

3D Image Reconstruction: Ultrasound Tomography for Breast Cancer Diagnosis

Nicole V. Ruiter

INSTITUTE FOR DATA PROCESSING AND ELECTRONICS

3D USCT and Breast Cancer

Basic idea

Surround object with (unfocused) ultrasound transducers in a fixed setup

Diagnostic value

- Reproducible 3D images with ultrasound
- Images three modalities concurrently:
 - Reflection High quality "B-scans"
 - Speed of sound and attenuation Quantitative information

Breast imaging in fixed setup

Simplified from Greenleaf et al., 1981

How does it work? Data acquisition

KIT 3D USCT II and USCT III

Specification	Value
Center frequency (bandwidth)	2.5 MHz (50%-70%)
Highest resolution	(λ/2)³ ≈ (0.24 mm)³
# transducers	2041 - 2304 (sparse!)
Diameter (in meter and wavelength)	0.24 -0.32 m (~500 λ)

Patents: PCT/EP2012/000640, EP 2539870 A2 (2011), EP 2 056 124 (2009), EP 1 755 837 (2004), US.6.786.868 (2003).

Some results

Image Reconstruction: Acoustic Wave Equation

Linear acoustic wave equation for inhomogeneous water like materials:

$$\nabla^2 p(\vec{x}) + k_0^2 \left(\sqrt{\frac{K_0}{\rho_0}} \sqrt{\frac{\rho(\vec{x})}{K(\vec{x})}} + i \frac{\mu(\vec{x})}{k_0} \right)^2 p(\vec{x}) - \frac{1}{\rho(\vec{x})} \nabla \rho(\vec{x}) \nabla p(\vec{x}) = 0$$

- Three physical properties influence wave propagation:
 - Density ρ_0
 - Bulk modulus *K*
 - Absorption μ
- Typically reconstructed in USCT:
 - Qualitative gradient of acoustical impedance $\nabla(Z = \rho_0 c)$,

• Speed of sound
$$c = \sqrt{\frac{K}{\rho_0}}$$

• Attenuation $\alpha = \mu + \mu_s$

Image reconstruction: Typically used methods

Reflectivity (Qualitative gradient of acoustical impedance):

Breast Image Examples: 2D Speed of Sound

[3] Wiskin et al. Proc. SPIE Medical Imaging, 2020 [4] Littrup, Duric, et al. Proc. of MUST, 2017.

Challenge 3D: Computational Complexity Example: N³ voxels from N² A-scans Resolution (FWHM)⁻¹ ~NeuroN ل_1 ل_1 **Full-wave** et based Paraxial inversion inversion recon. SAFT Born / Rytov Comp. inversion **B**-scan **B-scan** Ξ Eikonal Iterative Ray $(\sqrt{D\lambda})$ inversion ray based tomotomo. Complexity graphy $O(N^{3}log(N))$ **O**(N⁷) $O(N^3)$ $O(N^6)$ $O(N^5)$

Althaus: On acoustic tomography using paraxial approximations, 2015. Özmen: Ultrasound Imaging Methods for Breast Cancer Detection, 2015 (TU Delft). Dapp: Abbildungsmethoden für die Brust mit einem 3D-Ultraschall-Computertomographen, 2013. Hardt: Distributed Simulations for 3D USCT. Acoustic wave simulations for a new breast cancer imaging device, 2012.

Status at IPE

- Applied algorithms in clinical trials:
 - Speed of sound corrected SAFT with GPU cluster
 - Ray based speed of sound and attenuation
- Under development
 - Paraxial
 - Neuronal networks based reconstruction
- New grant (EIC pathfinder):
 - **3D FWI on supercomputers**

Reconstruction with Prelearned Convolutional Neural Network (simulated data)

Summary and possible collaborations

- 3D USCT is a new imaging method for early breast cancer diagnosis
- KIT 3D USCTs: first clinically applicable full 3D USCT
- New improved system in commissioning
- First pilot study successful, multicenter study planned

Possible collaboration

- Challenge: 3D, large scale problem, limited reconstruction time!
- Efficient solution of large scale inverse problem?
 - Optimization schemes, ...
- Efficient forward method
 - Approximation(s) of wave equation for dedicated problem, ...
- Neuronal networks
 - Learning parts of the image reconstruction problem?
 - Direct learning from data input to image output?
- Perspective topics: algorithms dedicated for future computing architectures
 - E.g. applicable problem for quantum computing?

