High Energy Neutrinos from GRB & Blazar Flares

Shan Gao

Collaborators:

Peter Mezaros, Katsuaki Asano, Kohta Murase, Kenji Toma, Kazumi Kashiyama, Shunsaku Horiushi (GRB), Martin Pohl, Walter Winter, Markus Boettcher, Xuhui Chen (AGN).

Dec. 10, 2016

GRB and blazars: OverView

Figure: blazar, Urry & Padovani 95

- Figure: GRB portrait by NASA
- Relativistic jets & Doppler boosting; Γ_{GRB}~300 ; Γ_{blazar}~30
- Powered by: Stellar BH (GRB) ; SMBH (AGN)
- Spectrum: broken power-law (GRB) double hump SED (blazar)
- Duration: seconds (GRB) persistent (blazar)
- Population: GRB ~ 700/yr ; blazar 745 (3LAC)
- Sky Distribution: isotropic
- Luminosity: L_{GRB}~10⁵¹⁻⁵⁴ erg/s; L_{blazar}~10⁴⁴⁻⁴⁹ erg/s.
- Component: unknown leptonic, hadronic, magnetic, ...
- Variability: GRB ~ ms; blazar ~ hr-yr scale

1. Gamma-ray Bursts

Outline

Internal Shock Model and neutrino production

Waxman & Bahcall 97, muon nu sp.

- Collision between two shells of different speed
- Non-rel shock formation
- Fermi-acceleration
- γ-ray by syn + IC
- v by pγ or pp interaction

 $p+\gamma(p) \rightarrow \pi+p(n)$ $\pi^{0} \rightarrow 2\gamma$ $\pi^{+}(\pi^{-}) \rightarrow \nu_{\mu}(\overline{\nu}_{\mu})+\mu^{+}(\mu^{-})$ $\rightarrow \nu_{\mu}+\overline{\nu}_{\mu}+\nu_{e}(\overline{\nu}_{e})+e^{+}(e^{-})$

- v production channel same for AGN
- each final lepton energy ~ 5% of parent p

Revised Internal Shock model

Hümmer, Baerwald and Winter, PRL 2012

Stacking Analysis

- factor ~3 below IC limit
- only extreme parameters or luminosity functions excluded

An advanced IS model : multi-shell collision

Bustamante et al. 2015 NatComm.

- below IC limit
- v emission dominated by near-photosphere collisions

Dissipative Photospheric Models

Meszaros, talk at Gran Sasso 2014

SG, Asano, Meszaros, JCAP, 2013

- stacking analysis satisfies IC limit for all models
- baryonic phot and mag. phot. model have a similar diffuse neutrino spectrum

Constraints on individual GRBs

GRB 130427A

SG,Kashiyama,Meszaros,ApJL,2013

- brightest GRB
- best-studied GRB
- neutrino null-detection

Constraints from neutrino channel:

- null detection not a surprise
- only extreme para. excluded

Needs better time-dependent model Effects of pairs

With IceCube full arrays now, expect stronger constraints on GRB baryonic loading

2. Blazars

Outline

- IceCube analysis on all blazars
- List of models
- 3C 279 Flare
- Mrk 421 Flare
- PKS B1424-418 Flare

Blazar: IceCube Results

 γ -weighting: $L_{\nu}=L_{\gamma}$ for each source

equal weighting: dN/dS follows the same as γ -rays; No correlation for individual source

Conclusion: 2LAC blazars difficult to explain all astrophys. v-events; no prediction for individual source/flares.

List of models

	1st peak (eV-keV)	middle range (keV-MeV)	2nd peak (MeV-TeV)	Example
Pure Leptonic	L primary e-syn	L Synchrotron-Self Compton (SSC)	L SSC or External-IC	can explain most blazars
LH-SSC	L primary e-syn	H secondary lep emission	L SSC	PKS B1424-418
LHπ	L primary e-syn	H secondary lep emission	Η π ⁰ decay or secondary lep	Mrk 421
LHs	L primary e-syn	H secondary lep emission	H proton syn	3C 279
Pure Hadronic	H proton-syn	H secondary lep emission	Η π ⁰ decay or secondary lep	postulated

3C 279, Steady-state, proton-synchrotron model

Generating a flare by perturbing a parameter

Diltz, Böttcher, Fossati 2015 ApJ

- Time delays
- Amplitude correlation (and anti-correlation)

Mrk 421, Steady-state, LHπ model

Petropoulou et al. Astropart. Phys. 2016

Mrk 421, flare state, daily SED

Mrk 421, flare state, daily neutrino spectrum

Petropoulou et al. Astropart. Phys. 2016

	Mrk 421 ^a		Background ^b	
E_{ν} (TeV)	13-day flare	quiescent	atmospheric	diffuse
	(55265-55277)	(54850-54983)		
0.1 - 100	0.023	0.019	7.371	0.010
$100 - 10^3$	0.264	0.282	1.852×10^{-3}	2.203×10^{-3}
$10^3 - 5 \times 10^4$	0.306	0.288	4.554×10^{-6}	2.236×10^{-4}

The boost of neutrino event rate for this flare is insignificant.

Predicts ~ 3.5 PeV-events from Mrk 421 during IceCube lifetime.

PKS B1424-418

SG, Pohl, Winter arxiv: 1610.05306

Kadler et al. NatPhys 2016

on PKS B1424 418

 $E_{\text{peak}},\, L_{\text{peak}},\, E_{\nu}$ must be consistent with observation; BH, psyn not overshooting SED, etc.

Components of the SED

SG,Pohl,Winter arxiv:1610.05306

Suggesting $L_v \neq L_\gamma$

SED best fit, a leptonic SSC-model

SED - neutrino joint best-fit, $L_p/L_e \sim 10^4$

neutrino best-fit, $L_p/L_e \sim 10^5$

Max amount hadrons can a leptonic model tolerate NU best-fit is in tension with SED best-fit (overshooting X-ray band) Joint-fit gives ~5% probability to reproduce "big-bird" within this phase

Conclusion

- Neutrino null detection from GRB not a surprise
- Current and future IceCube may put stringent constraits on baryonic component of GRB
- MWL & MMsg. method crucial for modeling blazar emission
- Amplitude and temporal correlation between neutrino and MWL provides unique information on models from blazar flares, must be carefully examined
- Still promising to detect neutrinos from blazar flares in future years and if so, it breaks the degeneracies of models significantly
- GRB + blazar cannot account for all IceCube events, interesting to look for other source (diffuse or hidden sources...)