

Annual Meeting CRC 26th of May 2021

$t\bar{t}W^{\pm}$ at NLO in QCD: Off-shell effects and precision observables

with Giuseppe Bevilacqua $^{(a)}$, Huan-Yu Bi, Heribertus Bayu Hartanto $^{(b)}$, Manfred Kraus $^{(c)}$, Jasmina Nasufi and Malgorzata Worek

1

(a) University of Debrecen Hungary, ^(b) University of Cambridge UK, ^(c) University of Florida US

Outline

- ▶ Introduction & Motivation
- ▶ $t\bar{t}W$ NLO QCD results
 - 1. Size of NLO corrections and theoretical uncertainties
 - 2. Impact of the modelling
- \blacktriangleright Applications : Ratio ${\mathcal R}$ and Top Quark Charge Asymmetries

Motivation for $t\bar{t}W^{\pm}$ with multilepton final states

- 1. Background to $t\bar{t}H$
- 2. Discrepancy between theory and experiment ATLAS-CONF-2019-045
 -Overall Normalisation (30%-70% for very inclusive cuts)
 -Modelling of top decay

 $\ell^{\pm} = e^{\pm}, \mu^{\pm}$

- 3. Rare same sign lepton signature can be used to constrain BSM physics
- 4. Phenomenologically relevant for top quark charge asymmetry (more on this later)

Theoretical predictions for NLO $t\bar{t}W^\pm$

▶ Stable $t\bar{t}W^{\pm}$ → General idea about size of NLO corrections

	NLO	QCD	Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau '11
NLO QCD+EW		QCD+EW	Frixione, Hirschi, Pagani, Shao, Zaro '15
			Dror, Farina, Salvioni and Serra '16
			Frederix, Pagani and Zaro '18
			Frederix, Tsinikos '20
	NLO	QCD+NNLL	H.T. Li, C.S. Li and S.A. Li '14
			Broggio, Ferroglia, Ossola and Pecjak '16
			Kulesza, Motyka, Schwartländer, Stebel, Theeuwes '19
	Incl	ude <mark>decays</mark> for rea	alistic modelling
	1.	stable $t\bar{t}W^{\pm} + PS$	\rightarrow No NLO Spin correlations, top and W in PS approx
		NLO QCD	Garzelli, Kardos, Papadopoulos and Trocsanyi '12
			Maltoni, Pagani and Tsinikos '16
		NLO QCD+EW	Frederix, Tsinikos '20
2. $t\bar{t}W^{\pm}$ in the Narrow-Width Approximation (NWA) + spin corr			
		NLO QCD	Campbell, Ellis '12
	3.	Off-shell $t\bar{t}W^{\pm}$	
		NLO QCD	Bevilacqua, Bi, Hartanto, Kraus, Worek '20
			Denner, Pelliccioli '20
		NLO QCD+EW	Denner, Pelliccioli '21

Modelling the top decay for $t\bar{t}W^{\pm}$

Narrow-Width Approximation (NWA):

- Includes only diagrams with *double* resonant contributions
- ▶ Top and W-Boson are on shell

• Valid for the limit
$$\Gamma/m \to 0$$

$$\boxed{\frac{1}{\left(p_t^2 - m_t^2\right)^2 + m_t^2 \Gamma_t^2} \to \frac{\pi}{m_t \Gamma_t} \delta(p_t^2 - m_t^2) + \underbrace{\mathcal{O}\left(\frac{\Gamma_t}{m_t}\right)}_{0.8\%}}$$

 $\Rightarrow d\sigma^{\text{NWA}} = d\sigma_{t\bar{t}W^+} d\mathcal{B}_{t \to \ell^+ \overline{\nu}_\ell b} d\mathcal{B}_{\bar{t} \to \ell^- \nu_\ell b} d\mathcal{B}_{W \to \ell^+ \overline{\nu}_\ell}$

Modelling the top decay for $t\bar{t}W^{\pm}$

Off-shell effects!

- ▶ Include double, single and non resonant contributions
- ▶ Top and W-Boson are described by Breit-Wigner Propagators
- ▶ All interference effects consistently incorporated at the matrix element level

Software

 Output is saved in modified Les Houches & Root files, and Ntuple files. Bern, Dixon, Febres, Cordero, Hoeche, Ita, Kosower, Maitre '14
 It can be further modified: cuts can be added, reweighting to different PDF, renormalization and factorisation scales

Modelling : Integrated Cross Section

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

$$pp \to t\bar{t}W^+ \to e^+\nu_e\mu^-\bar{\nu}_\mu e^-\nu_e b\bar{b}$$
 @LHC₁₃

Modelling Central scales

(1) Full Off-shell (2) Full NWA (3) NWA_{LOdec}

$$\mu_0 = m_t + m_W/2$$

 $\mu_0 = H_T/3$ $H_T = \sum_{vis} p_T + p_{T,miss}$

$t\overline{t}W^+$	Scale	$\sigma_{\rm LO}$ [ab]	$\sigma_{\rm NLO}$ [ab]
full offshell	$H_T/3$	$115.1^{+26\%}_{-20\%}$	$124.4^{+3\%}_{-6\%}$
NWA	$H_T/3$	$115.1^{+26\%}_{-19\%}$	$124.2^{+3\%}_{-6\%}$
NWA_{LOdec}	$H_T/3$		$130.7^{+10\%}_{-10\%}$

• Expected NWA error: $\mathcal{O}\left(\frac{\Gamma_t}{m_t}\right) \approx 0.8\%$

Here :
$$\frac{NWA}{\text{Off-shell}} \approx 0.2\% \checkmark$$

- \blacktriangleright NWA and off shell within theoretical uncertainty \checkmark
- ▶ NWA_{LOdec} has bigger theoretical errors

▶ Why do off-shell?

Similar effects for scale $\mu_0 = m_t + m_W/2$ Similar NLO corrections and uncertainty for $t\bar{t}W^-$

Modelling : Differential Cross Section

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

$$pp \to t\bar{t}W^+ \to e^+\nu_e\mu^-\nu_\mu e^+\nu_e b\bar{b}$$
 @ LHC₁₃

Effects of modelling at differential level:

 NWA fails to properly describe fiducial phase space regions, such as tails and kinematic thresholds

$$\frac{\text{Off-shell}}{\text{NWA}}|_{max} \sim 35\% \text{ vs } \mathcal{O}\left(\frac{\Gamma_t}{m_t}\right) \approx 0.8\%$$

- \blacktriangleright NLO Corrections to decays are sizeable NWA vs NWA $_{LOdec}\sim 57\%$
 - For dimensionful observables off-shell effects can be large for particular phase space regions! \rightarrow Cannot know the latter without full theory predictions

Cross Section Ratio $\mathcal{R} \equiv \sigma_{t\bar{t}W^+}^{NLO} / \sigma_{t\bar{t}W^-}^{NLO}$ Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek '20

How similar are $t\bar{t}W^+$ and $t\bar{t}W^-$?

Given that

▶ the scales of the two processes are *correlated*

▶ the NLO corrections and theoretical uncertanties are similar one would expect this observable to exhibit enhanced perturbative stability (NNLO uncertainties!)

Cross Section Ratio \mathcal{R}

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek '20

 $\mathcal{R}\equiv\sigma_{t\bar{t}W^+}^{NLO}/\sigma_{t\bar{t}W^-}^{NLO}$

Modelling	Scale	$\mathcal{R}\pm\delta^{theo}$
full offshell	$H_T/3$	$1.81 \pm 0.02~(1\%)$
NWA	$H_T/3$	$1.81\pm 0.03~(2\%)$
NWA_{LOdec}	$H_T/3$	$1.81 \pm 0.02 \ (1\%)$

Similar for scale
$$\mu_0 = m_t + m_W/2$$

- ▶ Precise observable! \Rightarrow Theoretical error $\sim 2\%$
- ► Furthermore, it is stable when testing for increasing $p_{T,b}^{min}$ between 25...40 GeV
- Stable with regards to scale choice and modelling
- Error is estimated by scale variation and PDF uncertainty

$t\bar{t}W^+$: Charge Asymmetry at LHC

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek '20

$$pp \to t\bar{t}W^+ \to e^+\nu_e\mu^-\nu_\mu e^+\nu_e b\bar{b}$$
 @ LHC₁₃

• The process can be thought of as $q\bar{q} \to t\bar{t}$ with the W^{\pm} emitted from the initial state. W^{\pm} acts as a polarizer for the quarks, leading to the production of polarized top and anti-top quarks. $\to A_{a}^{b}, A_{a}^{\ell}$ at LO! *Maltoni, Mangano, Tsinikos, and Zaro '14*

▶ As for $t\bar{t}$, NLO QCD radiative corrections and interference effects from $q\bar{q}'$ initiated collisions, contribute to the asymmetry at this order. In absence of the symmetric gg-channel this leads to a significantly bigger asymmetry than for $t\bar{t}$. Kühn, Rodrigo '99

Charge Asymmetry at the LHC

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek '20

$$A_{c,y} = \frac{\sigma\left(\Delta|y| > 0\right) - \sigma\left(\Delta|y| < 0\right)}{\sigma\left(\Delta|y| > 0\right) + \sigma\left(\Delta|y| < 0\right)} \qquad |y| \equiv |y_t| - |y_{\overline{t}}|$$

- ► Final results given in terms of *expanded* asymmetries
- The A^b_{c,y} charge asymmetry has quite a small thoretical uncertainty
- After expanding, the uncertainty for A^t_{c,y} and A^l_{c,y} comparable to Maltoni, Mangano, Tsinikos, and Zaro '14
- Modelling does not impact the size of the errors!

Summary

▶ We have studied the modelling of $t\bar{t}W^{\pm}$ @NLO QCD

- 1. Full offshell
- 2. Full NWA
- 3. NWA_{LOdec}

▶ Off-shell effects phase space regions : high p_T regions and kinematical edges

▶ On the lookout for precision observables : $\mathcal{R} \equiv \sigma^{t\bar{t}W^+} / \sigma^{t\bar{t}W^-}$

▶ High precision observable with errors of order $\sim 2\%$

- ▶ Charge Asymmetries for $t\bar{t}W^{\pm}$
 - ▶ Top and it's decay products : A_c^t , A_c^ℓ , A_c^b
 - ▶ Size of the theoretical errors : Expanded asymmetries
 - ▶ Differential and cumulative asymmetries

Backup

Note on $t\bar{t}W^-$ at NLO QCD

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

$$pp \to t\bar{t}W^- \to \mu^+ \nu_\mu e^- \overline{\nu}_e e^- \nu_e b\bar{b}$$
 @LHC₁₃

$t\overline{t}W^{-}$	Scale	$\sigma_{\rm LO}$ [ab]	$\sigma_{\rm NLO}$ [ab]
full offshell	$H_T/3$	$62.4^{+27\%}_{-20\%}$	$68.6^{+5\%}_{-7\%}$
NWA	$H_T/3$	$62.6^{+27\%}_{-20\%}$	$68.7^{+5\%}_{-7\%}$
NWA_{LOdec}	$H_T/3$		$72.0^{+11\%}_{-11\%}$

- ▶ Quite similar to $t\bar{t}W^+$
- Similar NLO corrections, theoretical uncertainties and modelling effects!
- ► The biggest difference : normalisation! \rightarrow almost factor 2 difference with $t\bar{t}W^+$

Differential Cross Section at NLO QCD

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

 $t\bar{t}W^+$

NLO corrections $\pm 35\%$ Theoretical uncertainty $\pm 20\%$ NLO corrections $\pm 10\%$ Theoretical uncertainty $\pm 13\%$ $\rightarrow \mathcal{K}$ -factor still not flat!

Q analysis : Top reconstruction

$$pp \to t\bar{t}W^+ \to e^+\nu_e\mu^-\nu_\mu e^+\nu_e b\bar{b}$$

Consider different histories:

1.
$$t = e_1^+ + \nu_{e1} + b$$
; $\overline{t} = \mu^- + \overline{\nu}_{\mu} + \overline{b}$
2. $t = e_1^+ + \nu_{e2} + b$; $\overline{t} = \mu^- + \overline{\nu}_{\mu} + \overline{b}$
3. $t = e_2^+ + \nu_{e1} + b$; $\overline{t} = \mu^- + \overline{\nu}_{\mu} + \overline{b}$
4. $t = e_2^+ + \nu_{e2} + b$; $\overline{t} = \mu^- + \overline{\nu}_{\mu} + \overline{b}$

More in case of extra radiation.

Minimize $Q = |M(t) - m_t| + |M(\bar{t}) - m_T|$ with $m_t = 172.5 \text{GeV}$

Kolmogorov Smirnov test

How *similar* are the distributions?

Asymmetries

How to understand the polarised top production? Parke,Shadmi hep-ph 9606419

 $(\mbox{slide from @M.Zaro}) $$ q \overline{q}' \to t \overline{t} W^{\pm}$ is analogous to $q_L \overline{q}_R \to t \overline{t}$$ Possible polarisation states (in beam axis basis):$

$$\begin{aligned} & \text{Thres} & \text{High E} \\ & \beta \to 0 & \beta \to 1 \\ \hline \frac{d\sigma_{\uparrow\uparrow}}{d\cos(\theta)} &= \frac{d\sigma_{\downarrow\downarrow}}{d\cos(\theta)} = \mathcal{N}\left(\beta\right) \frac{\beta^2(1-\beta^2)\sin^2(\theta)}{(1+\beta\cos(\theta))^2} & 0 & 0 \\ & \frac{d\sigma_{\downarrow\uparrow}}{d\cos(\theta)} = \mathcal{N}\left(\beta\right) \frac{\beta^4\sin(\theta)}{(1+\beta\cos(\theta))^2} & 0 & \mathcal{N}\left(1\right)(1-\cos(\theta))^2 \\ & \frac{d\sigma_{\uparrow\downarrow}}{d\cos(\theta)} = \mathcal{N}\left(\beta\right) \frac{\left[(1+\beta\cos(\theta))^2 + (1-\beta^2)\right]^2}{(1+\beta\cos(\theta))^2} & 4\mathcal{N}\left(0\right) & \mathcal{N}\left(1\right)(1+\cos(\theta))^2 \end{aligned}$$

Asymmetry at the LHC

Does the modelling affect the errors?

$t\bar{t}W^+$ @ NLO QCD	Off-shell	NWA	NWA_{LOdec}	δ^{goal}_{scale}
$A_{c,\eta}^t$ [%]	$3.10(8)^{+39\%}_{-26\%}$	$2.58(4)^{+51\%}_{-29\%}$	$1.16(4)^{+61\%}_{-38\%}$	$^{+19\%}_{-14\%}$
$A_{c,y}^t$ $[\%]$	$2.09(8)^{+51\%}_{-33\%}$	$1.68(4)^{+60\%}_{-40\%}$	$0.86(3)^{+77\%}_{-50\%}$	$^{+19\%}_{-14\%}$
$A_{c,y}^\ell$ [%]	$-7.9(10)^{+27\%}_{-17\%}$	$-8.43(4)^{+25\%}_{-16\%}$	$-10.11(3)^{+13\%}_{-9.4\%}$	$^{+8.5\%}_{-6.0\%}$
$A^b_{c,y}$ [%]	$6.46(8)^{+0.8\%}_{-0.8\%}$	$6.18(4)^{+2\%}_{-0.8\%}$	$5.99(3)^{+1.7\%}_{-0.2\%}$	$^{+2.5\%}_{-2.2\%}$

 Modelling shifts the central values, but the size of the theoretical error remains unchanged

Expanded Asymmetry

$$\begin{aligned} A_{X,y}^{c} &= \frac{\sigma\left(\Delta_{X} > 0\right) - \sigma\left(\Delta_{X} < 0\right)}{\sigma\left(\Delta_{X} > 0\right) + \sigma\left(\Delta_{X} < 0\right)} \equiv \frac{\sigma^{-}}{\sigma^{+}} \qquad X = t, \ell_{t}, b \quad \overline{X} = \overline{t}, \ell_{\overline{t}}, \overline{b} \end{aligned}$$
$$\begin{aligned} LO : \qquad A_{y}^{c,LO} &= \qquad \frac{\sigma_{LO}^{-}}{\sigma_{LO}^{+}} \\ NLO : \qquad A_{y}^{c,NLO} &= \qquad \frac{\hat{\sigma}_{LO}^{-} + \delta \sigma_{NLO}^{-}}{\hat{\sigma}_{LO}^{+} + \delta \sigma_{NLO}^{+}} \\ \frac{\delta \sigma_{LO}^{\pm} \to 0}{\hat{\sigma}_{LO}^{\pm}} \approx \qquad \frac{\hat{\sigma}_{LO}^{-}}{\hat{\sigma}_{LO}^{+}} \left(1 + \frac{\delta \sigma_{NLO}^{-}}{\hat{\sigma}_{LO}^{-}} - \frac{\delta \sigma_{NLO}^{+}}{\hat{\sigma}_{LO}^{+}}\right) \end{aligned}$$

with

$$\hat{\sigma}_{LO} = \left[\sigma_{LO} \left(\Delta_y > 0 \right) - \sigma_{LO} \left(\Delta_y < 0 \right) \right]_{|_{NLO\ \Gamma_t, PDF} }$$

$$\delta \sigma_{NLO}^{\pm} = \left(\sigma_{NLO} \left(\Delta_y > 0 \right) - \sigma_{LO} \left(\Delta_y > 0 \right)_{|_{NLO\ \Gamma_t, PDF} } \right)$$

$$\pm \left(\sigma_{NLO} \left(\Delta_y < 0 \right) - \sigma_{LO} \left(\Delta_y < 0 \right)_{|_{NLO\ \Gamma_t, PDF} } \right)$$

Expanded charge asymmetries

$\mu_0 = m_t + m_t$	$v_W/2$ $t\bar{t}W$	V^+ $t\bar{t}W^-$	$t\bar{t}W^{\pm}$	δ^{old}_{scale}
$A^t_{c,\eta,exp}$ [9]	%] 3.70	$^{+12\%}_{-11\%}$ 1.31^{+24}_{-19}	$\frac{4\%}{2\%}$ 2.87 $\frac{+14\%}{-12\%}$	$^{+19\%}_{-14\%}$
$A^t_{c,y,exp}$ [9	%] 2.62	$^{+15\%}_{-13\%}$ 1.97^{+16}_{-13}	$\frac{5\%}{5\%}$ 2.40 ^{+15\%} _{-13\%}	$^{+19\%}_{-14\%}$
$A^\ell_{c,y,exp}$ [9	%] -7.00	$^{+14\%}_{-11\%}$ -5.68^{+1}_{-1}	$^{4\%}_{1\%}$ $-6.51^{+14\%}_{-11\%}$	$\begin{array}{ccc} & +8.5\% \\ & -6.0\% \end{array}$
$A^b_{c,y,exp}$ [2	[6.56]	-0.3% $4.80^{+1}_{-1.1\%}$	$\frac{\%}{\%}$ $5.93^{+0.5\%}_{-1.3\%}$	$^{+2.5\%}_{-2.2\%}$

- ▶ Expanding the asymmetries reduces the theoretical error
- ▶ This is the full theory results, with off-shell modelling and reconstruction of the top from it's most probable decay products.

Differential and Cumulative asymmetries

- ▶ There is good agreement between the full off-shell and NWA.
- ▶ Off-shell effects vary between 5 30% (left), but are consistently within the MC(!) error bounds.
- ▶ NWA_{LOdec} shows bigger discrepancies (up to 70%)