Project 8

Towards a radio-frequency measurement of the neutrino mass

Sebastian Böser KSETA plenary workshop | Durbach | September 28th 2021

Neutrinos in the standard model

Fact sheet

- only fermions
 without charge
- interact only with
 weak force
 - very low event rates
- neutrinos are left-handed
 - Goldhaber experiment
- massless...?

RîSMA

► neutrino oscillations! → $\Delta m^2 > 0$

Nobel price 2015

β-decay of tritium

Energy conservation

- sum of rest masses and kinetic energy
 - ▶ initial mass of ³H nucleus

Momentum conservation

- electron energy maximal when neutrino at rest
 - ▶ $p_v = 0 \rightarrow \text{solve for } m_v$

Tritium β-spectrum

End-point of spectrum depends on neutrino mass

$$\frac{dN}{dE} \sim F(Z, E)p_e(E + m_e)\sqrt{(E - E_0)^2 - m_{\beta}^2)}$$

$$\bullet \text{ direct measurement of electron neutrino mass } m_{\beta} ???$$

$$Project 8 - 4$$

Mass of the electron neutrino ?!?

Electron neutrino

• super-position of mass eigenstates $| u_e angle = \sum_i^{n_ u} U_{ei} | u_i angle$

Kinematik of β -decay

- energy- & momentum conservation
 - only apply to mass eigenstates
 - kinks in the spectrum

Experimental resolution

- not sufficient
 - define effective neutrino mass

$$m_eta^2 = \sum_i^{n_
u} \left| U_{ei}^2
ight| m_i^2$$

β-decay experiment

State of the art — KATRIN

Key components

- windowless gaseous tritium source $(T_2) \rightarrow$ statistic
- MAC-E spectrometer (10m diameter!) → resolution

Electron in B-field

cyclotron radiation

 $f_c = \frac{1}{2\pi} \frac{eB}{m_e}$

First-order relativistic correction

$$f_{\gamma} = \frac{f_c}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}}$$

- energy measurement!
- Energy resolution $\Delta E/E\sim \Delta f/f$
 - $\Delta E/E \sim 0.1 eV / 18.6 keV = 5 ppm \rightarrow easy!$

Frequency resolution $\Delta f \sim 1/\Delta t$

- $\Delta t = 20 \mu s \rightarrow 1400 m @ 18 keV \rightarrow hard!$
 - store in magnetic trap

"Never measure anything but frequency" — A. L. Schawlow

Experiment

Idea

- fill volume with ³H gas
- add magnetic field
 - decay electrons orbit around field lines
- add antennae
- measure cyclotron radiation
 - electron spectrum

B. Monreal and J. Formaggio, Phys. Rev D80:051301

Radiated power

Larmor formula

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} (\gamma^2 - 1) \sin^2 \theta$$

Radiated power

- 1.1 fW for 18 keV electrons at 90°
- 1.7 fW for 30.4 keV electron at 90°

Comparison

- 10W energy saving light bulb by world population
 - ► 10⁶ larger power per person

Consequences

- need very low-noise detection system
- see mostly electrons at very large pitch angle θ

Project 8 prototype

Measured signal

Begin of data-taking on 06.06.2014

■ first signal → captured electron

$$f_{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}}$$

Phase I: results

Improved Phase I setup

- more homogeneous
 B-field
- reduced sensor noise
- improved temperature stability

Achieved resolutions

- σ(E) = 3.3eV @ 30.4keV
- σ(E) = 5.1eV @ 17.8keV

30.35

Track Initial Energy [keV]

30.40

new measurement method established

CRES — Cyclotron Radiation Emission Spectroscopy

30.20

30.25

30.30

30.45

30.50

Project Plan (and talk outline)

Phase I

demonstrate CRES technique

Phase II

first Tritium spectrum with CRES (

Phase III

- Go bigger! demonstrate CRES in free space
- Go atomic! demonstrate atomic tritium trapping

Phase IV

full apparatus, reaching
 m_β < 0.04 eV sensitivity

A neg. LL

Phase II setup

Phase II: ^{83m}Kr data

Krypton data taking

- shallow traps
 - only retain large pitch angles \rightarrow low rate
 - ► little variation in B field within trap → good energy resolution

Electron scattering

- before detection
 - Iow-energy (high-frequency) tail in spectrum

Hydrogen scattering model

- 4eV FWHM Voigt profile
- 2.84eV line width in ^{83m}Kr
 - detector resolution surpasses intrinsic line width

Phase II: T₂ data

Tritium data taking

- 6 · 10⁴ longer half-life → dramatically decreased rate
 - increasing pressure

Tritium configuration

- optimized configuration for best endpoint sensitivity with ~100 days of data
- use deeper trap
 - better statistics
 - ► worse energy resolution $\sigma(E) = 1.5 \text{ eV} \rightarrow 12.0 \text{ eV}$
- lineshape still well described by model (gas composition!)

Detection efficiency

Emitted cyclotron power

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} (\gamma^2 - 1) \sin^2 \theta$$

- detection probability is energy
 (→ frequency) dependent!
- distorted spectrum
 - impacts neutrino mass analysis

Additional effects

- frequency (→ energy) dependent effects of waveguide
- frequency (→ energy) dependent receiver and amplification chain
 - need calibration over ROI!

Phase II: Solenoid calibration

Cyclotron frequency

linear dependence on absolute B-field

Calibration

- cannot easily ramp NMR magnet
 - installed field-shifting solenoid inside NMR bore
 - shift background field and thus cyclotron frequency
- shifted 17.8 keV line of ^{83m}Kr
 - ▶ range of 70MHz (~1.5 keV)
 - Inearity demonstrated within ~0.010MHz (~0.0002eV)

Analysis validation with pseudo data

Data generation model

- tritium spectral model
- efficiency vs energy (frequency)
- resolution effects from
 - detector response
 - scattering (gas composition)
 - molecular excitations

Analysis approach

- Frequentist analysis MLE with Monte Carlo uncertainty propagation
- Bayesian analysis with priors for systematic uncertainties

T2 analysis results

Analysis methods

- Frequentist analysis
- Bayesian analysis
 - good agreement!

Analysis results

- T₂ endpoint (90% CL)
 - $E_0 = 18550.6^{+46.1}_{-27.5} \text{ eV}$
- Background rate (90% CL)
 - $R \leq 3 \cdot 10^{.10} \text{ eV}^{.1} \text{s}^{.1}$
- Neutrino mass (90% CL)
 - ▶ $m_{\beta} \le 185 \text{ eV/c}^2$

Analysis is being finalized

publication pending

C. Claessens (Mainz)

Phase III concept

Phase II design

- volume limited by waveguide dimensions
 - "free-space" CRES demonstrator (FSCD)

Characteristics

- 1T MRI magnet
- T₂ in fused silica cylinder
 - density 3·10¹² cm⁻³
- Iong bathtub trap
 - ► 10-100cm³ effective volume
- read out by phased antenna array

Phase III: readout and beamforming

Cyclotron radiation

- distributed over many channels
 - individual channel has too low SNR for trigger

Real-time digital beam-forming

 construction focus by applying individual phase delays to signals in each frequency slice

Challenges

RîSMA

- high data rate and bandwidth
- large cross-section → many focal points
- side lobes → fake events
- eventually: simultaneous electrons
- Iow signal power

Recovering the signal

The challenge:

Matched filtering

Mathematical method

$$y_i = (s \star x)_i = \sum_k s_k^* x_{i+k}$$

equivalent to cross-correlation

- returns physical power of signal
- proven to be ideal algorithm for Gaussian noise
- Discrete Fourier transform
 - matched filter with sine waves

Many antennas

sum over all channels with appropriate phase delays

Need accurate per channel signal model

Improving the signal model

grad B - motion

- background field not homogeneous
 - electron centroid moves in $\vec{B} \times \vec{\nabla} |B|$ direction

Simulation example

Single electron θ=90°, r=2cm

Ideal signal model

- full simulation of electron signal
 - detailed electron tracking (Kassiopeia)
 - detailed antenna response (Locust)
- takes ~1.5hrs per event

Thermal noise

- assume white spectrum
- temperature T=10K

Threshold γ

- determines background rate b
- determines effective volume V_{eff}

- 16

Sensitivity vs backround

PRISMA

Potential for neutrino mass?

Sensitivity limited by

- density of tritium gas \rightarrow rest gas interactions
- molecular excitations in T₂
 - need atomic tritium

Molecular tritium limitations

Molecular excitations in ³He daughter molecule

- blur tritium endpoint
 - fundamental limit to measurement of v-mass

Need atomic tritium for **ultimate** experiment!

Magnetic guiding of neutral atoms

Dissociation of T_2

■ heat to 2400K → easy!

Storage of atomic T

- recombination catalyzed by walls → difficult!
- H,D and T have unpaired e⁻
 - non-zero magnetic moment µ
 - tend to (anti-)align with B-field if change is adiabatic

Potential energy

 $\Delta E = -\vec{\mu} \cdot \vec{B}$

→ follow field minimum

Atom trapping

Studying loffe-Pritchard trap

- similar to UCN and anti-hydrogen traps (ALPHA)
- plausible field step

► **Δ**B=2T

- Iimit thermal loss fraction
 - \triangleright $\epsilon_{loss} = 10^{-10}$
- maximum allowed temperature

► T_{max} = **30mK**

Challenges

- cooling from 2400K to sub-Kelvin level
- keep high T/T₂ purity
 - ► molecular T₂ not trapped!
- field uniformity in central region

Phase IV: trap challenges

A. Lindman (Mainz)

How to fill the trap?

Spin-flip loading ?

- Flip atom spin at trap edge
 Carry atoms over potential wall (+ energy loss)
- But: stimulated emission
 - will lose trapped atoms

Cornucopia* loading

- Blow cold atoms into trap

 accept loss through
 entrance hole
 required input flux
 - for 1cm hole @ 50mK
 - ► 5 · 10¹² atoms/sec

S. Böser, Mainz

* horn of plenty

Project8 — Phase IV: first designs

Design challenges

- keep 2T magnetic contours outside all structures
- provide very large trap volume (m³)
- provide very homogenous fiducial volume (m³)
- manufacturing and operation stability
- compatible with antenna array for read-out of CRES signal

Final design still some way out!

Atomic T source

- Dissociation
- Cooling
- Purification

T₂ dissociation schemes

Microwave dissociation @ 151MHz

- well tested for hydrogen
- chemical reaction with glass
 - not feasible with tritium!

Laser dissociation

- dissociation energy 4.52eV
 - wavelength < 274nm</p>
- required laser power ~ kW!

Coulomb explosion

difficult to re-neutralize

Thermal Dissociator

Hot tungsten tube heated to 2500K

- radiatively or
- by electron bombardment
 - commercial devices available

K.G. Tschersich and V. von Bonin (1998)

JG|L

Cooling atomic hydrogen

Hydrogen recombination

- two-body gas interactions
 - small cross-sections
- wall interactions
 - Iong sticking time
 - dominates recombination

Probability depends on

- temperature
- material
- hydrogen isotope

Superfluid He containment

does not work for tritium!

D. A. Knapp et al., AIP conference proceedings (1984) Wood and H. Wise, J. Chem. Phys. 66, 1049, (1962)

JGU

Cooling tritium atoms

Conceptual design II

Selector for

- Velocity
- State
- Atoms

Radiation

Cooling tritium atoms

Magnetic field step into solenoid

energy loss for trapped low-field seekers

Selection of "cold" velocity slice

need 10¹⁹ atoms/sec at the source!

Velocity and State selector I

Velocity and State Selectors II

Only atomic T guided magnetically

(bend) quadrupole with skimmers

Tune acceptance for

- $T_{out} = \mathcal{O}(50 \text{mK})$
- T₂ contammination $< 10^{-5}$
 - efficiency $\epsilon_{cold} \sim 25\% \cdot 100\%$

Initial design study

works best if atoms are injected at angle w.r.t. tube axis

A. Etienney, INP Grenoble & U. Mainz

JGL

Phase IV: Conceptual design

Requirements

- 10m³ fiducial volume at 10¹² cm⁻³ atomic T density
 - challenging design

Early research focused on

- generation of a sufficiently intense and cold T₂ beam
- conceptual design for magnetic trapping

Atomic H-isotope teststand

Goals

- Verify conceptual designs
 - → Flow
 - → Temperature
 - → Purity

Approach

- Start with thermal cracker
 - establish atomic signal
 - ► start with H₂ and D₂

Mainz atomic source

Goals

- Test commercial cracker
 - \rightarrow spec'ed to 10¹⁷ atoms/sec
 - \rightarrow can this be exceeded?
- Beam profile
 - → important for quadrupole injection scheme

Mass spectrography

Auto-resonant ion trap-based mass spectrometer

Mainz atomic source results

Mainz atomic source results

Mainz atomic source results

Monitoring beam quality: wire detector

Temperatures and heat flow simulation

Numerical finite-element simulation

- 10 µm tungsten wire
- 1mA base current

RÎSMA

10¹⁷ Atoms/s recombination flux

Sensitivity

- covers full experimental range
- mostly linear (T⁴ radiative loss at high fluxes)

Potential for neutrino mass!

Sensitivity limited by

- density of tritium gas \rightarrow rest gas interactions
- molecular excitations in $T_2 \rightarrow$ atomic tritium
- magnetic field homogeneity

Comparison of methods

Measuring neutrino masses

approaches are complementary

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Oscillation experiments

$$M = \sum_{i}^{n_{\nu}} m_{i}$$

$$m_{\beta\beta}^{2} = \left| \sum_{i}^{n_{\nu}} U_{ei}^{2} m_{i} \right|^{2}$$

$$0_{\nu\beta\beta} \text{ decay experiments}$$

$$m_{eta}^2 = \sum_i^{n_{
u}} \left| U_{ei}^2 \right| m_i^2$$

 eta -decay experiments

Project 8 collaboration

Pacific Northwest

This work is supported by the US DOE Office of Nuclear Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal investments at all institutions.

Mii

Thank you!