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Overview

* Context
- Ultra-high energy cosmic rays
- Extensive air showers

* CORSIKA 8 as a novel, modern framework
 Comp. resources and sparse sampling: ,thinning*

* Thinning as key to economically manage the
needs for simulations in the field



Cosmic rays and extensive air showers
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Structure and observation of air showers

Extensive secondary particle cascades, and their observation
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Air shower simulations

Karlsruher Institut fiir Technologie

e

More than 30 years of development history, lots of technology, models, tools.
Fundamental for astroparticle physics, some tools also used at LHC. 5



CORSIKA 8

New framework as laboratory to investigate astroparticle physics problems
related to secondary particle cascades

B Support future astroparticle physics experiments
with solid foundation for simulations and research
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@ Further improve quality of simulations, and
hadronic event generators, reduce and assess
modeling uncertainties

&

B Research of air shower physics, i.e.
muon production in air showers, etc.

* Not enough muons in simulations
* Spectrum of muons too soft in simulations

* Closely linked to hadronic shower core



Mathematical formulation of problem

* Highly coupled ODE system
e Various initial conditions
* Evolution of states in several dimensions: E, X, type
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Properties of solution

Depending on scales of interest:

e Solution of ODE system can be completely continuous
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* ,EXxplosive® or ,stochastic* events can play crucial role in
evolution and variances.
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Ultra-high energy particle cascades

* Energy re-distribution from single ultra-high energy primary
particle (or many of them) on O(billions) of secondary particles
of all types at low energies.

* Full 4D solution (3D+time) obtained with Monte Carlo
simulation: tracking of each particle in magnetic fields and
explicit handling of all stochastic events.

* Needed for interpretation and analysis of experimental data.

* Also for design of new experiments.

Performance and accuracy are a fundamental (limiting) factors for
astroparticle physics. o



E,=10"eV proton shower: T=1.5 CPU-years, S=1TB output
...and T as well as S scale with E_
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Bruijn, Schmidt, llee, Knapp ICRC 2009, http://icrc2009.uni.lodz.pl/proc/pdf/icrc0252.pdf
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http://icrc2009.uni.lodz.pl/proc/pdf/icrc0252.pdf

Scaling problem, resource limitations (w/o thinning)

Vertical proton showers, CORSIKA 8
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Hillas thinning algorithm

Select thinning threshold
E<Eth E}Eth

A

\

Ey = Eo * €psy,

E, > E,, — follow all particles

| E. < E,, — follow few, but assign
D"“EiIEEi p“EifEm Welghts
w, = 1/p

Energy is conserved (by weights).
Computing time and disk space are saved.

Artificial fluctuations are introduced.

AM. Hillas, Proc. 19th ICRC, La Jolla, USA, 1(1985)155 2



Dependence on experimental observable

* Significant dependence on choice of experimental observable
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Rahman et al. 2020 http://dx.doi.org/10.23851/mj|s.v31i3.843


http://dx.doi.org/10.23851/mjs.v31i3.843

Weights and fluctuations
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The distribution of ,,weights“ contributes artificially to the physics fluctuations
* Difficult to assess, due to expense of simulations
* Any optimization delivers significant returns

» Simple parameter adjustments have shown potential to improve T by factors 10...100 14



Room for research

* Better understand relation between weights, physics
and simulated fluctuations

* Develop thinning algorithms based not simply on
,energy“ but on other quantities, like
- emission angle
— fransverse momentum
- radial distance
- geometry
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Design (CORSIKA 8)

- open source, joint community project: new technology:
« modular = robustness
= flexibility s stability
= completeness . efficiency
_ Interaction Y
] Physics models ; Validation via basic unit tests
; modules :
V kkv i Full permanent physics validation
: Bookkeeping| :
: CORSIKA 8 [ ol g] »
;| Output Framework : Reflect physics principles in code
.| modules '
: v Signal generation Optimized for modern computing hardware:
:‘ Environment/ modules ; parallelization, caching, GPU, etc.
'\ geometry modules

~ ’
________________________________________________________________ 16



Modularity and Physics (CORSIKA 8)
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Physics lists:

continuous processes
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discrete processes:
e collisions
* decays, interactions
continuous processes:
*energy losses
*cherenkov, radio emission
boundary crossing processes:
eobservation level
transition radiation

/

4 Strictly enforce physics concepts in code:

* Physical units are compile-time and strictly enforced.
* Geometric objects are in well defined reference frames

no numeric PID is available. Electron::mass;

N

« Particle data are encoded in unique set of C++ classes and enums,

Is_hadronic(Code::Proton); get_pdg(Code::PiPlus);

LengthType dist = 5_km;
Point{CS, 0 m,0 m, 0_m};

yr‘




First results, examples (CORSIKA 8)

Proton primary, 100TeV, 45deg Iron primary, 1PeV, Odeg

CORSIKA 8 preliminary CORSIKA 8 preliminary
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auto sequence = make_sequence(sibyll, sibylINuc, decay, cut, trackWriter);
Cascade EAS(environment, tracking, sequence, stack);
EAS.Init();

18
EAS.Run():



Hadron showers, first results (CORSIKA 8)

* 50 proton showers @ 1 EeV
* Sibyll 2.3d, E-cut at 60 GeV
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Summary

* Air shower simulations are crucial for astroparticle physics

e CORSIKA 8 is the novel, modern, modular tool to serve the
community as universal baseline

* KIT is a long-standing, extremely visible and driving actor in
developing air shower simulations

* Thinning is a critical mechanism to help tackle high-statistics
simulations at energies where they are absolutely needed

* Research on more general thinning algorithms and evaluation of
their impact on air shower predictions are extremely promising

Contact: ralph.engel@kit.edu tanguy.pierog@Kkit.edu 20
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