

Progress in the cryogenics work package

InnovEEA Project Meeting, 10.11.2021 Jonas Arnsberg, Steffen Grohmann

www.kit.edu

CompactLight design study

CompactLight design study

- Conceptual design study for next-generation hard X-ray free electron laser (FEL) facility
- Compared to existing FELs, the CompactLight facility will be more compact and will have a lower energy demand ^[1]
- \rightarrow interesting for academic and industrial users
- The Self-Amplified Spontaneous Emission (SASE) line consists of 16 cryomodules containing several sc magnets ^[2]
 - Undulator

3

- Phase shifter
- Quadrupoles

Segmented design

- Individual cryostats for each magnet section in 4.2 K LHe-bath
- Flexibility in terms of mainenance
- Precise alignment
- Larger heat load due to cold-warm-transitions
- Vibrations and acoustic noise from cryocolers

Minimal-segmented design

- Reduced cryostat complexity
- Maintenance-free cooling system inside the cryostat
- Smaller heat load as there are no cold-warm transitions

Heat load estimation

Assumptions – beam tube geometry

Schematic view of assumed beam tube geometry

- Heat conducted along beam tube $\dot{Q}_{\text{cond},12} = \frac{A}{L} \int_{T_1}^{T_2} \lambda_{\text{SST}}(T) dT$
- Radiation from ambient temperature is absorbed by black body $\dot{Q}_{\rm rad,0} = A_{\rm BT} \sigma (T_{\rm a}^4 T_0^4)$
- Radiation from cryostat to shield is given by $\dot{Q}_{rad,Sh} = A_{Sh}C_{Sh}\sigma(T_a^4 - T_{Sh}^4)$

Assumptions – cryomodules & current leads

- Heat loads from magnets and cryomodules
 - Heat load 1 W/m according to Fuerst et al. ^[3]
 - 0.5 W per module due to instrumentation
- \rightarrow Per module $\dot{Q}_{intern,0} = 2.8 W$
- Number of magnets and supply currents:

Magnet system	Number of magnets	Supply currents I / A
Undulators	1	500
Quadrupoles	2	100
Phase shifter	6	200

- Copper current leads from ambient to shield → Heat load of $\dot{Q}_{CL,Sh} = 43 \text{ W/kA}$ bei T_{sh}
- HTS-current leads from shield to magnets → $\dot{Q}_{CL,0}(I) = 65 \text{ mW} - 235 \text{ mW}$

Heat load estimation – Results

Minimal-segmented design (LHe-plant)

Refrigeration system

Segmented Design

- At least 3 Cryocooler (2 W @ 4.2 K) per module needed
- → 48 Cryocooler per beam line
- Investment costs of about 2.4 M€

Minimal-segmented Design

- Smallest LHe-plant of Linde (LR70) sufficient
- Cooling of shield with LN₂ or boil-off He
- Investment costs of about 2.1 M€

Investment costs almost identical, power consumption crucial!

Institute of Beam Physics and Technology (IBPT) SC System Technology

System comparison

Conduction cooled current leads

CMRC-cooled current leads

Development of CMRC-cooled current leads

Mixed-refrigerant cycles (MRCs)

- The key player in every cooling system is the working fluid, especially
 - its state and transport properties (EoS)
 - its changes of state during the thermodynamic process/cycle

CMRC-cooled micro-structured current leads

- Numerical model for heat exchanger calculation ^[5]
 - Iterative solution of energy and momentum conservation
 - Description of heat and mass transport in twophase flow
 - Thermal-electric integration of ohmic losses
 - Longitudinal and parasitic heat flow
- Development of new heat exchanger technology
 - High efficieny by small gradients
 Jarge heat transfer area
 - Development of minichannel heat exchangers

Micro-structured Current Leads

- Easy scalability due adjustable construction by sheets
 - Ultra compact prototype only 24 cm long
 - Ultra efficient heat absorption at the source

Scalable technology allows development of **compact high-efficient** current leads for **any** current range!

Compact Accelerator Systems Teststand (COMPASS)

Copact Accelerator Teststand (COMPASS) Cryostat Design

- Test stand for experimental investigation of CMRC-cooled current leads
 - CMRC-cascade system to reach temperatures down to 55 K
 - Experiments with supply currents up to 10 kA possible
- Field measurements in LTS-magnets possible
 - Free space for cold mass 50x50x50 cm³
 - Current supply via two seperate circuits
 - CMRC-cooled and classical conduction cooled current leads

Summary & Outlook

Summary & Outlook

- CompactLight design study shows 75 % of cryogenic heat load arises from current leads
- Low energy efficiency for cryocooler-(conduction)-cooled current leads
- Current leads cooled by mixed-refrigerant cycles promise reduction of power demand by 66 %
- Advantages of micro-structured current lead technology
 - Ultra compact first prototype only 24 cm long
 - Ultra efficent heat absorption at the source
 - Simple scalability for any current range
- COMPASS Test Stand for experimental investigation of current leads and magnet systems under development

[1] https://www.compactlight.eu/Main/HomePage, last checked 04.11.2021.

[2] F. Nguyen et al., CompactLight Deliverable D5.2, "Design Studies for the Undulator", 2021.

[3] J.D. Fuerst. Et al., "Review of New Developments in Superconducting Undulator Technology at the APS", 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources", FLS2018, Shanghai, China, 2018.

[4] E. Shabagin, "Development of a CMRC cooled 10 kA current lead for HTS applications, PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, to be published.

[5] D. Gomse, "Development of heat exchanger technology for cryogenic mixed-refrigerant cycles," PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2019.

[6] D. Gomse, S. Grohmann, "Heat transfer and pressure drop in the main heat exchanger of a cryogenic mixed refrigerant cycle", en, 2018. ICEC27-ICMC 2018, Oxford, England, September 3-7 2018.

[7] D. Gomse, T. Kochenburger, J. Brandner, S. Grohmann, "Entwicklung eines Wärmeübertragers für kryogene Gemischkältekreisläufe", de, 2016. DKV Tagung Kassel, AA.I.19, 18.11.2016.