matching scale µw partially cancels out; however, some scale
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dependence remains and cancels when the evolution below the weak scale is taken into account
(see Section 6 below). In order to get a feeling for the magnitude of the radiative corrections
we choose the new-physics scale ⇤ = 4⇡f with f = 1TeV and evaluate the coe�cients cff (µ)
in the vicinity of µw = mt. We find numerically
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We use the two-loop expression for the running coupling ↵s(µ) and the one-loop approxima-
tions for the couplings ↵1(µ) and ↵2(µ), and we evaluate the function U(µw,⇤) using the
explicit form (37). For the couplings cdidi in the down-quark sector we work under the as-
sumption of minimal flavor violation and have approximated |Vtb|
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where the sums run over all quark and fermion flavors. We observe that electroweak radia-
tive corrections are generally very small, while the contributions proportional to ctt from the
Yukawa interactions as well as QCD e↵ects can be sizable. For example, in scenarios where
the ALP–boson couplings at the UV scale are an order of magnitude larger than the ALP-
fermion couplings, the corrections induced by c̃GG can give contributions to cqq(µw) of about
7%, whereas the contributions of c̃WW and c̃BB are negligible. The logarithms of the ratio
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where the sums run over all quark and fermion flavors. We observe that electroweak radia-
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We use the two-loop expression for the running coupling ↵s(µ) and the one-loop approxima-
tions for the couplings ↵1(µ) and ↵2(µ), and we evaluate the function U(µw,⇤) using the
explicit form (37). For the couplings cdidi in the down-quark sector we work under the as-
sumption of minimal flavor violation and have approximated |Vtb|

2
⇡ 1 and |Vtd|

2
⇡ |Vts|

2
⇡ 0.

From (20), the matching conditions c̃V V (⇤) can be written in the form
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(63)

where the sums run over all quark and fermion flavors. We observe that electroweak radia-
tive corrections are generally very small, while the contributions proportional to ctt from the
Yukawa interactions as well as QCD e↵ects can be sizable. For example, in scenarios where
the ALP–boson couplings at the UV scale are an order of magnitude larger than the ALP-
fermion couplings, the corrections induced by c̃GG can give contributions to cqq(µw) of about
7%, whereas the contributions of c̃WW and c̃BB are negligible. The logarithms of the ratio

22

dependence remains and cancels when the evolution below the weak scale is taken into account
(see Section 6 below). In order to get a feeling for the magnitude of the radiative corrections
we choose the new-physics scale ⇤ = 4⇡f with f = 1TeV and evaluate the coe�cients cff (µ)
in the vicinity of µw = mt. We find numerically
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We use the two-loop expression for the running coupling ↵s(µ) and the one-loop approxima-
tions for the couplings ↵1(µ) and ↵2(µ), and we evaluate the function U(µw,⇤) using the
explicit form (37). For the couplings cdidi in the down-quark sector we work under the as-
sumption of minimal flavor violation and have approximated |Vtb|
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⇡ 1 and |Vtd|
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⇡ |Vts|
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⇡ 0.

From (20), the matching conditions c̃V V (⇤) can be written in the form
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where the sums run over all quark and fermion flavors. We observe that electroweak radia-
tive corrections are generally very small, while the contributions proportional to ctt from the
Yukawa interactions as well as QCD e↵ects can be sizable. For example, in scenarios where
the ALP–boson couplings at the UV scale are an order of magnitude larger than the ALP-
fermion couplings, the corrections induced by c̃GG can give contributions to cqq(µw) of about
7%, whereas the contributions of c̃WW and c̃BB are negligible. The logarithms of the ratio

22

ALP couplings at the weak scale

The coe�cients Ce↵
�� and C

e↵
�Z in the first two cases are given by
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2
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,
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f

m2
Z

◆
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(47)

where Qf and N
f
c are the electric charges (in units of e) and number of colors of the SM

fermions (quarks and leptons), T f
3 denotes the weak isospin of the left-handed component of

the fermion f , and the sum runs over all SM fermion mass eigenstates. The relevant loop
functions read

B1(⌧) = 1� ⌧ f
2(⌧) , B2(⌧) = 1� (⌧ � 1) f 2(⌧) ,

B3(⌧1, ⌧2) = 1 +
⌧1⌧2

⌧1 � ⌧2

⇥
f
2(⌧1)� f

2(⌧2)
⇤
,

(48)

with f(⌧) as defined in (14). The function B1 ⇡ 1 for all light fermions with mass mf ⌧ ma,

while B1 ⇡ �
m2

a

12m2
f
for heavy fermions (mf � ma). Thus, each electrically charged fermion

lighter than the ALP adds a potentially large contribution to the e↵ective Wilson coe�cient
C

e↵
�� , while fermions heavier than the ALP decouple. Similarly, one finds that B3 ⇡ 1 for all

fermions much lighter than the Z boson (irrespective of the ALP mass), while for the top
quark |B3| ⌧ 1 as long as the ALP is lighter than the top-quark mass. In the third decay
rate in (46) we have defined the phase-space function �(x, y) = (1 � x � y)2 � 4xy and the
parameter integral

F =

Z 1

0

d[xyz]
2m2

t � xm
2
h � zm

2
Z

m2
t � xym2

h � yzm2
Z � xzm2

a

, (49)

where d[xyz] ⌘ dx dy dz �(1 � x � y � z). Throughout this paper mt ⌘ mt(mt) denotes the
running top-quark mass in the MS scheme evaluated at µ = mt. The quantity F is numerically
close to 1 for ALP masses below the weak scale. Finally, we have introduced the parameters

cfifi(µ) = [kf (µ)]ii � [kF (µ)]ii , (50)

which contain the relevant ALP couplings to fermions and will play an important role in our
discussion below. This definition generalizes relation (25) for the top quark to other ALP–
fermion couplings.

The scale evolution of these quantities from the new-physics scale ⇤ to the electroweak
scale can be derived from (34). For up-type quarks and charged leptons, the parameters cff
are equal to the di↵erences of ALP–fermion couplings considered in this result, and we have
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.

(51)

17

with
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Flavor off-diagonal coefficients with  and :


with:

f = 1 TeV μw = mt

cee(⇤)
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Figure 6: Axion–electron coupling cee(mt) in the DFSZ model for di↵erent values of tan � = vu/vd

and axion masses: ma = 1keV (solid), 1 eV (dashed), 1meV (dashed-dotted) and 1µeV (dotted).
The red curve depicts the coupling cee(⇤) at the high scale ⇤ = 4⇡f .

The evolution e↵ects in (65) are of potentially large importance not only for ALPs, but
also for the classical QCD axion. In order to illustrate this fact we consider the DFSZ model
[7, 8], in which the ALP couplings at the UV scale ⇤ = 4⇡f satisfy [87, 88]

cuiui(⇤) =
1

3
cos2 � , cdidi(⇤) = ceiei(⇤) =

1

3
sin2

� , cGG = �
1

2
, (67)

where tan � = vu/vd is the ratio of the vacuum expectation values of the two Higgs doublets,
with a phenomenologically motivated range spanning 0.28 < tan � < 140 [89]. The axion mass
is given by relation (2) with m

2
a,0 = 0, i.e. it is uniquely determined by the decay constant

f . Assuming that the masses of the additional Higgs bosons are larger than ⇤, we can evolve
these coupling parameters down to the weak scale. Figure 6 shows the axion–electron coupling
at the high scale (red line) and the RG-evolved couplings cee(mt) at the electroweak scale for
di↵erent axion masses. The smaller the axion mass, the larger are the evolution e↵ects because
the corresponding values of ⇤ increase proportional to 1/ma, ranging from ⇤ ' 73TeV for
ma = 1keV to ⇤ ' 7.3 · 1010TeV for ma = 1µeV. The figure shows that in the DFSZ model
the axion–electron coupling can be enhanced through evolution e↵ects by up to an order of
magnitude for small values of tan�.

Flavor-changing couplings

The flavor-changing ALP–fermion couplings in (43) can be integrated by parts without intro-
ducing additional contributions to the Wilson coe�cients cV V . This gives (for µ . µw)

L
FCNC
ferm (µ) = �

ia

2f

X

f

h
(mfi �mfj) (kf + kF )ij f̄ifj + (mfi +mfj) (kf � kF )ij f̄i�5fj

i
,

(68)

24

where throughout this discussion i 6= j. The fermion masses and coupling parameters must
be evaluated at the scale µ. This form of the Lagrangian makes explicit that flavor-changing
amplitudes are suppressed by the masses of the fermions involved. (The same is true for the
flavor-conserving interactions in (61), but in this case integrating by parts generates additional
contributions to the ALP–gluon and ALP–photon couplings.) At the weak scale µw, the
generation o↵-diagonal coe�cients [kf (µw)]ij and [kF (µw)]ij are again given by the sum of the
contributions from RG evolution and weak-scale matching. Recall that generation o↵-diagonal
matching contributions are captured by the quantity �̂kD(µw) in (60). For all coe�cients other
than kD, one finds from (32) and (33) that flavor-changing interactions at the weak scale are
inherited from the UV scale ⇤. We find

[ku(µw)]ij = [ku(⇤)]ij ; i, j 6= 3 ,

[kU(µw)]ij = [kU(⇤)]ij ; i, j 6= 3 ,

[kd(µw)]ij = [kd(⇤)]ij ,

[ke(µw)]ij = [ke(⇤)]ij ,

[kL(µw)]ij = [kL(⇤)]ij .

(69)

Note that for ku and kU we only need the entries where i, j 6= 3, since the top quark has
been integrated out in the e↵ective theory below the weak scale. If the UV theory respects
minimal flavor violation, then all these couplings vanish. For the o↵-diagonal elements of the
coe�cient kD we find the more interesting result
⇥
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⇤
ij
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⇥
V †kU(⇤)V

⇤
ij
� V

⇤
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�̂kD(µw)

⇤
ij
,

(70)

where the integral It(µw,⇤) has been defined in (30). If the original ALP Lagrangian (1)
at the new-physics scale respects the principle of minimal flavor violation, the matrix kU is
diagonal, as shown in (45). In this case the above expression simplifies significantly, and we
find

⇥
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2
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2⇡s2w
cWW

1� xt + xt ln xt

(1� xt)
2

��
,

(71)

where (again setting the new-physics scale to ⇤ = 4⇡f with f = 1TeV)

ctt(µw) ' 0.826 ctt(⇤)�
⇥
6.17 c̃GG(⇤) + 0.23 c̃WW (⇤) + 0.02 c̃BB(⇤)

⇤
· 10�3

. (72)

Note that under the hypothesis of minimal flavor violation the matrix kU is diagonal but not
necessarily proportional to the unit matrix in generation space, see (45). The first term on

25

the right-hand side of (71) thus accounts for the possibility that [(kU)(⇤)]33 6= [(kU)(⇤)]11. If
this is the case, then the o↵-diagonal matrix elements

⇥
kD(⇤)

⇤
ij
= V

⇤
tiVtj

n
[(kU)(⇤)]33 � [(kU)(⇤)]11

o
(73)

at the new-physics scale can be non-zero, providing a UV source of flavor violation. Evolving
the coe�cients to the weak scale µw = mt, we obtain numerically

[kD(mt)]ij ' [kD(⇤)]ij + 0.019V ⇤
tiVtj

h
ctt(⇤)� 0.0032 c̃GG(⇤)� 0.0057 c̃WW (⇤)

i
. (74)

The matching contributions proportional to c̃GG and c̃WW are very small.
Relation (71) shows explicitly how flavor-changing e↵ects are generated through RG evo-

lution from the new-physics scale ⇤ to the weak scale (first line) and matching contributions
at the weak scale (second and third lines). These loop-induced e↵ects should be considered
as the minimal e↵ects of flavor violation present in any ALP model, even if the matrix kD

is diagonal at the new-physics scale ⇤ (which would be a stronger assumption than minimal
flavor violation). The terms proportional to cWW in (71) agree with a corresponding expres-
sion derived in [54]. Our results for the evolution e↵ects and the contribution proportional to
ctt(µw) are new. The logarithm of (µ2

w/m
2
t ) in the coe�cient of ctt (but not the xt-dependent

remainder) was derived in [57]. The more general expressions shown above, and in particular
the results (60) and (70), which do not assume minimal flavor violation, are derived here for
the first time.

In the sum of the contributions from scale evolution and weak-scale matching, the depen-
dence on the matching scale µw drops out. This is obviously true for the coe�cients in (69),
but it also holds for the sum of all terms on the right-hand side of (70). In fact, we will see in
Section 6 that the flavor o↵-diagonal Wilson coe�cients do not run below the weak scale (in
the approximation where the Yukawa couplings of the light quarks are put to zero). Hence,
the expressions shown in (69) and (70) hold for all values µ < µw.

6 Renormalization-group evolution below the weak scale

Now that we have obtained the values of the Wilson coe�cients at the weak scale, we should
evolve these coe�cients down to lower scales, so that they can be used in calculations of low-
energy observables. Compared with (18) the evolution equations simplify significantly, because
the Yukawa interactions mediated by Higgs exchange are absent in the low-energy theory, as
are diagrams including the heavy weak gauge bosons. The only remaining contributions to
the evolution equations result from the second diagram in Figure 2 and the last diagram in
Figure 3, where the gauge bosons can be gluons or photons. We obtain

d

d lnµ
kq(µ) = �

d

d lnµ
kQ(µ) =

✓
↵
2
s

⇡2
c̃GG +

3↵2

4⇡2
Q

2
q c̃��

◆
,

d

d lnµ
ke(µ) = �

d

d lnµ
kE(µ) =

3↵2

4⇡2
c̃�� ,

(75)

26

ALP couplings at the weak scale

(top quark has been integrated out)

RG running generates MFV-type flavor violation 

in the left-handed down-quark sector
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Peccei-Quinn symmetry breaking

Electroweak symmetry breaking

Chiral symmetry breaking

Effective ALP Lagrangian 
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In this case only gluon and photon loops contribute:


We find numerically with :μ0 = 2 GeV
line they are evaluated with nq = 4 flavors. The numerical impact of these low-scale evolution
e↵ects is very small. For example, with µw = mt and µ0 = 2GeV we find

cqq(µ0) = cqq(mt) +
h
3.0 c̃GG(⇤)� 1.4 ctt(⇤)� 0.6 cbb(⇤)

i
· 10�2

+Q
2
q

h
3.9 c̃��(⇤)� 4.7ctt(⇤)� 0.2 cbb(⇤)

i
· 10�5

,

c``(µ0) = c``(mt) +
h
3.9 c̃��(⇤)� 4.7ctt(⇤)� 0.2 cbb(⇤)

i
· 10�5

.

(79)

It is instructive to compare the above results with analogous expressions derived for the
quark coe�cients cqq in [90]. In this paper only QCD evolution e↵ects were included. The
results obtained there are in agreement with our findings when we ignore the terms propor-
tional to the electromagnetic coupling ↵ in the first line of (76). However, in [90] the same
equation was used to account for evolution e↵ects above the electroweak scale. This ignores
the by far dominant contributions from the top-quark Yukawa interactions in (65), which as
we have discussed have an important impact on all ALP–fermion couplings.

The scale-dependent ALP–boson couplings c̃V V defined in (77) are not only relevant in the
context of the evolution equations for the ALP–fermion couplings, but they are also closely
related to some observables of phenomenological interest. In (12) and (46) we have given
explicit expressions for the a ! gg and a ! �� decay rates, the latter of which plays a
pivotal role in the phenomenology of a light ALP. The fermion loop function entering these
expressions satisfies B1(⌧) ⇡ 1 for ⌧ ⌧ 1 (corresponding to “light” fermions with mf ⌧ ma)
and B1(⌧) ⇡ 0 for ⌧ � 1 (corresponding to “heavy” fermions with mf � ma). Moreover,
the loop function B2(4m2

W/m
2
a) ⇡ 0 for a light ALP with mass ma ⌧ mW . Let us now apply

an MS-like approximation scheme, in which we treat the “light” fermions as (approximately)
massless and the “heavy” fermions as infinitely heavy. We then obtain

C
e↵
gg ⇡ cGG +

1

2

X

q

cqq(ma) ✓(ma �mq) = c̃GG(ma) ,

C
e↵
�� ⇡ c�� +

X

f

N
f
c Q

2
f cff (ma) ✓(ma �mf ) = c̃��(ma) ,

(80)

where the e↵ective couplings on the right-hand side are precisely those defined in (77).

7 Matching onto the chiral Lagrangian

Using the results derived in the previous sections, the e↵ective ALP Lagrangian (54) can be
evolved down to scales far below the scale of electroweak symmetry breaking. When one
reaches energies of order 1–2GeV, only the three light quark flavors u, d, s remain as active
degrees of freedom. In order to study the low-energy interactions of a light ALP with hadrons,
one should match this Lagrangian onto a chiral e↵ective Lagrangian incorporating the ALP
couplings to the light pseudoscalar mesons (⇡, K, ⌘). In order to find the bosonized form of
the ALP–gluon interaction, one eliminates the aGG̃ term in favor of ALP couplings to quark
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Figure 2: Examples of one-loop and two-loop diagrams contributing at the same order in pertur-
bation theory if cV V and cF have similar magnitude.

The sum runs over the six quark species of the SM. The parameters cqq(ma) describe the
flavor-diagonal ALP couplings to the quark mass eigenstates and will be defined later in
(50). They are connected with the ALP–fermion couplings cq and cQ after these have been
transformed into the mass basis of the SM quarks. The above result is obtained based on the
e↵ective Lagrangian (1). If instead the calculations are starting from the alternative form of
the e↵ective Lagrangian shown in (9), one finds

C
e↵
gg = c̃GG +

1

2

X

q

cqq(ma)


B1

✓
4m2

q

m2
a

◆
� 1

�
. (15)

The “�1” inside the bracket accounts for the di↵erence in the fermion loop function, which
is a consequence of the di↵erence in the Feynman rules for the ALP–fermion vertices derived
from the two Lagrangians. At the same time, the coe�cient c̃GG di↵ers from cGG by the
terms shown in the first equation in (11). Because of the trace, the di↵erence between the two
parameters is invariant under the unitary transformation to the mass basis, and one finds

c̃GG = cGG +
1

2
Tr (cu + cd � 2cQ) = cGG +

1

2

X

q

cqq . (16)

We thus find that the above two relations for Ce↵
gg are indeed equivalent.

It is possible to work with a hybrid form of the e↵ective ALP Lagrangian, in which the
ALP–fermion interactions consist of both derivative terms, such as in (1), and non-derivative
terms, such as in (4). This is useful, in particular, for low-energy applications in the context
of the chiral e↵ective Lagrangian. We will come back to this point in Section 7.

Our definitions of the ALP couplings in (1) are such that the parameters cV V and cF are
expected to be of O(1) when one applies the counting rules of naive dimensional analysis
[74–76]. These rules imply, in particular, that the ALP–boson couplings cV V should be ac-
companied by a loop factor ⇠ ↵i/(4⇡), as shown in (1). However, one can conceive models
in which these couplings are induced by loops involving a parametrically large number Nf

of new heavy fermions, such that cV V / Nf � 1 can (at least partially) compensate for
the loop suppression. In our analysis below, we account for this possibility by including the
one-loop corrections proportional to the ALP–boson couplings in the RG equations for the
ALP–fermion couplings, even though they provide two-loop contributions ⇠ (↵i/⇡)2 to these
equations. A second rationale for this approach lies in the fact that in many concrete ALP
models only certain ALP couplings are non-zero at the UV scale. Our treatment in the next

7
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M. Neubert                                                                        Adventures in the ALPs — CRC Annual Meeting (May 26, 2021)                                                                                      15



Peccei-Quinn symmetry breaking

Electroweak symmetry breaking

Chiral symmetry breaking

Effective ALP Lagrangian 
in the UV

Effective ALP Lagrangian 
after EWSB

Effective chiral Lagrangian 
coupled to ALP

SM + ALP

SM’ + ALP

Hadrons + ALP

Running

Running

Unknown UV theory

Matching

Matching

Matching

<latexit sha1_base64="y7xvHF4rLwNlhk2oChiURYDW1zA=">AAAB9XicdVDLSgMxFL1TX7W+qi7dBIvgqsxIrboQim5cuKhgH9AZSyaTaUMzmSHJKGXof7hxoYhb/8Wdf2P6EKrogcDhnHO5N8dPOFPatj+t3MLi0vJKfrWwtr6xuVXc3mmqOJWENkjMY9n2saKcCdrQTHPaTiTFkc9pyx9cjv3WPZWKxeJWDxPqRbgnWMgI1ka6c69NNMDnFTdhKOwWS3bZngDNkWPbOas6yJkpJZih3i1+uEFM0ogKTThWquPYifYyLDUjnI4KbqpogskA92jHUIEjqrxscvUIHRglQGEszRMaTdT5iQxHSg0j3yQjrPvqtzcW//I6qQ5PvYyJJNVUkOmiMOVIx2hcAQqYpETzoSGYSGZuRaSPJSbaFFUwJXz/FP1Pmkdlp1p2biql2sWsjjzswT4cggMnUIMrqEMDCEh4hGd4sR6sJ+vVeptGc9ZsZhd+wHr/ApLAkes=</latexit>

⇤ = 4⇡f

<latexit sha1_base64="AASNRMGcn9lAn5otba8D//XyOBU=">AAACAHicdVDLSgMxFL1TX7W+Rl24cBMsgqsyI7XqQii6ceGign1AZxgymUwbmnmQZIQydOOvuHGhiFs/w51/Y/oQquiBhMM555Lc46ecSWVZn0ZhYXFpeaW4Wlpb39jcMrd3WjLJBKFNkvBEdHwsKWcxbSqmOO2kguLI57TtD67GfvueCsmS+E4NU+pGuBezkBGstOSZe86NDgfYc0ifXVSdlKHQ07dnlq2KNQGaIyeWfV6zkT1TyjBDwzM/nCAhWURjRTiWsmtbqXJzLBQjnI5KTiZpiskA92hX0xhHVLr5ZIEROtRKgMJE6BMrNFHnJ3IcSTmMfJ2MsOrL395Y/MvrZio8c3MWp5miMZk+FGYcqQSN20ABE5QoPtQEE8H0XxHpY4GJ0p2VdAnfm6L/Seu4Ytcq9m21XL+c1VGEfTiAI7DhFOpwDQ1oAoERPMIzvBgPxpPxarxNowVjNrMLP2C8fwHnFZX5</latexit>

⇤� = 4⇡f⇡

M. Neubert                                                                        Adventures in the ALPs — CRC Annual Meeting (May 26, 2021)                                                                                      16

<latexit sha1_base64="0EGukdptU404Jpoermo+pdVD4GQ=">AAAB/XicdVDJSgNBEO2JW4xbXG5eGoPgQcJM0Ki3oAc9RjALZELo6VSSJj0L3TViHIK/4sWDIl79D2/+jZ1FiKIPCh7vVVFVz4uk0Gjbn1Zqbn5hcSm9nFlZXVvfyG5uVXUYKw4VHspQ1T2mQYoAKihQQj1SwHxPQs3rX4z82i0oLcLgBgcRNH3WDURHcIZGamV3XC186ti2e+gi3GFyCdVhK5uz8/YYdIYc285Z0aHOVMmRKcqt7IfbDnnsQ4BcMq0bjh1hM2EKBZcwzLixhojxPutCw9CA+aCbyfj6Id03Spt2QmUqQDpWZycS5ms98D3T6TPs6d/eSPzLa8TYOW0mIohihIBPFnViSTGkoyhoWyjgKAeGMK6EuZXyHlOMowksY0L4/pT+T6qFvFPMF66PcqXzaRxpskv2yAFxyAkpkStSJhXCyT15JM/kxXqwnqxX623SmrKmM9vkB6z3L1iqlIk=</latexit>

⇠ 100GeV



Copyright @ Julie Arlene Spencer

Fun facts about K → πa



Matching to the chiral Lagrangian
Georgi, Kaplan, Randall (1986) have developed a                                               
model-independent chiral Lagrangian approach                                                                        
valid for any ALP model


In the quark mass basis, the starting point is (at ):μχ ≈ 4π fπ
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We present a consistent implementation of weak decays involving an axion or axion-like particle in

the context of an e↵ective chiral Lagrangian. We argue that previous treatments of such processes

have used an incorrect representation of the flavor-changing quark currents in the chiral theory. As

an application, we derive model-independent results for the decays K� ! ⇡�a and ⇡� ! e�⌫̄ea at

leading order in the chiral expansion and for arbitrary axion couplings and mass. In particular, we

find that the K� ! ⇡�a branching ratio is almost 40 times larger than previously estimated.

Axions and axion-like particles (collectively referred to
as ALPs in this work) are new types of elementary par-
ticles, which arise in a large class of extensions of the
Standard Model (SM) and are well motivated theoreti-
cally. They can provide an elegant solution to the strong
CP problem based on the Peccei–Quinn mechanism [1–
8]. More generally, ALPs can arise as pseudo Nambu–
Goldstone bosons in models with explicit global symme-
try breaking. Low-energy weak-interaction processes im-
ply some of the most stringent bounds on the couplings
of ALPs to gluons and other SM particles [9–12].

In a seminal paper [13], Georgi, Kaplan and Randall
have derived the e↵ective chiral Lagrangian accounting
for the interactions of a light ALP (with mass below the
scale of chiral symmetry breaking, µ� = 4⇡f⇡) with the
light pseudoscalar mesons, opening the door to a model-
independent description which does not rely on the de-
tails of Peccei–Quinn symmetry breaking. In this Let-
ter, we reanalyze this problem and point out a small but
important omission in the representation of the weak-
interaction quark currents in the e↵ective theory, which
has far-reaching consequences. Despite the 35-year his-
tory of the subject, we find that even recent papers on
weak decays such as K�

! ⇡�a and ⇡�
! e�⌫̄ea omit

the contributions of relevant Feynman diagrams and thus
employ incomplete expressions for the decay amplitudes
(see e.g. [14–16]). In many phenomenological studies,
the amplitudes are derived by starting from an ampli-
tude for a decay process involving a ⇡0 or ⌘ meson and
accounting for the (kinetic) mixing of the ALP with these
neutral mesons by means of mixing angles ✓⇡a and ✓⌘a.
Below we recall the well-known fact that in the approach
of [13] the mixing angles are unphysical, because they
depend on the parameters of the chiral rotation used to
eliminate the ALP–gluon coupling in the e↵ective La-
grangian. It is customary to adopt a “default choice”
for these parameters, which eliminates the mass mixing
in the e↵ective Lagrangian. However, there always ex-
ist other contributions to the decay amplitude, in which
the ALP participates in the relevant interaction vertices.

Neglecting these “direct” contributions leads to incorrect
predictions. In fact, they are essential to ensure that the
auxiliary parameters of the chiral rotation cancel out in
predictions for physical quantities. (Only a very special
class of models, in which the ALP couples to SM fields
only through phases in the quark mass matrices, with no
derivative interactions and no couplings to gluons at the
low scale µ�, is an exception to this rule, see e.g. [11, 17].)
The starting point of our study is the e↵ective ALP

Lagrangian at a scale of order µ� ⇡ 1.6GeV, which we
write in the form [13]

Le↵ = LQCD +
1

2
(@µa)(@µa)�

m2
a,0

2
a2

+ cGG
↵s

4⇡

a

f
Ga

µ⌫ G̃µ⌫,a + c��
↵

4⇡

a

f
Fµ⌫ F̃µ⌫

+
@µa

f

⇣
q̄LkQ�µ qL + q̄R kq �µ qR + . . .

⌘
.

(1)

Here q is a 3-component vector in generation space con-
taining the three light quark flavors u, d, s. The ALP
decay constant f is related to the scale of global (Peccei–
Quinn) symmetry breaking by ⇤ = 4⇡f and is assumed
to lie above the scale of electroweak symmetry breaking.
It governs the overall magnitude of the ALP interactions
with SM particles, the leading of which are mediated by
dimension-5 operators. (In the literature on QCD ax-
ions, one often defines the axion decay constant fa in
terms of the strength of the axion–gluon coupling, such
that 1/fa = �2cGG/f .) The parameters cGG and c�� de-
termine the strengths of the ALP interactions with glu-
ons and photons, while the hermitian matrices kQ and
kq contain the ALP couplings to left-handed and right-
handed quarks. The o↵-diagonal entries of these matrices
account for the possibility of flavor-changing s ! d tran-
sitions. The dots represent analogous couplings to lep-
tons. The ALP couplings are scale-dependent quantities.
Their evolution from the new-physics scale ⇤ down to the
scale µ� has recently been studied in detail [18, 19]. The
mass parameter m2

a,0 provides an explicit soft breaking
of the shift symmetry a ! a + c, which is a (classical)
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To bosonize this theory, one first eliminates the ALP-gluon coupling using 
the chiral rotation:


Modified quark mass matrix and ALP couplings:

2

symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
kQ + ��

q

�
e�i��

q a/f ,

k̂q(a) = ei�
+
q a/f

�
kq + �+

q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form

L
�
e↵ =

f2
⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†

⇤
+

f2
⇡

4
B0Tr

⇥
m̂q(a)⌃

†+h.c.
⇤

+
1

2
@µa @µa �

m2
a,0

2
a2 + ĉ��

↵

4⇡

a

f
Fµ⌫ F̃µ⌫ ,

(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a = c2

GG
f2
⇡ m2

⇡

f2

2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
⇡

f2

◆�
,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


m2

a (ĉuu � ĉdd)

m2
⇡ � m2

a

�
m2

⇡�

m2
⇡ � m2

a

�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject
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redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
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quark mass matrix. Denoting the modified couplings
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where �±
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contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that
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where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp
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where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term
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up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
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m2
⇡ � m2

a

�
m2

⇡�

m2
⇡ � m2

a

�
, (10)
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bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject

with}

[Srednicki (1985); Georgi, Kaplan, Randall (1986); Krauss, Wise (1986); Bardeen, Peccei, Yanagida (1987)]

[Bauer, MN, Renner, Schnubel, Thamm (2021)]
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• The light pseudoscalar mesons are described by


• The derivative ALP couplings to fermions are included in the covariant 
derivative:


• Leading-order effective chiral Lagrangian:


• Periodic potential breaks the shift symmetry and provides                           
a mass for the axion (QCD instantons)

2

symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
kQ + ��

q

�
e�i��

q a/f ,

k̂q(a) = ei�
+
q a/f

�
kq + �+

q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form

L
�
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f2
⇡

8
Tr

⇥
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⇤
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4
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+
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2
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2
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f
Fµ⌫ F̃µ⌫ ,

(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a = c2

GG
f2
⇡ m2

⇡

f2

2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
⇡

f2

◆�
,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


m2

a (ĉuu � ĉdd)

m2
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�
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�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject
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symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f
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q a/f ,

k̂q(a) = ei�
+
q a/f
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kq + �+
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�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form
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e↵ =

f2
⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†
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+
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4
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+
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Fµ⌫ F̃µ⌫ ,

(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a = c2

GG
f2
⇡ m2

⇡

f2

2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
⇡

f2

◆�
,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


m2

a (ĉuu � ĉdd)

m2
⇡ � m2

a

�
m2

⇡�

m2
⇡ � m2

a

�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject

Matching to the chiral Lagrangian

[Bauer, MN, Renner, Schnubel, Thamm (2021)]

2

symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
kQ + ��
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�
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q a/f ,

k̂q(a) = ei�
+
q a/f

�
kq + �+

q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form

L
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e↵ =
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+
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Fµ⌫ F̃µ⌫ ,

(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
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2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
⇡

f2

◆�
,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


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a (ĉuu � ĉdd)
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�
m2
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m2
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�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject

[Gasser, Leutwyler (1985)]
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• Strongest particle-physics constraint on ALP couplings for mass range



• Despite a 35-year history, we find that even nowadays most papers on 
this process are based on inconsistent equations


• The chiral implementation of the leading SU(3)-octet weak-interaction 
operator is:


where        is the chiral representation of the left-handed current 

ma < mK − mπ ≈ 354 MeV

Weak decay K → πa

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by

Lji
µ = �

if2
⇡

4
e
i(��

qi
���

qj
)a/f ⇥

⌃ (Dµ⌃)†
⇤ji

3 �
if2

⇡

4


1 + i(�qi � �qj � qi + qj ) cGG

a

f

� ⇥
⌃ @µ⌃

†⇤ji

+
f2
⇡

4

@µa

f

⇥
k̂Q �⌃ k̂q⌃

†⇤ji . (13)

This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second

⇡�⇡� ⇡�

g8

K�

K�

a

K�

⇡�

⇡�⇡�

a

K�

a
⇡0

K� ⇡�

a

K�

K�

g8 g8

a

g8

a

g8

⌘

FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second

⇡�⇡� ⇡�

g8

K�

K�

a

K�

⇡�

⇡�⇡�

a

K�

a
⇡0

K� ⇡�

a

K�

K�

g8 g8

a

g8

a

g8

⌘

FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
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V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �
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Weak decay K → πa

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �
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V ⇤
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with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
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Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�
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! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads
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where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�
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decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
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Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
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‣ Find that omitted contributions have a large 
effect (parametrically leading terms)


‣ Including only the first two diagrams (ALP-
meson mixing) gives an uncontrolled 
approximation (except in very special cases)
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�
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! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
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⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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while the last diagram is scheme independent. Via the
mixing angles ✓⇡a and ✓⌘a the results for D1 and D2 de-
pend on the q parameters, see (10). The expressions for
D4 and D5, on the other hand, depend only on the �q
parameters. Only the third diagram, in which the ALP
is emitted from the weak-interaction vertex, depends on
both sets of parameters. In the sum of all contribu-
tions the dependence on the auxiliary parameters cancels
(apart from an unambiguous contribution proportional to
u + d + s = 1). But this cancellation only works if
the derivative ALP interactions in (13) are included.

Adding up all contributions, we obtain for the decay
amplitude (for mu = md)
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Note that the transition K�
! ⇡�a proceeds via the

dynamically enhanced octet operator, whereas the corre-
sponding decay K�

! ⇡�⇡0 receives contributions from
the 27-plet operator with isospin change �I = 3

2 only.
This e↵ect is well known and is referred to as “octet en-
hancement” [9, 10]. Attempts to estimate the K�

! ⇡�a
decay rate as ✓2

⇡a times the K�
! ⇡�⇡0 rate miss this

important e↵ect. Another interesting feature of the re-
sult (16) is its dependence on the flavor-conserving ALP
vector couplings (kd + kD) and (ks + kS) to down and
strange quarks. In the presence of the weak interactions
the currents d̄�µd and s̄�µs are not individually con-
served (unlike in QCD), and hence these couplings can
have observable e↵ects.

In order to compare our result (16) with some previous
calculations, we work to leading order in the ratio m̄/ms,
consider the limit where m2

a ⌧ m2
K and assume the case

of a minimal flavor-violating ALP, for which css = cdd
and kd + kD = ks + kS [19]. We then obtain the simple
result (still with mu = md, neglecting the small 27-plet
contributions, and setting 1/fa = �2cGG/f)
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Barring cancellations, the contribution proportional to
N8 dominates as long as |[kq + kQ]23/cGG| ⌧ 3 · 10�7,

which we assume from now on. Eliminating the parame-
ter N8 via the KS ! ⇡+⇡� decay amplitude, we obtain
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For a long-lived ALP with mass ma ⌧ m⇡, the upper
limit Br(K�

! ⇡�X) < 2.0 · 10�10 (90% CL) reported
by NA62 [30] from a search for a feebly interacting new
particle X implies
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Estimating the weak-interaction contribution to the de-
cay amplitude from kinetic ALP–meson mixing (see e.g.
[14–16]) corresponds to retaining only the first two dia-
grams in Figure 1, evaluated with the default choice of q

parameters. Under the approximations described above
this leads to

AK�!⇡�a ⇡
iN8m2

a

8fa

✓
1�

cuu � cdd
2cGG

◆
, (20)

which underestimates the amplitude by a factor
m2

a/(4m
2
K) and predicts the wrong sign for the contri-

bution proportional to cuu. If mass mixing with the ⌘0 is
included, one finds an additional small contribution pro-
portional to sin ✓⌘⌘0 m2

⇡/m2
K [15, 16] relative to the lead-

ing term in our result. The authors of [13] performed a
more careful evaluation of the K�

! ⇡�a decay rate for
the case of a QCD axion (m2

a ⇡ 0) without couplings to
matter (cqq = 0). In this case diagrams D1 and D2 van-
ish when one adopts the default choice of q parameters,
and the graphs D4 and D5 vanish if one chooses �q = 0.
In the evaluation of the third diagram the authors omit-
ted the derivative couplings of the axion shown by the
last term in (13). They obtained (this formula was not
explicitly shown in the paper, but we have derived it from
their arguments and the presented numerical result)
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This contribution to the amplitude is smaller than the
corresponding term in (17) by a factor mu

2(mu+md) ⇡ 0.16,
corresponding to an underestimation of the branching ra-
tio by about a factor 37. (In [13] the authors state that
they have derived the same result in a di↵erent scheme
with �q = q, in which the ALP is removed from the
weak-interaction vertex. With their omission, we can-
not reproduce that the two treatments lead to the same
expression.)
We have also applied our matching prescription (13) to

derive the ⇡�
! e�⌫̄ea decay amplitude, finding again a

result that is independent of the choice of the �q and q

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which
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kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
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V ⇤
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with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�
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! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
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tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
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V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
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Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
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Weak decay K → πa
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].
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and through the covariant derivative defined in (5). For
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
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! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
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L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second

⇡�⇡� ⇡�

g8

K�

K�

a

K�

⇡�

⇡�⇡�

a

K�

a
⇡0

K� ⇡�

a

K�

K�

g8 g8

a

g8

a

g8

⌘

FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions

D1 3
N8

2f
cGG (u � d)(m

2
⇡ � m2

a) ,

D2 3 �
N8

6f
cGG (2m2

K + m2
⇡ � 3m2

a) (u + d � 2s) ,

D3 3
N8

2f
cGG

h
� (�d � �s � d + s)(m

2
K + m2

⇡ � m2
a)

+ (�u � �d + u + s)(m
2
K � m2

⇡ + m2
a)

+ (�u � �s + u + d)(m
2
K � m2

⇡ � m2
a)
i
,

ALP-pion mixing ALP-η mixing “direct” contribution

Final-state radiation Initial-state radiation Flavor-changing ALP

coupling

Georgi, Kaplan and Randall have only 
considered the axion-gluon coupling cGG 
and find a result smaller by a factor 
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2(mu +md)
⇡ 0.16

4

D4 3 �
N8

f
cGG m2

K (�u � �d) ,

D5 3
N8

f
cGG m2

⇡ (�u � �s) , (15)

while the last diagram is scheme independent. Via the
mixing angles ✓⇡a and ✓⌘a the results for D1 and D2 de-
pend on the q parameters, see (10). The expressions for
D4 and D5, on the other hand, depend only on the �q
parameters. Only the third diagram, in which the ALP
is emitted from the weak-interaction vertex, depends on
both sets of parameters. In the sum of all contribu-
tions the dependence on the auxiliary parameters cancels
(apart from an unambiguous contribution proportional to
u + d + s = 1). But this cancellation only works if
the derivative ALP interactions in (13) are included.

Adding up all contributions, we obtain for the decay
amplitude (for mu = md)

iAK�!⇡�a =
N8

4f


16cGG

(m2
K � m2

⇡)(m
2
K � m2

a)

4m2
K � m2

⇡ � 3m2
a

+ 6(cuu + cdd � 2css)m2
a

m2
K � m2

a

4m2
K � m2

⇡ � 3m2
a

+ (2cuu + cdd + css) (m
2
K � m2

⇡ � m2
a) + 4cssm2

a

+ (kd + kD � ks � kS) (m
2
K + m2

⇡ � m2
a)

�

�
m2

K � m2
⇡

2f
[kq + kQ]

23 . (16)

Note that the transition K�
! ⇡�a proceeds via the

dynamically enhanced octet operator, whereas the corre-
sponding decay K�

! ⇡�⇡0 receives contributions from
the 27-plet operator with isospin change �I = 3

2 only.
This e↵ect is well known and is referred to as “octet en-
hancement” [9, 10]. Attempts to estimate the K�

! ⇡�a
decay rate as ✓2

⇡a times the K�
! ⇡�⇡0 rate miss this

important e↵ect. Another interesting feature of the re-
sult (16) is its dependence on the flavor-conserving ALP
vector couplings (kd + kD) and (ks + kS) to down and
strange quarks. In the presence of the weak interactions
the currents d̄�µd and s̄�µs are not individually con-
served (unlike in QCD), and hence these couplings can
have observable e↵ects.

In order to compare our result (16) with some previous
calculations, we work to leading order in the ratio m̄/ms,
consider the limit where m2

a ⌧ m2
K and assume the case

of a minimal flavor-violating ALP, for which css = cdd
and kd + kD = ks + kS [19]. We then obtain the simple
result (still with mu = md, neglecting the small 27-plet
contributions, and setting 1/fa = �2cGG/f)

AK�!⇡�a ⇡
im2

K

2fa

"
N8

✓
1 +

cuu + cdd
2cGG

◆
�

[kq + kQ]
23

2cGG

#
.

(17)
Barring cancellations, the contribution proportional to
N8 dominates as long as |[kq + kQ]23/cGG| ⌧ 3 · 10�7,

which we assume from now on. Eliminating the parame-
ter N8 via the KS ! ⇡+⇡� decay amplitude, we obtain

Br(K�
! ⇡�a)

Br(KS ! ⇡+⇡�)
⇡

⌧K�

⌧KS

f2
⇡

8f2
a


1 +

cuu + cdd
2cGG

�2

. (18)

For a long-lived ALP with mass ma ⌧ m⇡, the upper
limit Br(K�

! ⇡�X) < 2.0 · 10�10 (90% CL) reported
by NA62 [30] from a search for a feebly interacting new
particle X implies

1

fa

����1 +
cuu + cdd
2cGG

���� <
1

31.9TeV
. (19)

Estimating the weak-interaction contribution to the de-
cay amplitude from kinetic ALP–meson mixing (see e.g.
[14–16]) corresponds to retaining only the first two dia-
grams in Figure 1, evaluated with the default choice of q

parameters. Under the approximations described above
this leads to

AK�!⇡�a ⇡
iN8m2

a

8fa

✓
1�

cuu � cdd
2cGG

◆
, (20)

which underestimates the amplitude by a factor
m2

a/(4m
2
K) and predicts the wrong sign for the contri-

bution proportional to cuu. If mass mixing with the ⌘0 is
included, one finds an additional small contribution pro-
portional to sin ✓⌘⌘0 m2

⇡/m2
K [15, 16] relative to the lead-

ing term in our result. The authors of [13] performed a
more careful evaluation of the K�

! ⇡�a decay rate for
the case of a QCD axion (m2

a ⇡ 0) without couplings to
matter (cqq = 0). In this case diagrams D1 and D2 van-
ish when one adopts the default choice of q parameters,
and the graphs D4 and D5 vanish if one chooses �q = 0.
In the evaluation of the third diagram the authors omit-
ted the derivative couplings of the axion shown by the
last term in (13). They obtained (this formula was not
explicitly shown in the paper, but we have derived it from
their arguments and the presented numerical result)

AK�!⇡�a ⇡
iN8m2

K

4fa

mu

mu + md
. (21)

This contribution to the amplitude is smaller than the
corresponding term in (17) by a factor mu

2(mu+md) ⇡ 0.16,
corresponding to an underestimation of the branching ra-
tio by about a factor 37. (In [13] the authors state that
they have derived the same result in a di↵erent scheme
with �q = q, in which the ALP is removed from the
weak-interaction vertex. With their omission, we can-
not reproduce that the two treatments lead to the same
expression.)
We have also applied our matching prescription (13) to

derive the ⇡�
! e�⌫̄ea decay amplitude, finding again a

result that is independent of the choice of the �q and q

[Bauer, MN, Renner, Schnubel, Thamm (2021)]
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Expressing the ALP couplings in terms of the couplings at the scale   
with , and assuming MFV, we find:


The coefficients refer to , but they vary by less than 10% over the entire 
allowed mass range. Two “benchmarks”:

Λ = 4π f
f = 1 TeV

ma = 0

  phenomenologyK → πa
1 Preliminary result for f = 1TeV

|AK�!⇡�a| ' 10�11 GeV


1TeV

f

�
⇥

h
ei�8

�
3.58 cGG + 1.79 cuu(⇤) + 1.81 cdd(⇤)

�

+ ei↵
�
� 65.8 cuu(⇤) + 0.32 cdd(⇤) + 0.21 cGG + 0.38 cWW

�

� 1.12 · 107 k12
D (⇤)

i

2 Preliminaries

Our starting point is the e↵ective ALP Lagrangian at a scale of order µ� = 4⇡f⇡, which we
write in the form

Le↵ =
1

2
(@µa)(@

µa)�
m2

a,0

2
a2 + cGG

↵s

4⇡

a

f
Ga

µ⌫ G̃
µ⌫,a + c��

↵

4⇡

a

f
Fµ⌫ F̃

µ⌫

+ q̄ (i /D �mq) q +
@µa

f

h
q̄LkQ�µqL + q̄R kq�µqR

i
.

(1)

Here q is a vector containing the three light quark flavors (u, d, s), mq is the diagonal quark
mass matrix, and kQ,q are hermitian matrices containing the ALP couplings to left-handed
and right-handed quarks. In components, these matrices have the form

kQ =

0

BB@

k11
U 0 0

0 k11
D k12

D

0 k21
D k22

D

1

CCA , kq =

0

BB@

k11
u 0 0

0 k11
d k12

d

0 k21
d k22

d

1

CCA . (2)

The o↵-diagonal entries account for the possibility of flavor-changing s ! d transitions.
In order to study the low-energy interactions of a light ALP with hadrons, one should

match this Lagrangian onto a chiral e↵ective Lagrangian incorporating the ALP couplings to
the light pseudoscalar mesons (⇡, K, ⌘).1 In order to find the bosonized form of the ALP–gluon
interaction, one eliminates the aGG̃ term in favor of ALP couplings to quark bilinears, whose
chiral representation is well known. To this end, we perform the chiral rotation [37, 88, 92, 93]

q ! exp


�i (�q + q�5) cGG

a

f

�
q , (3)

where �q and q are hermitian matrices, which we choose to be diagonal in the quark mass
basis. Under the chiral rotation the measure of the path integral is not invariant [94, 95], and
this generates extra terms adding to the anomalous ALP couplings to gluons and photons.
Imposing the condition

Trq = u + d + s = 1 (4)

1In this work we ignore the singlet meson ⌘1 and do not consider the mixing between ⇡0, ⌘ and ⌘0.

1

strong-interaction phase of g8

weak phase of Vtd*

• only  :   “indirect” contribution (g8) dominatescGG ≠ 0
• only  :   “direct” contribution (from RG running) dominatescWW ≠ 0

 proportional to Vtd*Vts in MFV←

[see e.g.: Gori, Perez, Tobioka (2020)]
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Flavor benchmarks

Copyright @ Julie Arlene Spencer



• RG evolution effects have a profound impact on phenomenology, for 
instance in flavor physics


• General lesson: no ALP couplings can be avoided !


• Below we consider benchmark scenarios, starting with a single ALP 
coupling in the UV (at  ) and assuming flavor universality 

• We then calculate the contributions to various flavor observables and 
derived bounds on the UV couplings as a function of the ALP mass


• In this process, we carefully account for the effects of the ALP lifetime and 
its various decay modes

Λ = 4π f

Flavor physics benchmarks

based on ongoing work with M. Bauer, S. Renner, M. Schnubel & A. Thamm
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Flavor physics benchmarks
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Figure 15: Branching ratio for an ALP with couplings only to cGG, cWW and cBB at ⇤ = 4⇡f and
f = 1 TeV. The branching ratios of the ALP into photons and charged leptons are indicated by solid
lines and the branching ratios of the ALP into hadronic states are indicated by dashed lines.

couplings to hadrons and photons as well as flavor o↵-diagonal couplings to down-type quarks
from RG evolution. As a result, an ALP with only couplings to gluons at the UV scale decays
mostly into hadrons for ALP masses above the QCD scale and dominantly into photons for
ma < ⇤QCD, as shown in Figure 15. The branching ratios of such an ALP into leptons are
Br(a ! `

+
`
�) < 1%. Since the ALP gluon coupling for ma < ⇤QCD induces an order one ALP

coupling to photons c��(ma = 0) = �(1.92 ± 0.04)cGG, one can estimate the ALP lifetime as
⌧a / 1/(c2GGm

3
a), so that the lifetime exceeds the typical size of the experiment (`det . 10 m)

for ma ⇡ 0.05 c3/2GG GeV and lighter ALPs are more likely to decay outside the detector.
As a consequence, the strongest bounds for ma < m⇡ and small cGG arise from the mea-

surement of Br(K+ ! ⇡
+
⌫̄⌫), which constrains ALPs long-lived enough to escape the E949

detector before decaying [121]. The parameter space excluded by this constraint is shown
in pink in Figure 17 and excludes values of cGG/f & 0.072/TeV. Constraints from the rare
B decay B ! K

⇤
⌫⌫̄ from Belle [127] are significantly weaker because ALP-mediated b ! s

and b ! d transitions do not get a contribution from the chiral Lagrangian (??). We em-
phasize that these constraints could be stronger if cGG induced ALP couplings in hadronic
B meson decays using QCD factorisation techniques are taken into account. For larger ALP
masses, decays into photons become relevant and constraints from searches for K+ ! ⇡

+
��

and K
0 ! ⇡

0
�� performed at E949, NA48, NA62 and KTeV exclude the parameter space for

larger values of cGG/f [122–125]. The corresponding parameter space is shown in purple and
yellow in Figure 17. These searches provide important constraints even forma > 2me when de-
cays to electrons are allowed, because of the dominant ALP branching ratio Br(a ! ��) > 99%
at ma < 3m⇡.

Leptonic ALP decay channels lead to comparatively weak constraints. The excluded pa-
rameter space from the LHCb search for B ! K

⇤
e
+
e
� decays [126] is shown in peach, LHCb

searches for the charged and neutral B meson decays B
+ ! K

+
µ
+
µ
� and B

0 ! K
⇤
µ
+
µ
�

provide the dominant constraints for ma > 2mµ [130] and rule out couplings of the order
of cGG/f & 1/TeV for ALP masses ma < mB. The parameter regions excluded by these
searches are shown in light orange and red. The weaker constraint from the measurement

40

ALP branching fractions in the benchmarks with a single non-vanishing ALP-
gauge boson coupling at the UV scale:
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⇤ = 4⇡f
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f = 1TeV
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Flavor physics benchmarks
ALP-gluon coupling in the UV:

�Z
h ! aa
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KL ! ⇡0��

B+ ! K+a(µµ)

B+ ! ⇡+µ+µ�

� ! �a(µµ)
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K
L

!
⇡
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µ
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KL ! ⇡0e+e�

� ! � + inv.

µ̂t

K+ ! ⇡+e+e�

h ! aa

h ! Za

Figure 17: Left: Flavor bounds on ALP couplings to SU(3)C gauge bosons, with all other Wilson
coe�cients zero at ⇤ = 4⇡f and f = 1 TeV. Right: Comparison of flavor constraints (light gray)
with the constraints on Z ! a� decays from the LEP measurement of the Z boson width, contours
of constant Br(h ! aa) = 10�1, 10�2 and 10�3, depicted as red dotted, dashed and solid lines, and
the parameter space (orange) for which an ALP which couples only to SU(2)L gauge bosons could
provide an explanation for the experimental discrepancy in the anomalous magnetic moment of the
muon.

3.7.2 ALP coupling to SU(2)L gauge bosons

An ALP with couplings only to SU(2)L gauge bosons in the UV, so that only cWW is non-zero
at the scale ⇤ has flavor-diagonal couplings to quarks and charged leptons as well as flavor
o↵-diagonal couplings to down-type quarks through diagrams with the W boson in the loop.
The tree-level coupling cWW induces a tree-level coupling of the ALP to photons, so that the
dominant ALP decay width is a ! �� so that Br(a ! ��) ⇡ 1 for the parameter space we
consider, whereas the RG induced decays into fermions do not exceed 1% for most of the
parameter space as shown in Figure 15. The ALP lifetime is therefore well approximated
by ⌧a / 1/(c2WWm

3
a), so that the ALP has a decay length of more than `det . 10 m for

ma ⇡ 0.1 c3/2WW GeV and lighter ALPs are likely to decay outside the detector. As in the case
of an ALP with couplings to gluons in the UV, the measurement of Br(K+ ! ⇡

+
⌫̄⌫) provides

the strongest bounds for ma < m⇡ and small cWW [121]. The parameter space excluded by
this constraint is shown in pink in Figure 18 and excludes values of cWW/f & 0.15/TeV. In
contrast to Figure 17 the constraint is weaker compared to the constraint from B ! K

⇤
⌫⌫̄ from

Belle [127] (shown in light blue in Figure 17), because the contribution to s ! d transitions
from the chiral Lagrangian is negligible here.

For a sizable cWW coupling, the branching ratio of ALP decays into photon pairs can be

42
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Flavor physics benchmarks

K
+

!
⇡ +

��

�Z

(g � 2)µ

h ! aa

as Bs � B̄s mixing

Bs ! µ�µ+

B ! K⇤⌫̄⌫

K+ ! ⇡+⌫̄⌫

J/�
! �a(µ

µ)

B ! K⇤a(µµ)

�
!

�
a(

⌧
⌧
)

K
L

!
⇡

0
µ

+
µ

�

KL ! ⇡0��

B+ ! K+a(µµ)

B+ ! ⇡+µ+µ�

dBr/dq2(B ! K⇤ee)

� ! �a(µµ)

B
!

K
⌧

+
⌧

�

� ! � + hadrons

K+ ! ⇡+��

� ! � + inv.

K+ ! ⇡+e+e�

Figure 18: Left: Flavor bounds on ALP couplings to SU(2)L gauge bosons, with all other Wilson
coe�cients zero at ⇤ = 4⇡f and f = 1 TeV. Right: Comparison of flavor constraints (light gray)
with the constraints on Z ! a� decays from the LEP measurement of the Z boson width, contours
of constant Br(h ! aa) = 10�1, 10�2 and 10�3, depicted as red dotted, dashed and solid lines, and
the parameter space (orange) for which an ALP which couples only to SU(2)L gauge bosons could
provide an explanation for the experimental discrepancy in the anomalous magnetic moment of the
muon.

large enough to lead to prompt ALP decays, so limits on the decay K
+ ! ⇡

+
⌫̄⌫ are not

applicable. Constraints from searches for K+ ! ⇡
+
�� and K

0 ! ⇡
0
�� exclude the parameter

space shown in purple and yellow in Figure 18 [122–125].
Currently, there is no search for the decay B ! K��, which is sensitive to an ALP decaying

into photons and could provide an important, if not dominant, constraint for the mass range
mK < ma < mB. An estimate based on the search for B

+ ! K
+
⇡
0 ! K

+
�� at Belle

[128] and Babar [129] results in a constraint cWW/f . 6.6/TeV. We expect that a dedicated
search for resonances in this channel could yield much better sensitivity than this estimate, in
particular for ALP masses larger than the pion mass.

Constraints from ALPs decaying into leptons are comparatively stronger than in the case
of an ALP with dominant couplings to gluons in the UV, because the ALP-lepton coupling
is induced at one-loop here. Above the muon threshold, LHCb searches for the charged and
neutral B meson decays B+ ! K

+
µ
+
µ
� and B

0 ! K
⇤
µ
+
µ
� therefore provide the dominant

constraints [130] and rule out couplings of the order of cWW/f & 2.5/TeV for ALP masses
ma < mB. The parameter regions excluded by these searches are shown in light orange and
red. The corresponding decay with electrons in the final state B

+ ! ⇡
+
e
+
e
� is suppressed

by the small ALP branching ratio.
ALPs with stronger couplings are constrained by the measurement of Bs ! µ

+
µ
�. Radia-
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Figure 19: Left: Flavor bounds on ALP couplings to the hypercharge gauge boson, with all other
Wilson coe�cients zero at ⇤ = 4⇡f and f = 1 TeV. Right: Comparison of flavor constraints (light
gray) with the constraints on Z ! a� decays from the LEP measurement of the Z boson width,
contours of constant Br(h ! aa) = 10�1 and 10�2 are depicted as red dotted, dashed and solid lines.

tive ⌥ ! �µ
+
µ
�
,⌥ ! �⌧

+
⌧
� and J/ ! �µ

+
µ
� decays yield constraints for ma > 2mµ

and ma > 2m⌧ respectively, which are of similar strength to the constraint from Bs !
µ
+
µ
� [111, 114]. Even weaker limits arise from the virtual exchange of ALPs in B-meson

mixing, which is suppressed by two flavor changing vertices.
On the right panel in Figure 18 we compare constraints from flavor physics with the con-

straints on Z ! a� decays from the LEP measurement of the Z boson width, excluding
cWW/f & 400/TeV throughout the ALP mass range. In particular, this constraint rules out
an explanation of the measurement of the anomalous magnetic moment of the muon by an
ALP coupling to SU(2)L gauge bosons alone for all ALP masses considered; the corresponding
parameter space is shown in orange. The red dotted, dashed and solid contours show constant
values of Br(h ! aa) = 10�1

, 10�2 and 10�3, respectively, which are mostly ruled out by the
width measurement of the Z boson as well. Higgs decays into Z bosons and ALPs, h ! aZ,
are not induced by the Wilson coe�cient cWW .

3.7.3 ALP coupling to hypercharge gauge bosons

Flavor constraints on ALPs with the only non-vanishing coupling to hypercharge gauge bosons
cBB at the UV scale ⇤ are shown in Figure 19. The constraints are considerably weaker
compared to both Figure 17 and Figure 18, because an ALP with couplings to the hypercharge
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Figure 20: Left: Bounds on ALP couplings to photons [55]. The dashed contour indicates the part
of the plot shown in various shades of gray on the center and right. Center and right: In color, we
show flavor bounds on ALPs coupling only to SU(2)L gauge bosons (same as Fig. ?? above) and the
U(1)Y gauge boson, respectively. They are compared to (in gray overlaid) astrophysical, beamdump
and collider constraints on ALP couplings to photons ce↵�� = cWW .

surement of Br(K+ ! ⇡
+
⌫̄⌫) shown in pink. Similar to the case of an ALP with couplings

to SU(2)L gauge bosons, larger couplings cu are excluded by constraints from searches for
K

+ ! ⇡
+
�� and K

0 ! ⇡
0
�� decays shown in purple and yellow. While the constraints on

cu from K
+ ! ⇡

+
⌫̄⌫ decays are stronger compared to the constraints on cWW in Figure ??,

constraints from photon decays are relatively weaker. This is due to the fact that tree-level
couplings to quarks only induce the ALP coupling to photons at the one-loop level or by
ALP-pion mixing. The tree-level couplings to up-type quarks and relatively large leptonic
ALP branching ratios explain the strength of the constraints from the vector meson decays
⌥ ! �a ! �µ

+
µ
�, ⌥ ! �a ! �⌧

+
⌧
� and J/ ! �a ! �µ

+
µ
�, which are considerably

stronger than constraints from B-meson mixing and Bs ! µ
+
µ
� decays. The dominance of

hadronic decay channels above ma & 1 GeV explain why constraints from KL ! ⇡
0
e
+
e
� and

KL ! ⇡
0
µ
+
µ
� are stronger than the constraints from B ! K

⇤
µ
+
µ
� and B

+ ! K
+
µ
+
µ
�

decays relevant for larger values of ma. Couplings |cu|/f & 6.5/TeV are ruled out throughout
the parameter space by the measurement of the chromomagnetic moment of the top quark µ̂t,
shown in magenta in Figure 21. Constraints of similar strength arise from the contribution
of virtual ALP exchange in B-meson mixing, even though the measurements are significantly
more precise than in the case of the chromomagnetic moment of the top quark, because it
requires two loop-induced flavor changing ALP vertices. In plotting the limits from B-meson
mixing, we have excluded the parameter space mb/2 < ma < 2mb.

The horizontal purple region in the right panel of Figure 21 indicates the parameter space
excluded by the contribution of �(Z ! a�) to the total Z width, |cu|/f & 146/TeV, which
represents a significantly weaker constraint relative to the constraints from measurements of
flavor transitions compared to Figure ?? because the ALP coupling to photons and Z- bosons
are only induced at loop-level here. Contours of constant Br(h ! aa) = 10�1

, 10�2 and 10�3
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Figure 23: Left: Flavor bounds on universal ALP couplings to quark doublets with cQ = cQ ,
and all other Wilson coe�cients zero at the scale ⇤ = 4⇡f and f = 1 TeV. Right: Constraints from
flavor observables (light gray) are compared to the constraint from Z ! a� decays from the LEP
measurement of the Z boson width. Contours of constant Br(h ! aa) = 10�1, 10�2 and 10�3 are
depicted as red dotted, dashed and solid lines, respectively. Contours of constant Br(h ! Za) =
10�1, 10�2 and 10�3 are shown as blue dotted, dashed and solid lines, respectively.

3.7.6 ALP coupling to left-handed quark doublets

Universal ALP couplings to quark doublets, cQ(⇤) = kU (⇤) = kD(⇤) = cQ , lead to the
ALP branching ratios shown in the lower left panel of Figure ?? and constraints from flavor
observables shown in Figure 23. In this scenario, the ALP branching ratios are very similar to
the case in which only couplings to right-handed up-quarks are present in the UV apart from
the a ! bb̄ decay rate which dominates for ma > 2mb here. As a result, similar constraints
to those seen in both Figure 21 and Figure 22 appear in Figure 23, because ALP couplings to
both down-type and up-type quarks are present. There are some important di↵erences with
respect to the case of ALPs coupling only to right-handed up- and down-quarks.

For isospin conserving ALP couplings, mixing between the ALP and the neutral pion (??)
is proportional tomd�mu/(mu+md) ⇡ 0.35 and therefore suppressed compared to ALPs with
couplings to cu or cd. Any isospin violating e↵ect is a consequence of running and matching
from ⇤ to the scale at which flavor observables are evaluated. Therefore the decay width
�(a ! ��) is suppressed with respect to the scenarios which induce ALP-pion mixing in the
UV and the branching ratios of the ALP into leptons and the corresponding constraints such
as KL ! ⇡

0
e
+
e
� are slightly larger in comparison. Further, couplings to left-handed up-type

and down-type quarks exist in the UV, resulting in comparable constraints from J/ and ⌥
decays.
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Figure 22: Left; Flavor bounds on universal ALP couplings to down-type quarks with cd = cd ,
with all other Wilson coe�cients zero at ⇤ = 4⇡f and f = 1 TeV. Right: Constraints from flavor
observables (light gray) are compared to the constraint on Z ! a� decays from the LEP measurement
of the Z boson width. Contours of constant Br(h ! aa) = 10�1, 10�2 and 10�3 are depicted as red
dotted, dashed and solid lines, respectively. Contours of constant Br(h ! Za) = 10�1, 10�2 and
10�3 are shown as blue dotted, dashed and solid lines, respectively.

quarks at the UV scale. ALP decays into photons are mediated at 1-loop, whereas ALP-
lepton couplings are also two loop e↵ects. As a result, observables with photon final states
such as K

+ ! ⇡
+
�� and KL ! ⇡

0
�� are stronger relative to other constraints compared

to the scenario in which ALPs couple through cu in the UV. Radiative Upsilon decays lead
to important constraints because of the tree level coupling of the ALP to b-quarks. Searches
for resonances in ⌥ ! � + invisible by BaBar [113] and ⌥ ! � + hadrons [115] provide the
strongest limit for ALPs with masses ma & m⇡. The corresponding decays of J/ ! �a

are strongly suppressed because of the small ALP coupling to charm quarks induced only
by RGE e↵ects. Couplings below |cdd|/f . 10�1

/TeV are almost unconstrained by flavor
observables. This does not mean that this parameter space is unconstrained in this scenario.
Astrophysical and cosmological constraints, such as energy loss of red giants [133–135] and
supernova observations [136, 137] are sensitive to long-lived particles with couplings to photons
or nuclei and lead to strong constraints for ma < m⇡. The contribution of �(Z ! a�) to the
total Z width results in the constraint |cdd|/f & 442/TeV. The excluded parameter space is
shown in the right panel in Figure 22. Higgs decays are strongly suppressed for ALP couplings
to down-type quarks, because the amplitudes are proportional to the Yukawa coupling of the
b-quark. They are only induced by ctt generated by running and matching. The corresponding
sensitivity on h ! aa and h ! aZ are therefore orders of magnitude weaker compared to
Figure 21.
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Figure 24: Left: Flavor bounds on universal ALP couplings to lepton doublets with cL = cL ,
and all other Wilson coe�cients zero at the scale ⇤ = 4⇡f and f = 1 TeV. Right: Contours of
constant Br(h ! aa) = 10�1, 10�2 and 10�3 are depicted as red dotted, dashed and solid lines,
respectively. Contours of constant Br(h ! Za) = 10�1 and 10�2 are shown as blue dashed and solid
lines, respectively.

The constraint from Z ! a� is slightly stronger than for ALP couplings to right-handed
up and down-quarks, because all flavours contribute to the loop-induced coupling, whereas
the sensitivity to Higgs decays into ALPs is the same as in Figure 21.

3.7.7 ALP coupling to leptons

Constraints on ALPs with universal couplings to lepton doublets and singlets are shown in
Figure 24 and Figure 25, respectively. For these scenarios, we set either cL = cL or ce = ce ,
with couplings to all other SM fields set to zero at the scale ⇤ = 4⇡f with f = 1 TeV.
From (2.11), (2.12) follows that ALP couplings to leptons in the UV generate couplings to
all SM fermions through loops involving SU(2)L and the hypercharge gauge boson. How-
ever these couplings are small compared to the couplings to leptons and photons, such that
the corresponding branching ratios dominate as seen in the right panels in Figure ??. As a
consequence, only observables with lepton and photon final states are sensitive for the param-
eter space shown on Figure 24 and Figure 25. Interestingly, flavor changing transitions the
contribution from the ALP lepton singlet coupling dominates over the contribution from the
ALP lepton doublet coupling, because the hypercharge contribution to (2.20) is larger than
the contribution from the SU(2)L gauge bosons. Meson decays in which the ALP is produced
through flavor conserving couplings to quarks, such as J/ and ⌥ decays are equally sensitive
to both scenarios. This results in slightly stronger constraints from searches for ALPs in flavor
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Figure 26: Left: Bounds on ALP couplings to leptons [55]. Center and right: In color, we show
flavor bounds on ALPs coupling only to SU(2)L lepton doublets (same as Fig. ?? above) and lepton
singlets, respectively. They are compared to (in gray overlaid) astrophysical, beamdump and collider
constraints on ALP couplings to leptons c`` = ce � cL.

3.8 ALPs and low-energy anomalies

Various measurements of quark flavor changing transitions show deviations from the SM pre-
dictions. Here we discuss whether an ALP can explain hints of lepton flavor universality
violation in b ! s transitions, whether a light ALP can explain the excess observed in the
excited Beryllium and Helium decays, 8Be⇤ ! 8Be + e

+
e
� and 4He⇤ ! 4He + e

+
e
�, or in

the longstanding KTeV anomaly in ⇡
0 ! e

+
e
�. It is intriguing that various anomalies would

require an ALP coupling to down-type quarks and a decay width into electrons. We will also
comment on possible combined explanations.

3.8.1 B anomalies and lepton non-universality

The ratios of two neutral-current B meson decays have been measured by the LHCb collabo-
ration to be

RK =
Br(B ! Kµµ)

Br(B ! Kee)
= 0.846+0.042 +0.013

�0.039 �0.012 for 1.1GeV2
< q

2
< 6GeV2

, [? ] (3.44)

RK⇤ =
Br(B ! K

⇤
µµ)

Br(B ! K⇤ee)
=

(
0.66+0.11

�0.07 ± 0.03 for 0.045GeV2
< q

2
< 1.1GeV2

0.69+0.11
�0.07 ± 0.05 for 1.1GeV2

< q
2
< 6GeV2 , [46]

(3.45)

which deviate from the SM expectation by 3.1�, 2.3� (low momentum bin) and 2.5� (high
momentum bin), respectively. Note that radiative processes only give percent level corrections
to the tree-level SM expectation [139]. This seems to indicate a deviation of the measurement
from the SM prediction of lepton-flavor universality.

Heavy ALPs In principle, ALPs could address this discrepancy as they mediate the decays
B ! K

(⇤)
`
+
`
� with di↵erent interaction strengths for ` = e and ` = µ. ALP couplings
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Figure 6: Regions in ALP coupling space where the experimental value of (g � 2)µ is reproduced
at 68% (red), 95% (orange) and 99% (yellow) confidence level (CL), for di↵erent values of ma. We
assume Kaµ(⇤) = 0 at ⇤ = 1TeV and neglect the tiny contribution proportional to C�Z . For
ma > 2mµ, the gray regions are excluded by a dark-photon search in the e+e� ! µ+µ� + µ+µ�

channel performed by BaBar [84].

is of order ⇤/TeV, while the other one can be of similar order or larger. Since cµµ enters
observables always in combination with mµ, it is less constrained by perturbativity than C��.

An important constraint on the ALP–photon and ALP–muon couplings, C�� and cµµ,
can be derived from a search for light Z

0 bosons performed by BaBar, which constrains the
resonant production of muon pairs in the process e+e� ! µ

+
µ
� + Z

0
! µ

+
µ
� + µ

+
µ
� [84].

The Feynman diagrams contributing to this process at tree level (and for me = 0) are shown
in Figure 7. Neglecting the electron mass and averaging over the initial-state polarizations,
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ALP—SMEFT interference
It is well-known that one-loop diagrams with virtual ALP exchange can be 
UV divergent. This was first studied in the context of (g-2)μ :

µ µ µ

� �

µ

aZ/�µµ

µ a

Figure 5: One-loop diagrams contributing to the anomalous magnetic moment of the muon.

They are positive and satisfy h1,2(0) = 1 as well as h1(x) ⇡ (2/x)(ln x �
11

6
) and h2(x) ⇡

(ln x+ 3

2
) for x � 1. The scheme-dependent constant �2 = �3 is again related to the treatment

of the Levi–Civita symbol in d dimensions, see Appendix C.
Note that in processes in which the ALP only appears in loops but not as an external

particle, the scale dependence arising from the UV divergences of the ALP-induced loop con-
tributions are canceled by the scale dependence of a Wilson coe�cient in the D = 6 e↵ective
Lagrangian of the SM. In the present case the relevant term yielding a tree-level contribution
to aµ reads (written in the broken phase of the electroweak theory)

L
D=6

e↵
3 �Kaµ

emµ

4⇤2
µ̄ �µ⌫F

µ⌫
µ . (39)

In order to calculate the Wilson coe�cient Kaµ one would need to consider a specific UV
completion of the e↵ective Lagrangian (1). The large logarithm in the term proportional to
C�� in (37) is, however, una↵ected by this consideration. The coe�cient we obtain for this
logarithm agrees with [11] (the remaining finite terms were not displayed in this reference).
Two-loop light-by-light contributions proportional to (C��/⇤)2 have been estimated in [11]
and were found to be approximately given by

�aµ

��
LbL

⇡
m

2

µ

⇤2

12↵3

⇡
C

2

�� ln2
µ
2

m2
µ

. (40)

For µ = ⇤ = 1TeV this evaluates to �aµ|LbL ⇡ 5.6 · 10�12
C

2

��. In the region of parameter
space we consider, where |C��|/⇤ . 2TeV�1 (see below), the impact of this e↵ect is tiny.

In our numerical analysis, we will assume that the contribution of Kaµ(µ) is subleading
at the high scale µ = ⇤. If the Wilson coe�cients cµµ and C�� are of similar magnitude,
the logarithmically enhanced contribution is the parametrically largest one-loop correction. It
gives a positive shift of aµ provided the product cµµ C�� is negative. The correction propor-
tional to C�Z is suppressed by (1 � 4s2w) and hence is numerically subdominant. Note also
that the contribution proportional to (cµµ)2 is suppressed in the limit where m

2

a � m
2

µ, while
the remaining terms remain unsuppressed.

Figure 6 shows the regions in the parameter space of the couplings cµµ and C�� in which
the experimental value of the muon anomalous magnetic moment can be explained in terms
of the ALP-induced loop corrections shown in Figure 5, without invoking a large contribution
from the unknown short-distance coe�cient Kaµ(⇤). There is a weak dependence on the ALP
mass, such that the allowed parameter space increases for m

2

a � m
2

µ. Interestingly, we find
that an explanation of the anomaly is possible without much tuning as long as one coe�cients
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Figure 6: Regions in ALP coupling space where the experimental value of (g � 2)µ is reproduced
at 68% (red), 95% (orange) and 99% (yellow) confidence level (CL), for di↵erent values of ma. We
assume Kaµ(⇤) = 0 at ⇤ = 1TeV and neglect the tiny contribution proportional to C�Z . For
ma > 2mµ, the gray regions are excluded by a dark-photon search in the e+e� ! µ+µ� + µ+µ�

channel performed by BaBar [84].

is of order ⇤/TeV, while the other one can be of similar order or larger. Since cµµ enters
observables always in combination with mµ, it is less constrained by perturbativity than C��.

An important constraint on the ALP–photon and ALP–muon couplings, C�� and cµµ,
can be derived from a search for light Z

0 bosons performed by BaBar, which constrains the
resonant production of muon pairs in the process e+e� ! µ

+
µ
� + Z

0
! µ

+
µ
� + µ

+
µ
� [84].

The Feynman diagrams contributing to this process at tree level (and for me = 0) are shown
in Figure 7. Neglecting the electron mass and averaging over the initial-state polarizations,
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contained in the ALP effective Lagrangian

M. Neubert                                                                        Adventures in the ALPs — CRC Annual Meeting (May 26, 2021)                                                                                      35

UV divergentUV finite

ing minimum energies are su�ciently long-lived to travel from the Sun to the Earth before
decaying. We also note that limits on the ALP–electron coupling in the mass range between
20MeV and 10GeV can be derived from dark-photon searches performed at MAMI [81] and
BaBar [82]. While a proper conversion of these limits is non-trivial [83] and beyond the scope
of this work, the bounds one obtains are typically rather weak, of order |c

e↵

ee |/⇤ & 103 TeV�1.
Assuming the approximate universality of the ALP–lepton couplings shown in (32), a stronger
constraint can be derived from a dark-photon search in the channel e+e� ! µ

+
µ
�
Z

0 performed
by BaBar [84], which we will reanalyze in the context of our model in the next section. For
C�� = 0, this gives rise to the bound shaded in gray in Figure 4.

Of the one-loop contributions to the e↵ective ALP–electron coupling in (24), only the
photon term shows a sizable sensitivity to the ALP mass, and only in the region where ma &
me. We find (with µ = ⇤ = 1TeV in the argument of the logarithms)

c
e↵

ee (ma = 1GeV) ⇡ cee

⇥
1 + O

�
↵
�⇤

� 0.8 · 10�2
CWW + (0.7 � 1.1 i) · 10�2

C�� ,

c
e↵

ee (ma = 1keV) ⇡ cee

⇥
1 + O

�
↵
�⇤

� 0.8 · 10�2
CWW � 1.4 · 10�2

C�� .

(36)

To satisfy the model-independent bound |c
e↵

ee |/⇤ < 10�6 TeV�1 in the mass range ma < 10 keV
would require that |C��| and |CWW | (and hence both |CWW | and |CBB|) must be smaller than
approximately 10�4 (⇤/TeV) in this low-mass region.

4 Anomalous magnetic moment of the muon

The persistent deviation of the measured value of the muon anomalous magnetic moment
aµ = (g � 2)µ/2 [85] from its SM value provides one of the most compelling hints for new
physics. The di↵erence a

exp

µ � a
SM

µ = (29.3 ± 7.6) · 10�10, where we have taken an average
of two recent determinations [86, 87], di↵ers from zero by about 4 standard deviations. It
has been emphasized recently that this discrepancy can be accounted for by an ALP with an
enhanced coupling to photons [11]. At one-loop order, the e↵ective Lagrangian gives rise to
the contributions to aµ shown in Figure 5. The first graph, in which the ALP couples to the
muon line, gives a contribution of the wrong sign [88, 89]; however, its e↵ect may be overcome
by the second diagram, which involves the ALP coupling to photons (or to �Z), if the Wilson
coe�cient C�� in (1) is su�ciently large [10, 11]. Performing a complete one-loop analysis, we
find that the e↵ective ALP Lagrangian gives rise to the new-physics contribution

�aµ =
m

2

µ

⇤2

⇢
Kaµ(µ) �

(cµµ)2

16⇡2
h1

✓
m

2

a

m2
µ

◆
�

2↵

⇡
cµµ C��


ln

µ
2

m2
µ

+ �2 + 3 � h2

✓
m

2

a

m2
µ

◆�

�
↵

2⇡

1 � 4s2w
swcw

cµµ C�Z

✓
ln

µ
2

m2

Z

+ �2 +
3

2

◆�
.

(37)

The loop functions read (with x = m
2

a/m
2

µ + i0)

h1(x) = 1 + 2x+ x(1 � x) ln x � 2x(3 � x)

r
x

4 � x
arccos

p
x

2
,

h2(x) = 1 �
x

3
+

x
2

6
ln x+

2 + x

3

p
x(4 � x) arccos

p
x

2
.

(38)
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ALP—SMEFT interference
A systematic treatment of these UV divergences requires an embedding of 
the ALP model in the SMEFT:


where:


Irrespective of the existence of other new physics, the presence of a light  
ALP provides source terms  for the D=6 SMEFT Wilson coefficients:
Si

problem [5–7]. More generally, ALPs are gauge-singlet pseudoscalar particles, which arise
in many theories beyond the SM as pseudo Nambu–Goldstone bosons of a global symmetry
spontaneously broken in the ultra-violet (UV) theory, and are thus naturally lighter than other
new states whose masses may be out of reach of current direct searches. While the QCD axion
is the original example of such a particle, ALPs with a variety of masses and couplings can
arise also more generally, for example in theories which address the flavor [8, 9] and hierarchy
[10–14] problems. Here we remain agnostic about the underlying theory and study a general
e↵ective field theory, to which explicit models can be matched. Since the ALP couplings to
SM fields are constrained by a shift symmetry, these interactions first appear at the level of
dimension-5 operators in the e↵ective theory.

The existence of a light ALP extends the SMEFT, because operators can now be built out
of SM fields and the ALP field. The most general e↵ective Lagrangian above the electroweak
scale can then be written in the form

Le↵ = LSM +
1

2
(@µa)(@

µ
a)�

m
2
a

2
a
2 + LSM+ALP + LSMEFT , (1)

where the last two terms consist of higher-dimensional operators starting at dimension-5 order.
By definition the term LSMEFT consists of operators not containing the ALP field. We will
refer to these operators as “SMEFT operators”, although of course the theory we are working
in is not the pure SMEFT, but rather the e↵ective theory whose degrees of freedom are the
SM fields plus the ALP. Like any other new particle not contained in the SM, an ALP can
be searched for either directly or indirectly. Direct searches using particle-physics detectors
aim at detecting ALPs produced in a collider experiment by reconstructing them in various
possible decay modes [15–26]. Our focus in this work is on indirect searches, which look for
hints of the e↵ects of virtual ALP exchange on precision measurements. As long as the scale
f suppressing the ALP couplings to the SM is not excessively large,1 this opens up new,
complementary ways to search for the e↵ects of an ALP and place bounds on its couplings
to the SM. An advantage is that, contrary to direct searches, indirect probes are independent
of the way in which the ALP decays, and if it is long- or short-lived. Prominent examples of
such precision observables are the anomalous magnetic moment of the muon and the electron
[20, 21, 31–33], electroweak precision observables [21], and various rates for flavor-changing
decays of kaons, B-mesons and charged leptons [34–41]. It has been observed in several of these
studies that the one-loop contributions to such quantities arising from virtual ALP exchange
can be ultra-violet (UV) divergent, but a consistent treatment of these divergences has so far
not been presented in the literature.

The renormalization-group (RG) evolution of the dimension-5 ALP couplings in the e↵ec-
tive Lagrangian LSM+ALP has recently been studied in [42, 43]. Here we point out the impor-
tant fact that the existence of an ALP with couplings to the SM necessarily induces non-zero
Wilson coe�cients of the dimension-6 SMEFT operators contained in LSMEFT, which produce
e↵ects across a wide variety of observables. In general, there are three types of such e↵ects:

• Matching contributions at the scale ⇤ = 4⇡f of global symmetry breaking arise from
integrating out heavy new particles contained in the UV completion of the ALP model.

1Otherwise one needs to resort to cosmological and astrophysical bounds, see e.g. [27–30].

2

Since our e↵ective theory respects the SM gauge invariance and only contains the SM
particles and the ALP as degrees of freedom, it would need to be modified in scenarios with a
new-physics sector between the electroweak scale and the scale of global symmetry breaking
(v < MNP < 4⇡f). Even in this case, the e↵ective Lagrangian (3) o↵ers a model-independent
description of the physics below the intermediate scale MNP.

Note the important fact that the e↵ective Lagrangian (3) does not contain a coupling of the
ALP to the Higgs field. The renormalizable portal interaction a

2
H

†
H is forbidden by the shift

symmetry, while a possible shift-symmetric dimension-5 coupling of @
µ
a to the Higgs current

is redundant and can be removed by field redefinitions [49]. The free parameters of the model
are the ALP mass ma, the three ALP couplings cV V to gauge fields (with V = G, W, B), and
the 5 times 9 parameters of the hermitian matrices cF .3 It is well known that the derivative
ALP couplings to fermions are only defined modulo the generators of exact global symmetries
of the SM [49], which are baryon number B and the lepton numbers Le, Lµ and L⌧ for each
flavor (since the neutrinos are massless in the SM). It follows that four model parameters are
redundant and can be chosen at will. For example, one can choose (cL)ii = 0 for i = 1, 2, 3 and
Tr(cQ) = 0, or one can arrange that either cWW = 0 or cBB = 0 (but not both) in addition
with three constraints imposed on the ALP–fermion couplings. The model thus contains
1 + 3 + 45� 4 = 45 free parameters, most of them related to the flavor sector.

The form of the e↵ective Lagrangian (3) is the one in which the shift symmetry is most
explicit. However, for our purposes it will be useful to consider an alternative but equivalent
form, in which the ALP couplings to fermions are of a non-derivative type [42]. Integrating
by parts in the last term in (3) and using the SM equations of motion (EOMs) along with the
equation for the axial anomaly leads to (with H̃i = ✏ijH

⇤
j
)

L
D=5 0
SM+ALP = CGG

a

f
G

a

µ⌫
G̃

µ⌫,a + CWW

a

f
W

I

µ⌫
W̃

µ⌫,I + CBB

a

f
Bµ⌫ B̃

µ⌫

�
a

f

⇣
Q̄H̃ eYuuR + Q̄H eYd dR + L̄H eYeeR + h.c.

⌘
,

(4)

where the three Yukawa-type matrices eYf (with f = u, d, e) are related to the SM Yukawa
matrices and the five hermitian matrices cF by

eYu = i
�
Yu cu � cQYu

�
, eYd = i

�
Yd cd � cQYd

�
, eYe = i

�
Ye ce � cLYe

�
. (5)

Note the important fact that the ALP–boson couplings in (3) are also a↵ected by the field
redefinitions. One finds

CGG =
↵s

4⇡


cGG +

1

2
Tr (cd + cu � 2cQ)

�
⌘

↵s

4⇡
c̃GG ,

CWW =
↵2

4⇡


cWW �

1

2
Tr (NccQ + cL)

�
⌘

↵2

4⇡
c̃WW ,

CBB =
↵1

4⇡


cBB + Tr

h
Nc

�
Y

2
d
cd + Y

2
u
cu � 2Y2

Q
cQ

�
+ Y

2
e
ce � 2Y2

L
cL

i�
⌘

↵1

4⇡
c̃BB ,

(6)

3The scale f can be absorbed into the ALP couplings and hence does not add a new parameter.
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Examples are heavy vector-like fermions with di↵erent Peccei–Quinn charges, by which
the ALP interacts with SM gauge bosons. These matching contributions are model
dependent, and they can only be calculated within a specific UV completion.

• Loop diagrams involving virtual exchange of the ALP are generally divergent and induce
inhomogeneous source terms in the RG equations for the Wilson coe�cients of the
SMEFT operators.

• At low energies, the time-ordered product with two insertions of the ALP e↵ective La-
grangian LSM+ALP yields non-zero contributions to scattering amplitudes describing pro-
cesses involving SM particles only. These contributions can be systematically calculated
in the e↵ective theory described by (1) as long as the ALP mass or the characteristic
scale of the observable are in the realm of perturbative QCD.

Of these three contributions, the second one is parametrically enhanced by large logarithms
arising from the evolution from the high scale ⇤ to low energies.2 For example, a contribution
of this sort underlies ALP explanations for the deviation of the muon anomalous magnetic
moment from its SM prediction [21, 31, 33], for which divergent diagrams involving the ALP–
photon coupling induce large logarithms in the coe�cients of SMEFT dipole operators.

In this work, we calculate for the first time the full set of ALP-induced terms in the RG
equations for the Wilson coe�cients of the dimension-6 SMEFT operators in (1) above the
electroweak scale. Irrespective of its mass, which can even be much smaller than the weak
scale, the presence of an ALP generates inhomogeneous source terms in the RG equations,
which we write in the form

d

d lnµ
C

SMEFT
i

� �
SMEFT
ji

C
SMEFT
j

=
Si

(4⇡f)2
(for µ < 4⇡f) . (2)

Here �SMEFT is the anomalous-dimension matrix of the dimension-6 SMEFT operators in the
Warsaw basis [44] (the transpose matrix governs the evolution of the Wilson coe�cients),
which has been calculated at one-loop order in [45–48]. The ALP source terms are denoted by
Si, and the overall suppression scale is set by the “ALP decay constant” f . The presence of
these source terms generates non-zero SMEFT Wilson coe�cients irrespective of the existence
of any other source of new physics. We find that almost the entire set of Wilson coe�cients
is sourced by ALP e↵ects at one-loop order. As an important application of our results, we
present a study of the chromo-magnetic moment of the top quark and briefly comment on
constraints from electroweak precision observables.

In our calculations we adopt the notations and conventions introduced in [44], with one
exception: we define the covariant derivative in the fundamental representation of the gauge
group as Dµ = @µ � igsG

a

µ
T

a
� ig2W

I

µ

�
I

2 � ig1YBµ, where T
a are the Gell-Mann matrices, �

I

the Pauli matrices and Y the hypercharge generator. While this agrees with most textbooks
on quantum field theory, it corresponds to a di↵erent sign convention for the three gauge
couplings compared with [44, 48]. While the Warsaw basis defines the standard choice of the

2It is important to keep in mind that the other two contributions must also exist, if only to cancel the
renormalization-scheme dependence of the second contribution.
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ALP—SMEFT interference
Systematic study of divergent Green’s functions with ALP exchange


Sample calculation: UV divergences of the three-gluon amplitude
[Galda, MN, Renner: 2105.01078]
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Figure 1: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the classes X

3 and X
2
D

2 as counterterms. The 2-point functions (first graph)
exist for all three types of gauge bosons, while the 3-point functions (last two graphs) require non-
abelian vertices involving three gauge bosons.

which can be used to eliminate bQG,1 from the extended basis. We are thus left with the
operators

bQG,2 = (D⇢
G⇢µ)

a (D!G
!µ)a ,

bQW,2 = (D⇢
W⇢µ)

I (D!W
!µ)I ,

bQB,2 = (D⇢
B⇢µ) (D!B

!µ) .

(9)

Analogous operators, in which one of the two field-strength tensors is replaced by a dual
tensor, are not needed as counterterms in our analysis.

At one-loop order, the 1PI Feynman diagrams with a virtual ALP exchange, which require
operators in the classes X

3 and X
2
D

2 as counterterms, are shown in Figure 1. Here and below,
a red dashed line represents an ALP propagator, while red dots mark the 1/f -suppressed
ALP–SM vertices. In order to determine the coe�cients of the counterterms we study both
the three-boson and two-boson Green’s functions with o↵-shell external momenta. The three-
boson amplitudes only exist for the non-abelian gauge fields. Starting with the gluon case, we
find that both the 3-gluon and the 2-gluon amplitude can be written in the form

A
�
gg(g)

�
= �

C
2
GG

✏


4gshQGi+

4

3
h bQG,2i � 2m2

a
hG

a

µ⌫
G

µ⌫,a
i

�
+ finite , (10)

where the matrix element of QG requires three external gluons to be non-zero. In a completely
analogous way, we find that

A
�
WW (W )

�
= �

C
2
WW

✏


4g2hQW i+

4

3
h bQW,2i � 2m2

a
hW

I

µ⌫
W

µ⌫,I
i

�
+ finite ,

A(BB) = �
C

2
BB

✏


4

3
h bQB,2i � 2m2

a
hBµ⌫B

µ⌫
i

�
+ finite .

(11)

In all three cases, the presence of the contributions proportional to the ALP mass parameter m
2
a

leads to a wave-function renormalization of the gauge fields, which a↵ects the scale evolution
of the running couplings ↵s(µ), ↵2(µ) and ↵1(µ). This will be discussed in detail in Section 4.1.

Classes X
2
H

2
and XH

2
D

2
. At one-loop order, the 1PI Feynman diagrams with a virtual

ALP exchange, which require operators in class X
2
H

2 as counterterms, are shown in Figure 2.
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the purely bosonic operators defined in (9) are

bQG,2
⇠= g

2
s

�
Q̄�µT

a
Q + ū�µT

a
u + d̄�µT

a
d
�2

= g
2
s


1

4

⇣⇥
Q

(1)
qq

⇤
prrp

+
⇥
Q

(3)
qq

⇤
prrp

⌘
�

1

2Nc

⇥
Q
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qq
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pprr

+
1

2

⇥
Quu
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prrp
�

1

2Nc
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Quu
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1
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Qdd
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�

1
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Qdd
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+ 2
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qu

⇤
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+ 2
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qd
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pprr
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Q

(8)
ud

⇤
pprr

�
,

(18)

bQW,2
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g
2
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4

⇣
H

†
i
 !
Dµ

I
H + Q̄�µ�

I
Q + L̄�µ�

I
L

⌘2

=
g
2
2

4


� 4m2

H

�
H

†
H
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+ 4�QH + 3QH⇤ + 2
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Q
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QdH
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Ye
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QeH
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+ h.c.
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Q

(3)
lq
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pprr
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Qll

⇤
prrp
�
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Qll
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Q
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qq
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pprr

�
,

(19)

and

bQB,2
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⇥
Q

(1)
lq

⇤
pprr

+ 2YLYe

⇥
Qle

⇤
pprr

+ 2YLYu

⇥
Qlu

⇤
pprr

+ 2YLYd

⇥
Qld

⇤
pprr

+ 2YQYe

⇥
Qqe

⇤
pprr

+ 2YQYu

⇥
Q

(1)
qu

⇤
pprr

+ 2YQYd

⇥
Q

(1)
qd

⇤
pprr

+ 2YeYu

⇥
Qeu

⇤
pprr

+ 2YeYd

⇥
Qed

⇤
pprr

+ 2YuYd

⇥
Q

(1)
ud

⇤
pprr

�
. (20)

They are in agreement with corresponding relations derived in [56]. In relation (19), m
2
H

is
the Higgs mass parameter and � the scalar self-coupling as defined via the scalar potential
[44]

V =
�

2

�
H

†
H
�2
�m

2
H

H
†
H . (21)
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Source term for Weinberg operator:

Eliminate redundant operator 
using the EOMs:

Figure 1: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the classes X

3 and X
2
D

2 as counterterms. The 2-point functions (first graph)
exist for all three types of gauge bosons, while the 3-point functions (last two graphs) require non-
abelian vertices involving three gauge bosons.

which can be used to eliminate bQG,1 from the extended basis. We are thus left with the
operators

bQG,2 = (D⇢
G⇢µ)

a (D!G
!µ)a ,

bQW,2 = (D⇢
W⇢µ)

I (D!W
!µ)I ,

bQB,2 = (D⇢
B⇢µ) (D!B

!µ) .

(9)

Analogous operators, in which one of the two field-strength tensors is replaced by a dual
tensor, are not needed as counterterms in our analysis.

At one-loop order, the 1PI Feynman diagrams with a virtual ALP exchange, which require
operators in the classes X

3 and X
2
D

2 as counterterms, are shown in Figure 1. Here and below,
a red dashed line represents an ALP propagator, while red dots mark the 1/f -suppressed
ALP–SM vertices. In order to determine the coe�cients of the counterterms we study both
the three-boson and two-boson Green’s functions with o↵-shell external momenta. The three-
boson amplitudes only exist for the non-abelian gauge fields. Starting with the gluon case, we
find that both the 3-gluon and the 2-gluon amplitude can be written in the form

A
�
gg(g)

�
= �

C
2
GG

✏


4gshQGi+

4

3
h bQG,2i � 2m2

a
hG

a

µ⌫
G

µ⌫,a
i

�
+ finite , (10)

where the matrix element of QG requires three external gluons to be non-zero. In a completely
analogous way, we find that

A
�
WW (W )

�
= �

C
2
WW

✏


4g2hQW i+

4

3
h bQW,2i � 2m2

a
hW

I

µ⌫
W

µ⌫,I
i

�
+ finite ,

A(BB) = �
C

2
BB

✏


4

3
h bQB,2i � 2m2

a
hBµ⌫B

µ⌫
i

�
+ finite .

(11)

In all three cases, the presence of the contributions proportional to the ALP mass parameter m
2
a

leads to a wave-function renormalization of the gauge fields, which a↵ects the scale evolution
of the running couplings ↵s(µ), ↵2(µ) and ↵1(µ). This will be discussed in detail in Section 4.1.

Classes X
2
H

2
and XH

2
D

2
. At one-loop order, the 1PI Feynman diagrams with a virtual

ALP exchange, which require operators in class X
2
H

2 as counterterms, are shown in Figure 2.

9

must contain divergent contributions, which cancel the 1/✏ poles of the ALP contributions.
Consider the contribution proportional to the Weinberg operator QG in the 3-gluon amplitude
(10) as an example. In order to cancel the corresponding 1/✏ pole, the bare Wilson coe�cient
CG,0 must contain the contribution

CG,0 3
4gs

(4⇡f)2
C

2
GG

✓
1

✏
+ ln

µ
2

M2
+ . . .

◆
, (29)

where M
2 is a characteristic mass scale in the UV theory, and the combination of 1/✏ and lnµ

2

is generic for one-loop integrals in dimensional regularization. When the Wilson coe�cient is
renormalized, the 1/✏ pole term is removed, but the scale-dependent term remains. It follows
that

d

d lnµ
CG(µ) 3

8gs

(4⇡f)2
C

2
GG

. (30)

In this way, the ALP source terms for the various Wilson coe�cients can be derived from
the coe�cients of the 1/✏ poles in the expressions for the various divergent Green’s functions
considered in Section 3.

Class X
3:

From the results for the 1/✏ poles in the two- and three-point gauge-boson amplitudes shown
in (10) and (11), we obtain the ALP source terms

SG = 8gsC
2
GG

, S eG = 0 ,

SW = 8g2C
2
WW

, SfW = 0 .

(31)

Class X
2
H

2:

From the results for the 1/✏ poles in the amplitudes connecting two Higgs bosons and two
gauge fields shown in (12), we obtain the ALP source terms

SHG = 0 , S
H eG = 0 ,

SHW = �2g
2
2 C

2
WW

, S
HfW = 0 ,

SHB = �2g
2
1 C

2
BB

, S
H eB = 0 ,

SHWB = �4g1g2 CWW CBB , S
HfWB

= 0 .

(32)

Here and in (31), the source terms for the CP-odd operators (marked with a tilde) vanish at
one-loop order, because the ALP does not have any CP-violating couplings to gauge bosons.

Classes H
6 and H

4
D

2:

The operators in these classes do not receive any direct contributions from one-loop diagrams
with ALP exchange, but they are generated via contributions from the EOMs due to the

17

→ generates further source terms



ALP—SMEFT interference
One-loop results for the ALP source terms in the Warsaw basis:

must contain divergent contributions, which cancel the 1/✏ poles of the ALP contributions.
Consider the contribution proportional to the Weinberg operator QG in the 3-gluon amplitude
(10) as an example. In order to cancel the corresponding 1/✏ pole, the bare Wilson coe�cient
CG,0 must contain the contribution

CG,0 3
4gs

(4⇡f)2
C

2
GG

✓
1

✏
+ ln

µ
2

M2
+ . . .

◆
, (29)

where M
2 is a characteristic mass scale in the UV theory, and the combination of 1/✏ and lnµ

2

is generic for one-loop integrals in dimensional regularization. When the Wilson coe�cient is
renormalized, the 1/✏ pole term is removed, but the scale-dependent term remains. It follows
that

d

d lnµ
CG(µ) 3

8gs

(4⇡f)2
C

2
GG

. (30)

In this way, the ALP source terms for the various Wilson coe�cients can be derived from
the coe�cients of the 1/✏ poles in the expressions for the various divergent Green’s functions
considered in Section 3.

Class X
3:

From the results for the 1/✏ poles in the two- and three-point gauge-boson amplitudes shown
in (10) and (11), we obtain the ALP source terms

SG = 8gsC
2
GG

, S eG = 0 ,

SW = 8g2C
2
WW

, SfW = 0 .

(31)

Class X
2
H

2:

From the results for the 1/✏ poles in the amplitudes connecting two Higgs bosons and two
gauge fields shown in (12), we obtain the ALP source terms

SHG = 0 , S
H eG = 0 ,

SHW = �2g
2
2 C

2
WW

, S
HfW = 0 ,

SHB = �2g
2
1 C

2
BB

, S
H eB = 0 ,

SHWB = �4g1g2 CWW CBB , S
HfWB

= 0 .

(32)

Here and in (31), the source terms for the CP-odd operators (marked with a tilde) vanish at
one-loop order, because the ALP does not have any CP-violating couplings to gauge bosons.
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with ALP exchange, but they are generated via contributions from the EOMs due to the
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the coe�cients of the 1/✏ poles in the expressions for the various divergent Green’s functions
considered in Section 3.

Class X
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From the results for the 1/✏ poles in the two- and three-point gauge-boson amplitudes shown
in (10) and (11), we obtain the ALP source terms

SG = 8gsC
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GG
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SW = 8g2C
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WW
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Class X
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H
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From the results for the 1/✏ poles in the amplitudes connecting two Higgs bosons and two
gauge fields shown in (12), we obtain the ALP source terms

SHG = 0 , S
H eG = 0 ,

SHW = �2g
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2 C
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WW

, S
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2
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, S
H eB = 0 ,

SHWB = �4g1g2 CWW CBB , S
HfWB

= 0 .

(32)

Here and in (31), the source terms for the CP-odd operators (marked with a tilde) vanish at
one-loop order, because the ALP does not have any CP-violating couplings to gauge bosons.

Classes H
6 and H

4
D

2:

The operators in these classes do not receive any direct contributions from one-loop diagrams
with ALP exchange, but they are generated via contributions from the EOMs due to the
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operators bQW,2 and bQB,2, see relations (19) and (20). We find

SH =
8

3
�g

2
2 C

2
WW

,

SH⇤ = 2g
2
2 C

2
WW

+
8

3
g
2
1 Y

2
H

C
2
BB

,

SHD =
32

3
g
2
1 Y

2
H

C
2
BB

.

(33)

4.3 Source terms of single fermion-current operators

The Wilson coe�cients of these operators are matrices in generation space. We present our
results for the corresponding source term using a matrix notation with boldface symbols.

Class  2
XH:

From the results for the 1/✏ poles in the amplitudes connecting two fermions to a Higgs field
and a gauge field shown in (13), we obtain the ALP source terms

SeW = �ig2
eYe CWW ,

SeB = �2ig1 (YL + Ye) eYe CBB ,

SuG = �4igs eYu CGG ,

SuW = �ig2
eYu CWW ,

SuB = �2ig1 (YQ + Yu) eYu CBB ,

SdG = �4igs eYd CGG ,

SdW = �ig2
eYd CWW ,

SdB = �2ig1 (YQ + Yd) eYd CBB .

(34)

Class  2
H

3:

The source terms for the operators in this class receive direct contributions, as shown in (14),
as well as contributions from EOMs, from the relations given in (19) and (22). We find

SeH = �2 eYeY
†
e
eYe �

1

2
eYe

eY †
e
Ye �

1

2
Ye

eY †
e
eYe +

4

3
g
2
2 C

2
WW

Ye ,

SuH = �2 eYuY
†
u
eYu �

1

2
eYu

eY †
u
Yu �

1

2
Yu

eY †
u
eYu +

4

3
g
2
2 C

2
WW

Yu ,

SdH = �2 eYdY
†
d
eYd �

1

2
eYd

eY †
d
Yd �

1

2
Yd

eY †
d
eYd +

4

3
g
2
2 C

2
WW

Yd .

(35)
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Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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Figure 1: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the classes X

3 and X
2
D

2 as counterterms. The 2-point functions (first graph)
exist for all three types of gauge bosons, while the 3-point functions (last two graphs) require non-
abelian vertices involving three gauge bosons.

which can be used to eliminate bQG,1 from the extended basis. We are thus left with the
operators

bQG,2 = (D⇢
G⇢µ)

a (D!G
!µ)a ,

bQW,2 = (D⇢
W⇢µ)

I (D!W
!µ)I ,

bQB,2 = (D⇢
B⇢µ) (D!B

!µ) .

(9)

Analogous operators, in which one of the two field-strength tensors is replaced by a dual
tensor, are not needed as counterterms in our analysis.

At one-loop order, the 1PI Feynman diagrams with a virtual ALP exchange, which require
operators in the classes X

3 and X
2
D

2 as counterterms, are shown in Figure 1. Here and below,
a red dashed line represents an ALP propagator, while red dots mark the 1/f -suppressed
ALP–SM vertices. In order to determine the coe�cients of the counterterms we study both
the three-boson and two-boson Green’s functions with o↵-shell external momenta. The three-
boson amplitudes only exist for the non-abelian gauge fields. Starting with the gluon case, we
find that both the 3-gluon and the 2-gluon amplitude can be written in the form

A
�
gg(g)

�
= �

C
2
GG

✏


4gshQGi+

4

3
h bQG,2i � 2m2

a
hG

a

µ⌫
G

µ⌫,a
i

�
+ finite , (10)

where the matrix element of QG requires three external gluons to be non-zero. In a completely
analogous way, we find that

A
�
WW (W )

�
= �

C
2
WW

✏


4g2hQW i+

4

3
h bQW,2i � 2m2

a
hW

I

µ⌫
W

µ⌫,I
i

�
+ finite ,

A(BB) = �
C

2
BB

✏


4

3
h bQB,2i � 2m2

a
hBµ⌫B

µ⌫
i

�
+ finite .

(11)

In all three cases, the presence of the contributions proportional to the ALP mass parameter m
2
a

leads to a wave-function renormalization of the gauge fields, which a↵ects the scale evolution
of the running couplings ↵s(µ), ↵2(µ) and ↵1(µ). This will be discussed in detail in Section 4.1.

Classes X
2
H

2
and XH

2
D

2
. At one-loop order, the 1PI Feynman diagrams with a virtual

ALP exchange, which require operators in class X
2
H

2 as counterterms, are shown in Figure 2.

9

Figure 2: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class X2

H
2 as counterterms. Higgs doublets are represented by thick dotted

lines, with the arrow indicating the hypercharge flow.

The vertices connecting Higgs and gauge bosons exist only for SU(2)L and U(1)Y gauge fields.
We find that the UV divergences of the corresponding amplitudes (with all particles incoming)
can be written in the form

A(WWH
⇤
H) =

C
2
WW

✏
g
2
2 hQHW i+ finite ,

A(BBH
⇤
H) =

C
2
BB

✏
g
2
1 hQHBi+ finite ,

A(WBH
⇤
H) =

CWW CBB

✏
2g1g2 hQHWBi+ finite .

(12)

Operators in the class XH
2
D

2 are not generated by ALP exchange at one-loop order.

Classes H
6
, H

4
D

2
and H

2
D

4
. The operators in the classes H

6 and H
4
D

2 are not gener-
ated directly via one-loop diagrams involving ALP exchange, but they are generated indirectly
when the redundant operators are eliminated using the EOMs. The relevant relations are de-
rived in Section 3.4. Operators in the class H

2
D

4 are not generated by ALP exchange at
one-loop order.

3.2 Operators containing a single fermion current

Classes  
2
XD and  

2
D

3
. These operators are not generated by ALP exchange at one-

loop order.

Class  
2
XH. The operators in this class are generated by the one-loop Feynman graphs

shown in Figure 3. We find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
erWH) =

ig2

2✏

� eYe

�
pr

CWW

⇥
hQeW i

⇤
pr
+ finite ,

A(L⇤
p
erBH) =

ig1

✏
(YL + Ye)

� eYe

�
pr

CBB

⇥
hQeBi

⇤
pr
+ finite ,

A(Q⇤
p
ur gH

⇤) =
2igs
✏

� eYu

�
pr

CGG

⇥
hQuGi

⇤
pr
+ finite ,

A(Q⇤
p
urWH

⇤) =
ig2

2✏

� eYu

�
pr

CWW

⇥
hQuW i

⇤
pr
+ finite ,

10

[Grzadkowski, Iskrzynski, Misiak, Rosiek (2010)]
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Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
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operators bQW,2 and bQB,2, see relations (19) and (20). We find

SH =
8

3
�g

2
2 C

2
WW

,

SH⇤ = 2g
2
2 C

2
WW

+
8

3
g
2
1 Y

2
H

C
2
BB

,

SHD =
32

3
g
2
1 Y

2
H

C
2
BB

.

(33)

4.3 Source terms of single fermion-current operators

The Wilson coe�cients of these operators are matrices in generation space. We present our
results for the corresponding source term using a matrix notation with boldface symbols.

Class  2
XH:

From the results for the 1/✏ poles in the amplitudes connecting two fermions to a Higgs field
and a gauge field shown in (13), we obtain the ALP source terms

SeW = �ig2
eYe CWW ,

SeB = �2ig1 (YL + Ye) eYe CBB ,

SuG = �4igs eYu CGG ,

SuW = �ig2
eYu CWW ,

SuB = �2ig1 (YQ + Yu) eYu CBB ,

SdG = �4igs eYd CGG ,

SdW = �ig2
eYd CWW ,

SdB = �2ig1 (YQ + Yd) eYd CBB .

(34)

Class  2
H

3:

The source terms for the operators in this class receive direct contributions, as shown in (14),
as well as contributions from EOMs, from the relations given in (19) and (22). We find

SeH = �2 eYeY
†
e
eYe �

1

2
eYe

eY †
e
Ye �

1

2
Ye

eY †
e
eYe +

4

3
g
2
2 C

2
WW

Ye ,

SuH = �2 eYuY
†
u
eYu �

1

2
eYu

eY †
u
Yu �

1

2
Yu

eY †
u
eYu +

4

3
g
2
2 C

2
WW

Yu ,

SdH = �2 eYdY
†
d
eYd �

1

2
eYd

eY †
d
Yd �

1

2
Yd

eY †
d
eYd +

4

3
g
2
2 C

2
WW

Yd .

(35)
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Figure 3: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

XH as counterterms. Thick (thin) solid lines represent left-handed
fermion doublets (right-handed fermion singlets). If the right-handed fermion is an up-type quark,
the arrows on the Higgs lines need to be reversed.
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ALP—SMEFT interference
One-loop results for the ALP source terms in the Warsaw basis:

Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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Class  2
H

2
D:

The source terms for the operators in this class receive direct contributions, as shown in (16),
as well as contributions from EOMs, from the relations given in (19) and (20). We find
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(36)

4.4 Source terms of four-fermion operators

The Wilson coe�cients of these operators are 4-index tensors in generation space, and we
therefore present our results for the corresponding source term in component notation. The
direct contributions to the source terms are derived form the four-fermion amplitudes collected
in (17). In addition, there are several indirect contributions from the EOM relations in (18),
(19) and (20). The source terms for operators in the classes (L̄L)(L̄L) and (R̄R)(R̄R) are
entirely due to these EOM relations.

Class (L̄L)(L̄L):

For the source terms of the purely left-handed four-fermion operators we obtain
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Figure 3: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

XH as counterterms. Thick (thin) solid lines represent left-handed
fermion doublets (right-handed fermion singlets). If the right-handed fermion is an up-type quark,
the arrows on the Higgs lines need to be reversed.
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3 as counterterms. Graphs involving both eYu and eYd, such as the

third one, vanish after summing over the permutations of the Higgs fields.
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8

Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.

8

operators bQW,2 and bQB,2, see relations (19) and (20). We find

SH =
8

3
�g

2
2 C

2
WW

,

SH⇤ = 2g
2
2 C

2
WW

+
8

3
g
2
1 Y

2
H

C
2
BB

,

SHD =
32

3
g
2
1 Y

2
H

C
2
BB

.

(33)

4.3 Source terms of single fermion-current operators

The Wilson coe�cients of these operators are matrices in generation space. We present our
results for the corresponding source term using a matrix notation with boldface symbols.

Class  2
XH:

From the results for the 1/✏ poles in the amplitudes connecting two fermions to a Higgs field
and a gauge field shown in (13), we obtain the ALP source terms

SeW = �ig2
eYe CWW ,

SeB = �2ig1 (YL + Ye) eYe CBB ,

SuG = �4igs eYu CGG ,

SuW = �ig2
eYu CWW ,

SuB = �2ig1 (YQ + Yu) eYu CBB ,

SdG = �4igs eYd CGG ,

SdW = �ig2
eYd CWW ,

SdB = �2ig1 (YQ + Yd) eYd CBB .

(34)

Class  2
H

3:

The source terms for the operators in this class receive direct contributions, as shown in (14),
as well as contributions from EOMs, from the relations given in (19) and (22). We find

SeH = �2 eYeY
†
e
eYe �

1

2
eYe

eY †
e
Ye �

1

2
Ye

eY †
e
eYe +

4

3
g
2
2 C

2
WW

Ye ,

SuH = �2 eYuY
†
u
eYu �

1

2
eYu

eY †
u
Yu �

1

2
Yu

eY †
u
eYu +

4

3
g
2
2 C

2
WW

Yu ,

SdH = �2 eYdY
†
d
eYd �

1

2
eYd

eY †
d
Yd �

1

2
Yd

eY †
d
eYd +

4

3
g
2
2 C

2
WW

Yd .

(35)
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Figure 3: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

XH as counterterms. Thick (thin) solid lines represent left-handed
fermion doublets (right-handed fermion singlets). If the right-handed fermion is an up-type quark,
the arrows on the Higgs lines need to be reversed.
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A(Q⇤
p
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✏

� eYd
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⇥
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⇤
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A(Q⇤
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ig2
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� eYd
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✏
(YQ + Yd)

� eYd

�
pr

CBB

⇥
hQdBi

⇤
pr
+ finite ,

where p, r = 1, 2, 3 are generation indices.

uQ Qddd Q Q uQ Qu

Figure 4: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

H
3 as counterterms. Graphs involving both eYu and eYd, such as the

third one, vanish after summing over the permutations of the Higgs fields.
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2
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3
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2
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2
D and  

2
HD

2
. Operators in the class  2

H
3 are generated by the

one-loop Feynman graphs shown in Figure 4. We do not show a diagram analogous to the first
one involving leptons. We find that the UV divergences of these diagrams can be expressed as
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⇤
pr
+ finite ,
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⇤
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eYu
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⇥
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A(Q⇤
p
drH

⇤
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†
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eYd
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hQdHi

⇤
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Figure 5: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

H
2
D as counterterms. Analogous graphs exist in the lepton sector.

There exist diagrams such as the third one shown in the figure, which are proportional to
structures like ( eYuY

†
u
eYd

�
pr
. However, we find that such graphs give vanishing contributions

after summing over the permutations of the two incoming (or outgoing) Higgs bosons.
For the operators in the class  2

H
2
D, which are generated by the one-loop Feynman graphs

shown in Figure 5, it is necessary to define the redundant operators
⇥ bQ(1)

Hl

⇤
pr

= H
†
H

�
L̄p i
 !
/D Lr

�
,

⇥ bQ(3)
Hl

⇤
pr

= H
†
�
I
H

�
L̄p i
 !
/D �

I
Lr

�
,

⇥ bQHe

⇤
pr

= H
†
H

�
ēp i
 !
/D er

�
,

⇥ bQ(1)
Hq

⇤
pr

= H
†
H

�
Q̄p i
 !
/D Qr

�
,

⇥ bQ(3)
Hq

⇤
pr

= H
†
�
I
H

�
Q̄p i
 !
/D �

I
Qr

�
,

⇥ bQHu

⇤
pr

= H
†
H

�
ūp i
 !
/D ur

�
,

⇥ bQHd

⇤
pr

= H
†
H

�
d̄p i
 !
/D dr

�
,

(15)

which are not part of the Warsaw basis. They will later be eliminated using the EOMs. We
find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
LrH

⇤
H) =

1

8✏

� eYe
eY †
e

�
pr

⇣⇥
h bQ(1)

Hl
i
⇤
pr
+
⇥
h bQ(3)

Hl
i
⇤
pr
�

⇥
hQ

(1)
Hl
i
⇤
pr
�
⇥
hQ

(3)
Hl
i
⇤
pr

⌘
+ finite ,

A(e⇤
p
erH

⇤
H) =

1

4✏

� eY †
e
eYe

�
pr

⇣⇥
h bQHei

⇤
pr
+
⇥
hQHei

⇤
pr

⌘
+ finite ,

A(Q⇤
p
QrH

⇤
H) =

1

8✏

� eYu
eY †
u

�
pr

⇣⇥
h bQ(1)

Hq
i
⇤
pr
�
⇥
h bQ(3)

Hq
i
⇤
pr
+
⇥
hQ

(1)
Hq
i
⇤
pr
�
⇥
hQ

(3)
Hq
i
⇤
pr

⌘
+ finite ,

+
1

8✏

� eYd
eY †
d

�
pr

⇣⇥
h bQ(1)

Hq
i
⇤
pr
+
⇥
h bQ(3)

Hq
i
⇤
pr
�
⇥
hQ

(1)
Hq
i
⇤
pr
�
⇥
hQ

(3)
Hq
i
⇤
pr

⌘
(16)

A(u⇤
p
urH

⇤
H) =

1

4✏

� eY †
u
eYu

�
pr

⇣⇥
h bQHui

⇤
pr
�
⇥
hQHui

⇤
pr

⌘
+ finite ,

A(d⇤
p
drH

⇤
H) =

1

4✏

� eY †
d
eYd

�
pr

⇣⇥
h bQHdi

⇤
pr
+
⇥
hQHdi

⇤
pr

⌘
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A(u⇤
p
drHH) =

1

2✏

� eY †
u
eYd

�
pr

⇥
hQHudi

⇤
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Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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ALP—SMEFT interference
One-loop results for the ALP source terms in the Warsaw basis:
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the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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Class  2
H

2
D:

The source terms for the operators in this class receive direct contributions, as shown in (16),
as well as contributions from EOMs, from the relations given in (19) and (20). We find

S
(1)
Hl

=
1

4
eYe

eY †
e
+

16

3
g
2
1 YHYL C

2
BB

1 ,

S
(3)
Hl

=
1

4
eYe

eY †
e
+

4

3
g
2
2 C

2
WW

1 ,

SHe = �
1

2
eY †
e
eYe +

16

3
g
2
1 YHYe C

2
BB

1 ,

S
(1)
Hq

=
1

4

⇣
eYd

eY †
d
� eYu

eY †
u

⌘
+

16

3
g
2
1 YHYQ C

2
BB

1 ,

S
(3)
Hq

=
1

4

⇣
eYd

eY †
d
+ eYu

eY †
u

⌘
+

4

3
g
2
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2
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SHu =
1

2
eY †
u
eYu +
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3
g
2
1 YHYu C

2
BB

1 ,

SHd = �
1

2
eY †
d
eYd +

16

3
g
2
1 YHYd C

2
BB

1 ,

SHud = � eY †
u
eYd .

(36)

4.4 Source terms of four-fermion operators

The Wilson coe�cients of these operators are 4-index tensors in generation space, and we
therefore present our results for the corresponding source term in component notation. The
direct contributions to the source terms are derived form the four-fermion amplitudes collected
in (17). In addition, there are several indirect contributions from the EOM relations in (18),
(19) and (20). The source terms for operators in the classes (L̄L)(L̄L) and (R̄R)(R̄R) are
entirely due to these EOM relations.

Class (L̄L)(L̄L):

For the source terms of the purely left-handed four-fermion operators we obtain

⇥
Sll

⇤
prst

=
2

3
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2
2 C

2
WW

(2�pt�sr � �pr �st) +
8
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(37)
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are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
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number refers to the figure showing the direct contributions.
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Class (R̄R)(R̄R):

For the source terms of the purely right-handed four-fermion operators we obtain
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Class (L̄L)(R̄R):

For the source terms of the mixed-chirality four-fermion operators in this class we obtain
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Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1
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4
D

2 yes — EOM Figure 1
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Single fermion current
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D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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ALP—SMEFT interference
One-loop results for the ALP source terms in the Warsaw basis:

Operator class Warsaw basis Way of generation Feynman graphs
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(L̄R)(R̄L) yes direct — Figure 6
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B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.

8

Class (R̄R)(R̄R):

For the source terms of the purely right-handed four-fermion operators we obtain
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Class (L̄L)(R̄R):

For the source terms of the mixed-chirality four-fermion operators in this class we obtain
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Figure 6: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  4 as counterterms. Analogous graphs exist in the lepton sector.

Operators in class  2
HD

2 are not generated by ALP exchange at one-loop order.

3.3 Four-fermion operators

At one-loop order, ALP exchange between four fermions gives rise to the diagrams shown in
Figure 6. Since the ALP coupling to fermions changes chirality, each diagram contains two left-
handed and two right-handed fermions. Four-fermion operators containing only left-handed
or only right-handed fields are therefore not generated directly in our model at one-loop order.
Nevertheless, as we will show later, almost all four-fermion operators in the Warsaw basis are
generated at one-loop order when the contributions from the EOMs are taken into account.

Using Fierz identities for some of the operators and color structures, we find that the
amplitudes corresponding to the diagrams shown in Figure 6 can be written as
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3.4 Elimination of redundant operators

In the next step, we must decompose the redundant operators bQi into SMEFT operators in
the Warsaw basis, using the EOMs for the SM fields. We find that the relevant relations for

13



Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
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4 no —

Single fermion current
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3 no —

 
2
XH yes direct — Figure 3
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3 yes direct EOM Figs. 4, 1, 5
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D yes direct EOM Figs. 5, 1
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2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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ALP—SMEFT interference
One-loop results for the ALP source terms in the Warsaw basis:

Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic
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3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —
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(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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Classes (L̄R)(R̄L) and (L̄R)(L̄R):

For the source terms of the mixed-chirality four-fermion operators in these classes we obtain
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Class B-violating:

The B-violating operators Qduq, Qqqu, Qqqq and Qduu are not generated in the ALP model,
because the model does not contain any B-violating interactions.

4.5 Structure of the source terms

It is instructive to study the structure of the various ALP source terms in more detail. For the
bosonic ALP couplings CV V with V = G, W, B, we have presented in (6) the relations which
link them with the couplings in the underlying shift-symmetric ALP Lagrangian (3). Note
that, besides the three original ALP–boson couplings cV V , also the diagonal elements of all
ALP–fermion couplings enter in these relations. In other words, even in so-called gauge-phobic
models, in which some or all of the original ALP–boson couplings are assumed to vanish, the
couplings CV V in the ALP source terms are nevertheless non-zero as soon as the ALP has at
least some couplings to the SM fermions.

The fermionic ALP couplings in the source terms are encoded in the complex matrices eYf

with f = u, d, e defined in (5). They inherit the hierarchies of the SM Yukawa matrices Yf ,
which multiply the hermitian matrices cF in the original Lagrangian (3). We can simplify the
structure of the matrices eYf by choosing a convenient basis of the fermion fields. Without
loss of generality, we work in the basis where the up-sector and lepton-sector Yukawa matrices
are diagonal, while the down-sector Yukawa matrix is given by Yd = V Y

diag
d

with Y
diag
d

=
diag(yd, ys, yb), where V denotes the CKM matrix. Following [21, 42], we denote the ALP–
fermion couplings in this basis by kU = cQ, kE = cL, and kf = cf for f = u, d, e. Moreover,
we define kD = V

†
cQV . With these definitions, the matrices ki specify the ALP–fermion

couplings in the mass basis of the SM fermions. From (5), it the follows that
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21

(starts at 2 loops)

(starts at 2 loops)

With very few exceptions, all operators in the Warsaw basis are generated at 
one-loop order in the ALP model !
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Top chromo-magnetic moment
Sample application: chromo-magnetic dipole moment of the top quark


with:


ALP-induced contribution follows from the solution of:

electroweak precision observables and of the properties of the Higgs boson, the top quark and
the gauge bosons at the LHC (see [58] for a comprehensive global analysis and an exhaustive
list of references to earlier SMEFT fits). This implies that areas of the ALP parameter space
which may still be unconstrained by direct searches can be probed indirectly, using constraints
on dimension-6 SMEFT operators implied by precision studies. We now briefly illustrate the
usefulness of our approach with two examples, leaving a more comprehensive analysis to future
work. For the purposes of this discussion we assume that the ALP mass is light, of order the
electroweak scale or lighter. In this first exploration we neglect the matching contributions to
the SMEFT Wilson coe�cients from heavy new states at the UV scale ⇤ = 4⇡f , which can
only be assessed within a concrete UV completion of the e↵ective Lagrangian (1). We also
omit one-loop contributions to the observables arising from the low-energy matrix elements in
the e↵ective theory. As explained earlier, the e↵ects from RG evolution which we calculate are
enhanced over these two contributions by a large logarithm. Our calculations have shown that
the same ALP couplings appear in the source terms for many di↵erent dimension-6 operators,
so it is likely that more powerful constraints than the ones we discuss below can be derived
from a global analysis of precision observables.

5.1 Chromo-magnetic moment of the top quark

The chromo-magnetic and chromo-electric dipole moments of the top quark, µ̂t and d̂t, are
two important precision observables probing new physics above the electroweak scale [59–61].
They can be defined in terms of the e↵ective Lagrangian [60]
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The overall sign on the right-hand side has been chosen so as to be consistent with our
definition of the covariant derivative. Matching this expression with the dimension-6 SMEFT
Lagrangian at lowest order, we find
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where all quantities are evaluated at the scale µ = mt. The Wilson coe�cient C
33
uG

⌘ [CuG]33 is
defined in the up-quark mass basis (see Section 4.5). Neglecting contributions proportional to
electroweak gauge couplings and light-quark Yukawa couplings, one finds that this coe�cient
obeys the RG equation [47, 48]
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where S
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uG

⌘ [SuG]33, and ↵t = y
2
t
/(4⇡). In the same approximation, the RG equations for

the other Wilson coe�cients entering this relation read
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The relevant ALP source terms,
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obtained from (31), (34) and (42), are both real-valued. It follows that C eG, C
H eG and =mC
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vanish in the ALP model, and the RG equations simply to

d

d lnµ
<eC

33
uG

=
S
33
uG

(4⇡f)2
+

✓
15↵t

8⇡
�

17↵s

12⇡

◆
<eC

33
uG

+
9↵s

4⇡
yt CG +

gsyt

4⇡2
CHG ,

d

d lnµ
CG =

SG

(4⇡f)2
+

15↵s

4⇡
CG ,

d

d lnµ
CHG =

✓
3↵t

2⇡
�

7↵s

2⇡

◆
CHG +

gsyt

4⇡2
<eC

33
uG

.

(51)

Solving these coupled equations would provide solutions for the Wilson coe�cients in which
the large logarithms of the ratio 4⇡f/mt are resummed in leading logarithmic approximation.
For our purposes, however, it will be su�cient to obtain a rough approximation by keeping
only the lowest-order logarithmic term for each ALP coupling and neglecting contributions
proportional to extra factors of ↵i ln(4⇡f/mt). In this way, we find
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2
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(52)

as well as d̂t ⇡ 0. Note that the term proportional to C
2
GG

contains an extra factor of
↵s ln(4⇡f/mt) compared with the first one, since it arises via the mixing of C

33
uG

with the
coe�cient CG. The numerical result shown in the second line has been obtained using mt ⌘

mt(mt) = 163.4GeV and ↵s(mt) = 0.1084, and taking f = 1TeV in the argument of the
logarithms. Which one of the two contributions dominates depends on the relative size of
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Top chromo-magnetic moment
At lowest logarithmic order, one finds:


Combined with experimental bounds from CMS (2019), we obtain:


Comparable to strongest bounds following from collider and flavor physics !

where S
33
uG

⌘ [SuG]33, and ↵t = y
2
t
/(4⇡). In the same approximation, the RG equations for

the other Wilson coe�cients entering this relation read
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(49)

The relevant ALP source terms,

S
33
uG

= 4gsyt ctt CGG , SG = 8gs C
2
GG

, (50)

obtained from (31), (34) and (42), are both real-valued. It follows that C eG, C
H eG and =mC

33
uG

vanish in the ALP model, and the RG equations simply to
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Solving these coupled equations would provide solutions for the Wilson coe�cients in which
the large logarithms of the ratio 4⇡f/mt are resummed in leading logarithmic approximation.
For our purposes, however, it will be su�cient to obtain a rough approximation by keeping
only the lowest-order logarithmic term for each ALP coupling and neglecting contributions
proportional to extra factors of ↵i ln(4⇡f/mt). In this way, we find
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as well as d̂t ⇡ 0. Note that the term proportional to C
2
GG

contains an extra factor of
↵s ln(4⇡f/mt) compared with the first one, since it arises via the mixing of C

33
uG

with the
coe�cient CG. The numerical result shown in the second line has been obtained using mt ⌘

mt(mt) = 163.4GeV and ↵s(mt) = 0.1084, and taking f = 1TeV in the argument of the
logarithms. Which one of the two contributions dominates depends on the relative size of
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the coe�cients ctt and CGG. The CMS collaboration has recently performed two independent
measurements of the chromo-magnetic dipole moment of the top quark, finding �0.014 < µ̂t <

0.004 at 95% confidence level [62], and µ̂t = �0.024+0.013
�0.009

+0.016
�0.011 [63]. Applying the (stronger)

first bound to the ALP model, we find under the approximations described above

� 0.68 <
�
ctt CGG � 0.34C

2
GG

�
⇥


1TeV

f

�2
< 2.38 (95% CL) . (53)

The ALP couplings ctt and CGG are defined at the scale µ = mt. With the current sensitivity,
the measurements of the top-quark chromo-magnetic moment probe the ALP couplings ctt/f

and CGG/f at the level of roughly O(TeV�1).

5.2 Example of a Z-pole constraint

As a second example, we consider the constraint on the flavor-conserving part of the Wilson
coe�cient of the dimension-6 SMEFT operator Q

(3)
Hq

. Focussing on light quark flavors, and
assuming flavor universality in the first two generations, one defines

C
(3)
Hq

⌘
⇥
C

(3)
Hq

⇤
11

=
⇥
C

(3)
Hq

⇤
22

. (54)

The coe�cient C
(3)
Hq

is tightly constrained by Z-pole measurements [64–68]. When marginal-
izing over all the other SMEFT coe�cients in order to obtain the most conservative bound,
the global analysis presented in [58] yields

� 0.11TeV�2
< C

(3)
Hq

< 0.012 TeV�2 (95% CL) . (55)

Neglecting again contributions proportional to electroweak gauge couplings and light-quark
Yukawa couplings, the RG equations for the coe�cients

⇥
C

(3)
Hq

⇤
ii
with i 6= 3 are found to be

[47, 48]
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From (36), we find for the relevant ALP source terms

⇥
S
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⇤
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4g
2
2

3
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2
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, (57)

where again we have set the light-quark Yukawa couplings to zero. The source terms for the
remaining operators in (56) are obtained from (37) and read (for i = 1, 2)
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(58)
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• Axions and axion-like particles appear in many well-motivated extensions 
of the SM, including those addressing the strong CP problem


• They are an interesting target for searches in high-energy physics, using 
flavor, collider and precision probes


• If the scale of global symmetry breaking is far above the weak scale, it is 
important to connect the low-energy ALP couplings in a systematic way 
with the couplings in the UV theory


• A correct implementation of the left-handed quark currents in the chiral 
Lagrangian is required to correctly obtain the  decay amplitude


• ALP unavoidably provide source terms for D=6 SMEFT operators

K → πa

Summary
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More generally, one can derive bounds                               for all relevant ALP 
couplings using the NA62 upper limit                                                       (90% CL), 
which implies:


‣ very strong bounds on flavor-changing ALP couplings in the UV


‣ strong bounds on ALP couplings to fermions (cu or cQ)


‣ relatively strong bounds on ALP-boson couplings

  phenomenologyK → πa

4

D4 3 �
N8

f
cGG m2

K (�u � �d) ,

D5 3
N8

f
cGG m2

⇡ (�u � �s) , (15)

while the last diagram is scheme independent. Via the
mixing angles ✓⇡a and ✓⌘a the results for D1 and D2 de-
pend on the q parameters, see (10). The expressions for
D4 and D5, on the other hand, depend only on the �q
parameters. Only the third diagram, in which the ALP
is emitted from the weak-interaction vertex, depends on
both sets of parameters. In the sum of all contribu-
tions the dependence on the auxiliary parameters cancels
(apart from an unambiguous contribution proportional to
u + d + s = 1). But this cancellation only works if
the derivative ALP interactions in (13) are included.

Adding up all contributions, we obtain for the decay
amplitude (for mu = md)

iAK�!⇡�a =
N8

4f


16cGG

(m2
K � m2

⇡)(m
2
K � m2

a)

4m2
K � m2

⇡ � 3m2
a

+ 6(cuu + cdd � 2css)m2
a

m2
K � m2

a

4m2
K � m2

⇡ � 3m2
a

+ (2cuu + cdd + css) (m
2
K � m2

⇡ � m2
a) + 4cssm2

a

+ (kd + kD � ks � kS) (m
2
K + m2

⇡ � m2
a)

�

�
m2

K � m2
⇡

2f
[kq + kQ]

23 . (16)

Note that the transition K�
! ⇡�a proceeds via the

dynamically enhanced octet operator, whereas the corre-
sponding decay K�

! ⇡�⇡0 receives contributions from
the 27-plet operator with isospin change �I = 3

2 only.
This e↵ect is well known and is referred to as “octet en-
hancement” [9, 10]. Attempts to estimate the K�

! ⇡�a
decay rate as ✓2

⇡a times the K�
! ⇡�⇡0 rate miss this

important e↵ect. Another interesting feature of the re-
sult (16) is its dependence on the flavor-conserving ALP
vector couplings (kd + kD) and (ks + kS) to down and
strange quarks. In the presence of the weak interactions
the currents d̄�µd and s̄�µs are not individually con-
served (unlike in QCD), and hence these couplings can
have observable e↵ects.

In order to compare our result (16) with some previous
calculations, we work to leading order in the ratio m̄/ms,
consider the limit where m2

a ⌧ m2
K and assume the case

of a minimal flavor-violating ALP, for which css = cdd
and kd + kD = ks + kS [19]. We then obtain the simple
result (still with mu = md, neglecting the small 27-plet
contributions, and setting 1/fa = �2cGG/f)

AK�!⇡�a ⇡
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K

2fa

"
N8

✓
1 +
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2cGG

◆
�

[kq + kQ]
23

2cGG

#
.

(17)
Barring cancellations, the contribution proportional to
N8 dominates as long as |[kq + kQ]23/cGG| ⌧ 3 · 10�7,

which we assume from now on. Eliminating the parame-
ter N8 via the KS ! ⇡+⇡� decay amplitude, we obtain

Br(K�
! ⇡�a)

Br(KS ! ⇡+⇡�)
⇡

⌧K�

⌧KS

f2
⇡

8f2
a


1 +

cuu + cdd
2cGG

�2

. (18)

For a long-lived ALP with mass ma ⌧ m⇡, the upper
limit Br(K�

! ⇡�X) < 2.0 · 10�10 (90% CL) reported
by NA62 [30] from a search for a feebly interacting new
particle X implies

1

fa

����1 +
cuu + cdd
2cGG

���� <
1

31.9TeV
. (19)

Estimating the weak-interaction contribution to the de-
cay amplitude from kinetic ALP–meson mixing (see e.g.
[14–16]) corresponds to retaining only the first two dia-
grams in Figure 1, evaluated with the default choice of q

parameters. Under the approximations described above
this leads to

AK�!⇡�a ⇡
iN8m2

a

8fa

✓
1�

cuu � cdd
2cGG

◆
, (20)

which underestimates the amplitude by a factor
m2

a/(4m
2
K) and predicts the wrong sign for the contri-

bution proportional to cuu. If mass mixing with the ⌘0 is
included, one finds an additional small contribution pro-
portional to sin ✓⌘⌘0 m2

⇡/m2
K [15, 16] relative to the lead-

ing term in our result. The authors of [13] performed a
more careful evaluation of the K�

! ⇡�a decay rate for
the case of a QCD axion (m2

a ⇡ 0) without couplings to
matter (cqq = 0). In this case diagrams D1 and D2 van-
ish when one adopts the default choice of q parameters,
and the graphs D4 and D5 vanish if one chooses �q = 0.
In the evaluation of the third diagram the authors omit-
ted the derivative couplings of the axion shown by the
last term in (13). They obtained (this formula was not
explicitly shown in the paper, but we have derived it from
their arguments and the presented numerical result)

AK�!⇡�a ⇡
iN8m2

K

4fa

mu

mu + md
. (21)

This contribution to the amplitude is smaller than the
corresponding term in (17) by a factor mu

2(mu+md) ⇡ 0.16,
corresponding to an underestimation of the branching ra-
tio by about a factor 37. (In [13] the authors state that
they have derived the same result in a di↵erent scheme
with �q = q, in which the ALP is removed from the
weak-interaction vertex. With their omission, we can-
not reproduce that the two treatments lead to the same
expression.)
We have also applied our matching prescription (13) to

derive the ⇡�
! e�⌫̄ea decay amplitude, finding again a

result that is independent of the choice of the �q and q

cGG cWW cuu cdd kD12 kD12/|VtdVts|

61.3 6.5 1126 31.0 1.9・108 60 000Λeff
ii [TeV]

cii
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K+ ! ⇡+e+e�Figure 21: Left: Flavor bounds on universal ALP couplings to right-handed up-type quarks with
cu = cu , with all other Wilson coe�cients zero at ⇤ = 4⇡f and f = 1 TeV. Right: Comparison of
flavor constraints (light gray) with the constraint on Z ! a� decays from the LEP measurement of
the Z boson width, contours of constant Br(h ! aa) = 10�1, 10�2 and 10�3 depicted as red dotted,
dashed and solid lines and contours of constant Br(h ! Za) = 10�1, 10�2 and 10�3 shown as blue
dotted, dashed and solid lines, respectively.

are depicted as red dotted, dashed and solid lines, respectively. The ALP coupling to top
quarks also induces the exotic Higgs decay h ! Za, and the corresponding contours of con-
stant Br(h ! Za) = 10�1

, 10�2 and 10�3 are shown as blue dotted, dashed and solid lines. In
contrast to ALPs coupled to SU(2)L gauge bosons, neither flavor constraints nor the measure-
ment of the Z width exclude even large branching ratios for exotic Higgs decays for ma & 5
GeV in the case of universal ALP couplings to up-type quarks, but Br(h ! Za) & 0.1% is in
conflict with the measurement of the chromomagnetic moment of the top quark.

3.7.5 ALP coupling to right-handed down-type quarks

For universal ALP couplings to right-handed down-type quarks cd(⇤) = kd(⇤) = cd , the
ALP branching ratios are shown in the lower right panel of Figure ?? and the constraints from
flavor observables are shown in Figure 22. Since only couplings to down quarks are present,
flavor-violating couplings of ALPs to down-type quarks are only generated by the RG-induced
contributions to ctt at one-loop (2.11) or induced by ALP-pion mixing. Constraints from B-
meson mixing that require two flavor-changing ALP couplings are therefore almost irrelevant
in this scenario and constraints from Bs ! µ

+
µ
�, Br(B ! K

⇤
⌫̄⌫) and Br(K+ ! ⇡

+
⌫̄⌫)

are substantially weaker compared to the scenarios that allow for ALP couplings to up-type
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Figure 25: Left: Flavor bounds on universal ALP couplings to lepton doublets with ce = ce , and
all other Wilson coe�cients zero at the scale ⇤ = 4⇡f and f = 1 TeV. Right: Contours of constant
Br(h ! aa) = 10�1 and 10�2 are depicted as red dashed and solid lines, respectively.

violating transitions in Figure 25 compared to Figure 24. In both cases, all constraints allow
values of cL/f, ce/f < 0.1/TeV for all ALP masses. Exotic Higgs decays are more sensitive
to ALP couplings to lepton doublets, which result in larger values of ctt at the electroweak
scale. The measurement of the Z decay width does not provide a strong bound, because of
the suppressed lepton coupling to Z bosons.

Finally, we compare the constraints from flavor observables with the constraints from cos-
mological observables, collider and beam dump searches for ALPs that couple to leptons in
Figure 26. The constraints in the left panel are taken from [55] and show constraints from
. In Figure 20, we show the flavour observables superimposed with the results from these
searches for the case of an ALP photon coupling given by c

e↵
�� = cWW (centre) and c

e↵
�� = cBB

(right). For light ALPs and very small couplings, bounds from astrophysical observables are
much stronger than flavor constraints, and for ALPs with masses ma & 10 GeV, collider ob-
servables are more sensitive. For the case of an ALP with cWW coupling, flavor observables,
in particular B meson decays, constrain precisely the ALP masses and couplings in the “gap”
for which both approaches lose sensitivity, because the ALP is too short-lived to be detected
in beam-dumps and too light and weakly coupled to be produced and e�ciently reconstructed
at colliders. This comparison motivates a dedicated search for B ! Ka with subsequent
a ! �� decays, which could provide the most sensitive probe of ALPs in the parameter space
unconstrained by either astrophysical, beam dump or collider constraints.
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