

Third order corrections to the semi-leptonic $b \rightarrow c$ and the muon decays

CRC Anual Meeting 2021

Matteo Fael, Kay Schönwald, Matthias Steinhauser | May 20, 2021

TTP KARLSRUHE

[based on: Fael, Schönwald, Steinhauser (arxiv:2011:13654)]

Outline

Calculation

Results
000000000

Kay Schönwald – Third order corrections to the semi-leptonic b
ightarrow c and the muon decays

- $b \rightarrow c\ell\nu$ is an important ingredient in the inclusive determination of $|V_{cb}|$:
 - Currently there is a tension between inclusive and exclusive determination of |V_{cb}|.
 - Errors are mostly theory dominated.
 - Precise measurements of the CKM matrix elements |V_{ib}| are among main goals of Belle II and LHCb.
 - The semi-leptonic decay rate is an important ingredient in the global fit for the inclusive determination.
- $\mu \rightarrow e \nu \nu$ is the most precise way to determine G_F .

May 20, 2021

Method of Calculation

- We calculate the inclusive decay rate to third order via the optical theorem, i.e. we consider the imaginary part of 5-loop forward scattering diagrams.
- We consider massless leptons, i.e. we have two dimensionful scales, the bottom mass m_b and the charm mass m_c.
- Analytical dependence on charm and bottom mass seems out of reach:
 - \Rightarrow consider expansion in mass difference

Calculation ●00000

Results
000000000

Conclusio O

Kay Schönwald – Third order corrections to the semi-leptonic $b \rightarrow c$ and the muon decays

May 20, 2021

4/19

The Heavy-Daughter Expansion

- Perform the expansion in the limit $m_c \sim m_b$: $\delta = 1 \rho = 1 \frac{m_c}{m_b} \ll 1$
- Limit has been shown to converge well down to $m_c/m_b \rightarrow 0$ at 2-loop order. [Czarnecki, Dowling, Piclum (Phys. Rev. D 78 (2008))]

$$\Gamma(b
ightarrow c \ell
u) = \Gamma_0 \left[X_0 + C_F \sum_{n \geq 1} \left(rac{lpha_s}{\pi}
ight)^n X_n
ight]$$

with
$$\Gamma_0 = G_F^2 m_b^2 |V_{cb}|^2 / 192 \pi^3$$

Kay Schönwald – Third order corrections to the semi-leptonic $b \rightarrow c$ and the muon decays

Calculation

5/19

Asymptotic Expansion

$$\delta = 1 - rac{m_c}{m_b}$$

- We use the method of regions to perform the expansion. [Beneke, Smirnov (Nucl. Phys. B (1998))]
- Loop momenta can either scale hard k_i ~ m_b or ultra-soft k_i ~ δm_b (regions have been cross-checked with Asy). [Pak, Smirnov (Eur. Phys. J. C (2011))]
- The momentum of the electron-neutrino loop can be integrated trivially.
- The momentum of the lepton *q* has to scale ultra-soft, otherwise no imaginary part is generated. This reduces the number of regions to be considered.
- After the asymptotic expansion the integrals over the QCD loops (k_1, k_2, k_3) have a definitive scaling in $2p \cdot q + 2m_b^2 \delta$:
 - \Rightarrow factorize out this dependence and perform the 1-loop tensor integral over *q* first.
- We are left with 3-loop integrals with integer powers in the end.

Asymptotic Expansion – Example

Look at the 1-loop integral (we already integrated out the electron-neutrino loop):

$$\sim \int \frac{\mathrm{d}q \mathrm{d}k}{[q^2]^{\alpha}[(p+q)^2 - m_c^2]^2[k^2][(p+q+k)^2 - m_c^2]}$$

case 1: q has to be ultra-soft, k is hard;

$$\rightarrow \int \frac{\mathrm{d}q}{[q^2]^{\alpha} [2p \cdot q + 2m_b^2 \delta]^2} \times \int \frac{\mathrm{d}k}{[k^2][(k+p)^2 - m_b^2]}$$

• We see an explicit factorization.

Motivation	Calculation	Results		Conclusions
O	○○○●○○	00000000		O
Kay Schönwald - Third order corrections to the semi-leptonic b	$\rightarrow c$ and the muon decays	May 20	, 2021	7/19

Asymptotic Expansion – Example

Look at the 1-loop integral (we already integrated out the electron-neutrino loop):

case 2: q and k are ultra-soft;

Integrals can be factorized through definite power counting in the asymptotic expansion.

Motivation	Calculation	Results	Conclusions
Kay Schönwald – Third order corrections to the semi-leptonic b	\rightarrow c and the muon decays	May 20, 2021	7/19

Details on the Calculation

We can always perform the integrations over the electron-neutrino loop and lepton momenta analytically via 1-loop tensor reduction. The remaining loop integration have the following scalings:

	scaling	n. regions
$\mathcal{O}(\alpha_s)$	h, u	2
$\mathcal{O}(\alpha_s^2)$	hh, hu, uu	4
$\mathcal{O}(\alpha_s^3)$	hhh, huu, hhu, uuu	8

- In case a single region with either hard or ultra-soft scaling remains we can also integrate it out analytically.
- The remaining two- or three-loop integrals have integer powers of the propagators and can be reduced to master integrals via IBP reduction.
- Since we expand up to O(δ¹²) we have to reduce about 25M three-loop integrals with positive and negative indices up to 12. We used FIRE together with LiteRed for this task. [Smirnov,Chuharev (2020), Lee (2013)]

Details on the Calculation

Different kinds of master integrals appear in hard or ultra-soft regions:

- hard regions: up to three-loop on-shell master integrals.
 [Melnikov, van Ritbergen (Nucl. Phys. B (2000) ; Lee, Smirnov (JHEP (2011))]
- soft regions: three-loop ultra-soft master integrals with eikonal propagators
 - up to 2-loop integrals expressible in terms of Γ-functions
 - 3-loop integrals computed for the $m^{OS} m^{kin}$ relation at $O(\alpha_s^3)$ [see talk by Matteo Fael]. [Fael, KS, Steinhauser (2020); hep-ph/2011.11655]

Renormalization:

- For the renormalization of the decay width the wave function and mass renormalization constants with two massive quarks need to be known in the expansion $m_c \sim m_b$ up to $O(\alpha_s^3)$.
- Previously they were only known in the expansion $m_c \ll m_b$ and numerically for larger values of m_c . [Bekavaz, Grozin, Seidel, Steinhauser (JHEP (2007))]
- We computed them analytically and expanded around the equal mass limit to obtain the needed quantities. [see talk by Matthias Steinhauser]

Results

Ka

$$\Gamma(b \to c \ell \nu) = \Gamma_0 \left[X_0 + C_F \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi} \right)^n X_n \right], \qquad \qquad X_n = \sum_{j=5}^{\infty} \delta^j X_{n,j}$$

$$\begin{split} \mathcal{C}_{F}X_{3} &= \delta^{5} \bigg[\frac{533858}{1215} - \frac{20992a_{4}}{81} + \frac{8744\pi^{2}\zeta_{3}}{135} - \frac{6176\zeta_{5}}{27} - \frac{16376\zeta_{3}}{135} - \frac{2624l_{2}^{4}}{243} + \frac{5344\pi^{2}l_{2}^{2}}{1215} \\ &+ \frac{179552\pi^{2}l_{2}}{405} - \frac{39776\pi^{4}}{6075} - \frac{1216402\pi^{2}}{3645} \bigg] + \mathcal{O}(\delta^{6}), \end{split}$$

with $I_2 = \ln(2)$, $a_4 = \text{Li}_4(1/2)$ and $\zeta_i = \sum_{j=1}^{\infty} 1/j^j$.

• We have calculated the expansion up to δ^{12} (for general color factors).

• A subset of color factors has been independently been computed up to δ^9 . [Czakon, Czarnecki, Dowling (2021)]

tivation	Calculation	Results •00000000		Conclusions O
Schönwald - Third order corrections to the semi-leptonic b	$\rightarrow c$ and the muon decays		May 20, 2021	10/19

Convergence – Quark Decays

- We see a good convergence at the physical point of ρ = m_c/m_b ≈ 0.28.
- We find:

 $X_3(
ho=0.28)=-68.4\pm0.3$

- We use the difference of the last two expansion terms to estimate the uncertainty.
- For $\rho \rightarrow 0$ we can extract values for $b \rightarrow u\ell\nu$:

$$X_3^u = -202 \pm 20$$

)	000000	00000000	0
av Schönwald – Third order corrections to	the semi-leptonic $b \rightarrow c$ and the muon decays	May 20, 20	11/19

Convergence – Muon Decays

• Specifying the color factor to QED and setting $\rho = m_e/m_\mu \approx 0$ we get the 3-loop contributions to the muon decay.

We find:

Motivation

Kay Schönwald - Third order corrections

 $X_3^\mu = -15.3 \pm 2.3$

This leads to the shift:

 $\Delta au_{\mu} = (-9 \pm 1) \cdot 10^{-8} \, \mu s$

The current experimental value reads:

$$au_{\mu} =$$
 (2.1969811 \pm 0.0000022) μs

Calculation	Results		Conclusions
000000	00000000		0
to the semi-leptonic $b ightarrow c$ and the muon decays		May 20, 2021	12/19

Different Renormalization Schemes

• The total decay rate of quarks expressed in terms of on-shell masses converges poorly:

$$\Gamma_{\rm sl} \sim 1 - 1.72 \frac{\alpha_s(m_b)}{\pi} - 13.1 \left(\frac{\alpha_s(m_b)}{\pi}\right)^2 - 163 \left(\frac{\alpha_s(m_b)}{\pi}\right)^3$$

Also the $\overline{\mathrm{MS}}$ scheme usually behaves poorly, since the scale has to be chosen rather low.

- Different threshold masses like the PS [Beneke (1998)], 1S [Hoang, Ligeti, Manohar (1998)] or kinetic mass [Bigi, Shifman, Uraltsev, Vainshtein (1996)] have been proposed to improve the convergence.
- We see a much better behavior in the convergence for the schemes used for the global fits of inclusive quantities.
- E.g. for the kinetic mass:

 $m_b^{
m kin}, m_c^{
m kin}: \qquad \Gamma(b
ightarrow c \ell
u) / \Gamma_0 = 0.633 \left(1 - 0.066 - 0.018 - 0.007
ight) \quad pprox 0.575$

$$m_b^{
m kin}, \overline{m}_c(3~{
m GeV}): \qquad \Gamma(b
ightarrow c \ell
u) / \Gamma_0 = 0.700 \left(1 - 0.116 - 0.035 - 0.010
ight) \quad pprox 0.587$$

 $m_b^{\mathrm{kin}}, \overline{m}_c(2~\mathrm{GeV}): \qquad \Gamma(b
ightarrow c\ell
u) / \Gamma_0 = 0.648 \left(1 - 0.087 - 0.018 - 0.0003\right) \ pprox 0.580$

Different Renormalization Schemes

BLM and non-BLM part

$$\Gamma(b \to c\ell\nu) = \frac{G_F^2 m_b^5 |V_{cb}|^2}{192\pi^3} X_0 \begin{bmatrix} 1 + C_F \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi}\right)^n Y_n \end{bmatrix} \qquad \qquad Y_2 = \beta_0 Y_2^{\beta_0} + Y_2^{\text{rem}} \\ Y_3 = \beta_0^2 Y_3^{\beta_0} + Y_3^{\text{rem}} \end{bmatrix}$$

	<i>Y</i> ₁	$Y_2^{\rm rem}$	$\beta_0 Y_2^{\beta_0}$	$Y_3^{ m rem}$	$\beta_0^2 Y_3^{\beta_0^2}$
$m_b^{ m OS}, m_c^{ m OS}$	-1.72	3.08	-16.17	48.8	-212.1
$m_b^{ m kin}, m_c^{ m kin}$	-0.94	0.33	-4.08	-5.4	-15.4
$m_b^{\rm kin}, \overline{m}_c(3 { m GeV})$	-1.67	-3.39	-3.85	-97.7	69.1
$m_b^{ m kin}, \overline{m}_c$ (2 GeV)	-1.25	-1.21	-2.43	-68.8	67.9
$\overline{m}_b(\overline{m}_b), \overline{m}_c(3 \text{ GeV})$	3.07	-21.81	35.17	-56.7	119.4
$m_b^{ m PS}, \overline{m}_c(2~{ m GeV})$	-0.47	-6.10	-2.31	-93.1	-7.19
$m_b^{\mathrm{1S}}, \overline{m}_c(2 \mathrm{GeV})$	-3.59	-0.98	-19.39	-39.83	-80.22
m_b^{1S}, m_c via HQET	-1.38	0.73	-7.05	5.04	-38.09

Motivation

Calculation

Results

Conclusions O

Kay Schönwald – Third order corrections to the semi-leptonic b
ightarrow c and the muon decays

14/19

Different Renormalization Schemes

BLM and non-BLM part

$$\Gamma(b \to c\ell\nu) = \frac{G_F^2 m_b^5 |V_{cb}|^2}{192\pi^3} X_0 \begin{bmatrix} 1 + C_F \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi}\right)^n Y_n \end{bmatrix} \qquad \qquad Y_2 = \beta_0 Y_2^{\beta_0} + Y_2^{\text{rem}} \\ Y_3 = \beta_0^2 Y_3^{\beta_0} + Y_3^{\text{rem}} \end{bmatrix}$$

	Y ₁	Y_2^{rem}	$eta_{0} Y_{2}^{eta_{0}}$	$Y_3^{ m rem}$	$\beta_0^2 Y_3^{\beta_0^2}$
$m_b^{ m OS}, m_c^{ m OS}$	-1.72	3.08	-16.17	48.8	-212.1
$m_b^{ m kin}, m_c^{ m kin}$	-0.94	0.33	-4.08	-5.4	-15.4
$\mathit{m}^{\mathrm{kin}}_{\mathit{b}}, \overline{\mathit{m}}_{\mathit{c}}(3~GeV)$	-1.67	-3.39	-3.85	-97.7	69.1
$m_b^{ m kin}, \overline{m}_c({ m 2~GeV})$	-1.25	-1.21	-2.43	-68.8	67.9
$\overline{m}_b(\overline{m}_b), \overline{m}_c(3 \text{ GeV})$	3.07	-21.81	35.17	-56.7	119.4
$m_b^{ m PS}, \overline{m}_c(2~{ m GeV})$	-0.47	-6.10	-2.31	-93.1	-7.19
$m_b^{1\mathrm{S}}, \overline{m}_c(2 \text{ GeV})$	-3.59	-0.98	-19.39	-39.83	-80.22
$m_b^{1\mathrm{S}}, m_c$ via HQET	-1.38	0.73	-7.05	5.04	-38.09

Motivation

Calculation

Results 0000000000 Conclusions O

15/19

Kay Schönwald – Third order corrections to the semi-leptonic b
ightarrow c and the muon decays

May 20, 2021

Different Renormalization Schemes – kinetic mass

Kay Schönwald – Third order corrections to the semi-leptonic b
ightarrow c and the muon decays

Different Renormalization Schemes – 1S mass

Kay Schönwald – Third order corrections to the semi-leptonic $b \rightarrow c$ and the muon decays

Moments of Differential Distributions

The method can be used to calculate inclusive moments of differential distributions.
 For example we can calculate-q² moments:

Conclusions and Outlook

Conclusions

- We have computed the α_s^3 corrections to the width of $b \rightarrow c \ell \nu$.
- We performed an expansion in the limit $1 m_c/m_b \ll 1$ and demonstrated its good convergence.
- The result is one of the few third order corrections involving two mass scales.
- The results are also relevant for $b
 ightarrow u \ell
 u$ and the muon decay.

Outlook

The method of calculation can be applied for the calculation of moments of the differential distributions.

Backup

•0

Master Integrals in the ultrasoft region

Denominator structures:

- solid lines: $1/(2k_i \cdot p + 1)$, with $p^2 = 1$
- double lines: $1/(2k_i \cdot p)$, with $p^2 = 1$
- dotted lines: 1/k_i²
- Analytically calculated via direct integration, symbolic summation and differential equations using the packages Sigma [Schneider (2007-)] and HarmonicSums [Ablinger et al (2011-)], verified with PSLQ.
- Only ζ values appear in the results.
- Already needed for the calculation of the relation between the OS and kinetic mass (although to lower order in *ϵ*).

21/19