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Background: Neutrino oscillations

• Like quarks, the mass and (weak)
interaction basis of neutrinos are
not the same.

• Unlike quarks, the
quasi-degeneracy of neutrino
masses allows coherent
propagation of mass states.

• For Eν ∼ 1GeV, the oscillation
length is Losc. ∼ 1000 km.

• Open question: is there a new
fourth light “sterile neutrino”, with
a shorter oscillation baseline?
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Figure: Another way to understand neutrino oscillations, is as the coherent sum of a
Feynman diagram with neutrino mass eigenstates as internal lines.
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Background: MiniBooNE excess

• MiniBooNE is a short-baseline
accelerator neutrino experiment
(no SM oscillations).

• The beam is mostly muon
neutrinos with a small
electron-neutrino background.
Measuring electron-neutrino-like
events, they found a 4.8σ excess.

• Beam timing information and
radial distribution of events were
used to constrain explanations due
to mismodelled backgrounds.

• External background events and
excess misreconstructed highly
asymmetric π0 decays were
disfavoured.

Figure: Made by Alan Stonebraker for the
American Physical Society
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Hypothesis Factor χ2/9ndf
NC ∆ → Nγ 3.18 10.0
External Event 5.98 44.9

νe from K0
L Decay 7.85 14.8

νe from K± Decay 2.95 16.3
νe from µ± Decay 1.88 16.1
Other νe & ν̄e 3.21 12.5

NC π0 Background 1.75 17.2
Best Fit Oscillations 1.24 8.4

Table: From [arXiv:2006.16883v3]:
Log-likelihood shape-only fits to the radial

distribution in neutrino mode, assuming only
statistical errors, with arbitrary normalisation.
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Background: Possible explanations

• If excess were due to new νµ → νe
oscillations (via a fourth light
neutrino), one should see a deficit
in νµ flux in other beam
experiments: not observed.

• Since the MiniBooNE detector only
detects the Cerenkov light from a
CC-produced electron, an EM
shower from a photon can mimic
an electron.

• Gnienko [arXiv:0902.3802] first
suggested that (in addition to a
fourth light neutrino) sterile
neutrino to single photon decay
could explain the excess.
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Background: the dipole portal

• G. Magill, R. Plestid, M. Pospelov
and Y.-D. Tsai [arXiv:1803.03262]
did the first systematic study into
constraints on the neutrino dipole
portal. (Production and detection
via dipole operator).

• They investigated limits from
existing accelerator data and the
neutrino burst from SN1987A.
They found SHiP would be
sensitive to a model explaining the
MiniBooNE excess.

• Note: purple collider bounds
depend on electroweak UV
completion.

• My work investigates the
neutrino-dipole signal at DUNE.
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Figure: From [arXiv:1803.03262v1]
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Effective neutrino dipole operator

• Effective operator:

L = dαν̄αLσ
µνν4Fµν + h.c.

• Present in SM at one-loop level with
neutrino mass (∝ GFmν). [Lee & Shrock PRD

16 (1977); Schrock & Fujikawa PRL 45 (1980)]

• We consider effective operator with
arbitrary coupling.

• One can construct UV completions that
are electroweak gauge invariant.

• We ignore these model-building aspects.

• See however [K.S. Babu, S. Jana and M.

Lindner arXiv:2007.04291].

6 / 16

https://arxiv.org/abs/2007.04291
https://arxiv.org/abs/2007.04291


Effective neutrino dipole operator

• Effective operator:

L = dαν̄αLσ
µνν4Fµν + h.c.

• Present in SM at one-loop level with
neutrino mass (∝ GFmν). [Lee & Shrock PRD

16 (1977); Schrock & Fujikawa PRL 45 (1980)]

• We consider effective operator with
arbitrary coupling.

• One can construct UV completions that
are electroweak gauge invariant.

• We ignore these model-building aspects.

• See however [K.S. Babu, S. Jana and M.

Lindner arXiv:2007.04291].

νi νj

νi νj

W+

W+

γ

γ

l−a

l−a

6 / 16

https://arxiv.org/abs/2007.04291
https://arxiv.org/abs/2007.04291


Effective neutrino dipole operator

• Effective operator:

L = dαν̄αLσ
µνν4Fµν + h.c.

• Present in SM at one-loop level with
neutrino mass (∝ GFmν). [Lee & Shrock PRD

16 (1977); Schrock & Fujikawa PRL 45 (1980)]

• We consider effective operator with
arbitrary coupling.

• One can construct UV completions that
are electroweak gauge invariant.

• We ignore these model-building aspects.

• See however [K.S. Babu, S. Jana and M.

Lindner arXiv:2007.04291].

νi νj

νi νj

W+

W+

γ

γ

l−a

l−a

6 / 16

https://arxiv.org/abs/2007.04291
https://arxiv.org/abs/2007.04291


Effective neutrino dipole operator

• Effective operator:

L = dαν̄αLσ
µνν4Fµν + h.c.

• Present in SM at one-loop level with
neutrino mass (∝ GFmν). [Lee & Shrock PRD

16 (1977); Schrock & Fujikawa PRL 45 (1980)]

• We consider effective operator with
arbitrary coupling.

• One can construct UV completions that
are electroweak gauge invariant.

• We ignore these model-building aspects.

• See however [K.S. Babu, S. Jana and M.

Lindner arXiv:2007.04291].

νi νj

νi νj

W+

W+

γ

γ

l−a

l−a

6 / 16

https://arxiv.org/abs/2007.04291
https://arxiv.org/abs/2007.04291


Effective neutrino dipole operator

• Effective operator:

L = dαν̄αLσ
µνν4Fµν + h.c.

• Present in SM at one-loop level with
neutrino mass (∝ GFmν). [Lee & Shrock PRD

16 (1977); Schrock & Fujikawa PRL 45 (1980)]

• We consider effective operator with
arbitrary coupling.

• One can construct UV completions that
are electroweak gauge invariant.

• We ignore these model-building aspects.

• See however [K.S. Babu, S. Jana and M.

Lindner arXiv:2007.04291].

νi νj

νi νj

W+

W+

γ

γ

l−a

l−a

6 / 16

https://arxiv.org/abs/2007.04291
https://arxiv.org/abs/2007.04291


Effective neutrino dipole operator

• Effective operator:

L = dαν̄αLσ
µνν4Fµν + h.c.

• Present in SM at one-loop level with
neutrino mass (∝ GFmν). [Lee & Shrock PRD

16 (1977); Schrock & Fujikawa PRL 45 (1980)]

• We consider effective operator with
arbitrary coupling.

• One can construct UV completions that
are electroweak gauge invariant.

• We ignore these model-building aspects.

• See however [K.S. Babu, S. Jana and M.

Lindner arXiv:2007.04291].

νi νj

νi νj

W+

W+

γ

γ

l−a

l−a

6 / 16

https://arxiv.org/abs/2007.04291
https://arxiv.org/abs/2007.04291


Signal generation at DUNE

• DUNE: 70kt of cryogenic (88K or
−185 ◦C) liquid Argon: good
resolution and discrimination.

• Difficult to produce intense
tau-neutrino flux. Therefore
consider oscillated flux at far
detector.

• Can also use intrinsic beam flux at
near-detector.

Elena Gramellini  | elenag@fnal.gov20 8/05/21

νe

LArTPC in action
Extremely detailed 3D images + calorimetry + PID: 

unprecedented tool for neutrino interaction & BSM physics

~3 mm
 resolution

Electron Candidate
Low Proton Candidate
reco threshold 
ArgoNeuT: 21 MeV 
Phys. Rev. D 90, 012008
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To compare with tracks from NOvA ND

(courtesy of A. Himmel’s 2018 presentation)
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From [arXiv:2002.02967v3]. Cartoon
illustrating the configuration of the LBNF
beamline at Fermilab, in Illinois, and the

DUNE detectors in Illinois and South Dakota,
separated by 1300 km.
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Signal (types)

• Outside events: Up-scattering occurs in the Earth; the signature is a
single-photon event.

• Inside events, coherent: The coherent scattering on the nucleus leaves a
nuclear recoil of low energy, which is difficult to observe in the detector.
The decay leaves a single-photon signature.

• Inside events, incoherent: The incoherent scattering on nucleons leads to
a signature similar to NC neutrino events, whereas the scattering on
electrons results in a single electron. In addition, there is a coincidental
displaced single-photon event from the heavy-neutrino decay.
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Signal (approximations)

Outside events (no detector geometry):
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Signal for dτ (example differential spectra)

Spectra for inside, outside events at various masses, normalised so that the peak is 1. At low energies

(dashed), we replace the oscillation probability with 1/2 to account for the averaging of fast oscillations.

This is purely cosmetic for inside events.
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Results (decomposition by target and event-type)

Γ
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20m

6-events/year curves for inside (solid) and outside (dashed) events at the DUNE FD for coherent scattering

on nuclei (red), incoherent scattering on nucleons (blue) as well as electrons (purple). Our approximations

for outside events break down at the upper curve, as decays occur very close to the detector (cyan line).

This effect is negligible as inside-events will dominate. In grey is indicated when the decay-length is of the

order of DUNE’s spatial resolution.
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Global picture (dτ)
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Global picture (dµ)
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Global picture (de)
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Conclusion

• DUNE can set competitive limits for dτ at the far detector with the
oscillated flux.

• The intrinsic flux can constrain dµ,e at the near detector.

• Meson decay ignored though.

• Background studies needed for proper sensitivity curve.
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Thanks for your attention!
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Signal (equations)

Outside events (no detector geometry):
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dEν

dE4
Posc · εφb

· Pdecay(ℓ)
dσ

d cos θs
∆Ωs · ε(p4)

]

T

.

Inside events (only detector geometry, collimated beam):

dN

dEν
=Nmod

L2ND
L2FD

ρNAdet
dΦ

dΩdEν

∣∣∣∣
θb=0

Posc

(
LFD
Eν

)

∑

MT

∫ Ld

0

dz

∫ 1

−1

d cos θs
dσT

d cos θs
Π
(
ℓ0d
)
Pdec(ℓ

0
d)ε(p4) .
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