Permanent Magnets program for PETRA IV

Markus Tischer, Otmane Lahyaoui DESY / FS-US

II. InnovEEA Project Meeting: WP3 – Magnet Technology (Riccardo Bartolini) 10th November 2021

Outline

•

Proposed DLQ design

Latest DLQ configurations

Present status and future tasks

• Introduction and evolution of DL design

PETRA III is one of the core facilities at DESY

Each year ~5000h users operation serve more than 2000 users

Ada Yonath Hall

Extension Hall East

Max von Laue Hall

Paul P. Ewald Hall Extension Hall North

Parameter	PETRA III
Energy [GeV]	6
Circumference [m]	2304
Emittance (hor./vert.) [nm.rad]	1.3/ 0.013
Total current [mA]	100

Courtesy of R. Bartolini

PETRA IV project:

replacing PIII with an ultra low emittance ring (20 pm) adding a new Experimental Halls in two more octants

A new lattice proposal was evaluated

There is a new lattice H6BA performing better than the previous one

Courtesy of D. Einfeld

- Based on H6BA cell 8 octants with 9 cells each
- Strongly favored as the present PIIIbeamlines can be conserved
- In the octants "U" there is the lattice H6BA_23.00 m and in the octants "A" is the lattice H6BA_22.75 m (Same magnet arrangement, they only differ in the straight section length)
 - There are overall 432 permanent Bendings, 1348 Quadrupoles, 432 Sextupoles, 286
 Octupoles and 1126 Correctors. This makes overall 3626 magnets.
 - In addition there are 40 damping wigglers in the octants A and 30 undulators for users in the octants U.

The H6BA outperforms the combi lattice

Justification and consequences of the changes investigated

H6BA lattice [9 cells per octant] vs combi lattice [modified H7BA 8 cells per octant]

Emittance kept to 20 pm albeit with a different concept, Based on extensive use of DW in long straight sections (as now in PIII)

Pros

- Larger Dynamic Aperture (off axis injection and accumulation looks now feasible)
- Larger Momentum Acceptance (Touschek lifetime 2.5-fold improvement)
- More PM magnets (resistive DQs changed to PM based DQs changed DLs to DLQs)
- Overall performance improved (sensitivity to errors and instabilities)
- One more beamline per octant
- Possibility of keeping the existing source point fixed in the Max von Laue Experimental Hall

Cons

- Stronger focusing quadrupoles (max 115 T/m) but weaker sextupoles in dispersion bump
- Reduced straight section length 5.3 m to 4.7 m
- Reduced brightness, despite smaller and equal beta functions in the straight sections
- All bending magnets become more demanding combined-function magnets

Evolution of DL design

Cross section of the previous DL

Combi lattice

- Maximum field 0.38 T
- No transverse gradient
- "Flat" pole
- Uniform field along the transverse direction
- 2 types of DLs

H6BA lattice

- Maximum field ~0.29 T
- Moderate transverse gradient ~11.7 T/m
- Tapered pole
- 3 types: 1 DLQ, 2 DQs

From the combi cell to H6BA cell

- 4 DLs and 3 central DQs substituted with 2 DLQs and 4 PM DQs
- Same cell structure replicated across all octants

6

Latest DLQ Configurations

Parameters for the 23m cell

	Element	Length	Field	Gradient	$x_0 = B/G$
		(m)	(T)	(T/m)	(mm)
	DL1A_4	0.303	0.2771	-11.3144	
	DL1A_3	0.303	0.2878	-11.7471	24 5
DLQ	DL1A_2	0.303	0.2558	-10.4426	24.5
	DL1A_1	0.303	0.2238	-9.1382	

DQ DL2A 1.084 0.1907	-7.7184	24.7
----------------------	---------	------

DQ DL3B 1.84 0.1901 -6.5972 2	28.8
-------------------------------	------

- Maximum gradient -11.7 T/m
- 50% higher G/B compared to "26m-version"
- Gradient hardly achieved (at the limit for a tapered 2-pole design)
- 3 types of DLQs (DQs), 432 magnets in total
- Different module length for each DLQ
- DL2A and DL3B will be split to 4 and 6 modules each

Difference to pure DLs ("Combi")

- Magnetic and mechanical design

- Measurement concept (curved)

- Modules are straight but must be

placed on curve trajectory

- Tuning and alignment

- ~50% more PMs to build

- More challenging:

Intermediate Design for 26m H6BA cell: ✓

- Maximum gradient -9.7 T/m, achievable with previous 2-pole design
- 3 types of DLQs with same G/B
- Same modules length 0.414 m for all

DESY. II. InnovEEA Project Meeting | M. Tischer | 10.11.2021

Proposed DLQ Design

Open structure

Off axis vacuum chamber by 5 - 6 mm (ϕ 25 mm)

- GFR center: -5.1 mm with a range of 11 mm
- Field and gradient at center of GFR: 0.334 T 13.65 T/m
- Gradient homogeneity ΔG/G0 in GFR: 0.000228
- Pole Gap at center of GFR: 30 mm
- Outer diameter of vacuum chamber: 25 mm
 - GFR center: **-6.3 mm** with a range of **10 mm**
 - Field and gradient at center of GFR: 0.31 T 12.68 T/m
 - Gradient homogeneity $\Delta G/G0$ in GFR: **0.00036**
 - Pole Gap at center of GFR: 32 mm
 - Outer diameter of vacuum chamber: 25 mm

	Open structure	Structure with yoke
Advantages	 Good field quality enhanced Larger GFR and center close to geometrical axis More degree of freedom for tuning Compactness Larger opening for vacuum chamber 	 Good feedback from ESRF-DL experience (measurement, thermal shimming) Less challenging in terms of mechanical assembly Less sensitive to ambient field changes
Drawbacks	 Mechanical magnet assembly more challenging : assembly errors, magnetic forces Higher sensitivity to magnet block errors Field tuning needs to be revisited due to decoupled poles More sensitive (magnetic behavior) 	 Tighter opening for Vacuum chamber Smaller GFR (present optimization state)

Preliminary Results

Open structure

- GFR center: -5.1 mm with a range of 11 mm
 - Field and gradient at center of GFR: 0.334 T 13.65 T/m
- Gradient homogeneity ΔG/G0 in GFR: 0.000228
- Pole Gap at center of GFR: 30 mm
- Outer diameter of vacuum chamber: 25 mm

0.0008 0.0006 0.0004 0.0002 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 -0.0004 -0.0006 -0.0006 -0.0006

Structure with yoke

Harmonics

- GFR center: -6.3 mm with a range of 10 mm
- Field and gradient at center of GFR: 0.31 T 12.68 T/m
- Gradient homogeneity ΔG/G0 in GFR: 0.00036
- Pole Gap at center of GFR: 32 mm
- Outer diameter of vacuum chamber: 25 mm

Transverse direction [mm]

DESY. II. InnovEEA Project Meeting | M. Tischer | 10.11.2021

Present status and future tasks

Design status

- Ist solution (2D) achieved in August 2021
- Present preliminary results of new DLQs are promising
- Mechanical design can start with some overlap to magnetic refinement
- Collaboration with ESRF is well established
- Schedule for the WP needs adjustment due to lattice change

Next Tasks

- 3D model needs to be worked out
- Cross-talk, magnetic and mechanical error assessments
- Launch prototype(s)
- Elaborate alignment concept
- Develop assembly and measurement procedures
- Work out logistics for production phase

Personnel

InnovEEA-related PostDoc will start soon (Nov.21)

Thank you for your attention!