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Fig. 1. Layout of AERA at the Pierre Auger Observatory and the dense core of LOFAR – drawn to scale.

with an array of 1660 water-Čerenkov detectors and 27 fluorescence telescopes at four locations on
the periphery. The area near the Coihueco fluorescence detector contains a number of low-energy en-
hancements, including AERA. AERA is located in a region with a higher density of water Čerenkov
detectors (on a 750 m grid) and within the field of view of HEAT [13], allowing for the calibration
of the radio signal using super-hybrid air shower measurements, i.e. recording simultaneously the
fluorescence light, the particles at the ground, and the radio emission from extensive air showers.

Since March 2015 AERA consists of 153 autonomous radio detection stations, distributed with
di↵erent spacings, ranging from 150 m in the dense core up to 750 m, covering an area of about
17 km2. Di↵erent types of antennas are used, including logarithmic periodic dipoles and butterfly
antennas, covering the frequency range from 30 to 80 MHz [14, 15].

3. Precision measurement of the radio emission in air showers

LOFAR combines a high antenna density and a fast sampling of the measured voltage traces in
each antenna. This yields very detailed information for each measured air shower and the properties
of the radio emission have been measured with high precision. At the Pierre Auger Observatory
air showers are measured simultaneously with various detector systems: radio detectors, fluorescence
light telecopes, water Čerenkov detectors, and underground muon detectors. This unique combination
yields complementary information about the showers and allows to investigate correlations between
the various shower components. Some important aspects of radio emission in air showers are reviewd
in the following. We focus on radio emission in the frequency range 30 � 80 MHz, only one result
(Fig. 3 right) deals with higher frequencies.
Lateral distribution function of the radio signals The footprint of the radio emission recorded at
ground level is not rotationally symmetric [16,18,19], such as e.g. the particle content of a shower, see
Fig. 2 (left). Radio emission is generated through interactions with the Earth magnetic field, which
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Invited Talk

Abstract. LOFAR is a ground-breaking low-frequency radio telescope that is currently nearing
completion across northern Europe. As a software telescope with no moving parts, enormous
fields of view and multi-beaming, it has fantastic potential for the exploration of the time-
variable universe. In this brief paper I outline LOFAR’s capabilities, our plans to use it for a
range of transient searches, and some crude estimated rates of transient detections.

Keywords. accretion, stars:binaries, stars:pulsars, stars:supernovae:general, ISM: jets and out-
flows, radio continuum: general

1. Introduction

LOFAR, the Low Frequency Array, is a large low-frequency radio telescope in northern
Europe, led by ASTRON. Construction of the array, which has its core collecting area in
The Netherlands with international stations in France, Germany, Sweden and the UK,
is nearly complete, and astronomically interesting data are now being taken. LOFAR
operates in the 30–80 and 120–240 MHz frequency ranges. The 80–120 MHz frequency gap
corresponds to the FM radio bands—frequencies at which astronomical observations are
impossible†. Construction of the array is almost complete; Fig. 1 indicates the distribution
of operating LOFAR stations across Europe. In addition, observations are occasionally
possible to frequencies as low as 15 MHz.

LOFAR has six key science projects (KSPs), one of which is Transients (principal
investigators Fender, Stappers & Wijers). The remit of the TKSP covers all transient and
variable astrophysics, including commensal searches of all data (ultimately in near-real-
time, although that functionality is not yet implemented). The TKSP covers both time-
series and image-plane searches for transients and variables, including pulsars (Stappers
et al. 2011). The adoption of transients and variables as key science drivers for the project
is a theme for most of the large SKA pathfinders and precursors, and in that respect
is generally unlike older radio facilities. However, time-series and image-plane transients
have been separated for both ASKAP (which has CRAFT and VAST respectively) and
MeerKAT (TRAPUM and ThunderKAT). That makes some sense from the aspect of
techniques, although there is some overlap in the science.

† Unless northern Europe could be persuaded to stop night-time FM radio broadcasts for a
few weeks in the interests of finding the Epoch of Reionisation signal..
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Figure 2. Transients can be divided into incoherent synchrotron and coherent events, which
also corresponds roughly to a divide in the techniques used to find them (image plane vs. time
series).

3. Finding Transients with LOFAR

LOFAR can operate in a variety of modes, all of which can be important for the study
of transients and variables. Furthermore, all of those modes can be operated at a variety
of levels, from a single station to the entire pan-European array.

Interferometric mode. LOFAR is a ‘software telescope’ which in effect has no mov-
ing parts. Pointing of the array and/or individual stations is done by introducing delays
appropriate to a certain direction on the sky (phased array). Different frequencies can
be therefore set to observe in different directions by introducing different delays. LOFAR
can already, as a standard imaging mode, produce 8 beams each of 6 MHz bandwidth.
In the low band those beams can be placed anywhere on the sky; in the high band they
are limited by the beam of the high-band tiles, an analogue beamformer. That allows
for an extraordinary instantaneous field of view: 8 × 90 = 720 deg2 in the low band and
8×25 = 200 deg2 in the high band. In other words, the entire northern hemisphere could
be mapped in the low band in less than 30 sets of pointings (with sparse tiling). Ini-
tial processing of wide-field surveys for transients, including the MSSS (Multifrequency
Snapshot Sky Survey) due between late 2011 and early 2012, will only localise sources to
a few arcmin, but later and/or responsive observations could localise interesting sources
(including transients) to arcsecond precision.

Timing mode. LOFAR also has high-time-resolution (‘pulsar’) modes, which can
achieve 10s of ns time resolution and can map either a full field of view with sensitivity
s ∝ N−1/2 (incoherent sum), or the synthesised beam with sensitivity s ∝ N−1 (where
smaller s is better). Recently it has been possible to record data from over 100 coherent14 R. Fender

tied-array beams simultaneously and to tile out the entire HBA field. Stappers et al. (2011)
give more details about searches for fast transients with LOFAR.

Direct storage. The LOFAR Transients Buffer Boards (TBBs) can be used to record
up to several seconds of full bandwidth antenna level data (or longer, in a trade-off
with bandwidth), before the beam-forming stage. That means that beams can be formed
retrospectively in a certain direction anywhere in the sky (LBA) or tile beam (HBA)
upon receipt of an ‘internal’ alert (from LOFAR itself) or an ‘external’ one (e.g. from
VOEvent). That mode is currently being developed by the Cosmic Rays KSP (PI Falcke).

4. LOFAR in a Global Context

As noted above, LOFAR, ASKAP and MeerKAT have all embraced the science of
radio transients as part of their Key Science Programmes. To that list we hope to add
APERTIF, the focal-plane array upgrade to WSRT, to which several transients-oriented
proposals have already been submitted as statements of interest for its KSP programme.

In a global context, LOFAR has the widest field of view of any of the major facilities,
and although its suffers in terms of raw mJy sensitivity compared to (say) EVLA and
MeerKAT, when a spectral correction is made it can be shown to be a very powerful
facility. That is illustrated by Fig 3, where sensitivity and field of view are compared
for a range of world-class radio facilities. The solid diagonal lines correspond to constant
figures of merit (FoM, defined as FoM ∝ Ωs−2 , where Ω is the field of view and s
is the sensitivity; smaller s implies increased sensitivity). The four new or upgraded
GHz facilities—EVLA, MeerKAT, APERTIF and ASKAP—all have a comparable FoM.
For LOFAR it is not until a spectral correction is made that its survey power becomes
apparent, as the Figure caption explains in more detail.

Figure 3. A comparison of sensitivity vs. field of view for a range of existing and planned radio
telescopes. The solid lines represent a constant survey figure of merit (FoM, ∝ Ωs−2 where Ω is
the field of view and s the sensitivity; smaller s implies higher sensitivity). For LOFAR, the dots
indicate the raw sensitivities, the open circles represent a spectral correction for a spectral index
of –0.7 (where spectral index α is in the sense that Sν ∝ να ), as is appropriate for optically
thin synchrotron emission. The open triangles correspond to a correction for a spectral index of
−2.0, corresponding to the steepest (most aged) synchrotron sources, as well as some coherent
radio sources such as pulsars and other flavours of neutron star.
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ABSTRACT

Low frequency radio waves, while challenging to observe, are a rich source of information about pulsars. The LOw Frequency ARray (LOFAR) is
a new radio interferometer operating in the lowest 4 octaves of the ionospheric “radio window”: 10–240 MHz, that will greatly facilitate observing
pulsars at low radio frequencies. Through the huge collecting area, long baselines, and flexible digital hardware, it is expected that LOFAR will
revolutionize radio astronomy at the lowest frequencies visible from Earth. LOFAR is a next-generation radio telescope and a pathfinder to the
Square Kilometre Array (SKA), in that it incorporates advanced multi-beaming techniques between thousands of individual elements. We discuss
the motivation for low-frequency pulsar observations in general and the potential of LOFAR in addressing these science goals. We present LOFAR
as it is designed to perform high-time-resolution observations of pulsars and other fast transients, and outline the various relevant observing modes
and data reduction pipelines that are already or will soon be implemented to facilitate these observations. A number of results obtained from
commissioning observations are presented to demonstrate the exciting potential of the telescope. This paper outlines the case for low frequency
pulsar observations and is also intended to serve as a reference for upcoming pulsar/fast transient science papers with LOFAR.
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1. Introduction

Pulsars are rapidly rotating, highly magnetised neutron stars that
were first identified via pulsed radio emission at the very low ra-
dio observing frequency of 81 MHz (Hewish et al. 1968). They
have subsequently been shown to emit pulsations across the elec-
tromagnetic spectrum, at frequencies ranging from 17 MHz to
above 87 GHz (e.g. Bruk & Ustimenko 1976, 1977; Morris et al.
1997) in the radio and at optical, X-ray and γ-ray wavelengths
(see Thompson 2000, and references therein), although the vast
majority are seen to emit only at radio wavelengths. These pul-
sations provide invaluable insights into the nature of neutron star
physics, and most neutron stars would be otherwise undetectable
with current telescopes. Though radio pulsars form over 85% of
the known neutron star population, they are generally very weak
radio sources with pulsed flux densities ranging from 0.0001 to
5 Jy with a median of 0.01 Jy at a frequency of 400 MHz. The
pulsed flux density at radio wavelengths exhibits a steep spec-
trum (S ∝ να; −4 < α < 0; αmean = −1.8, Maron et al. 2000)
that often peaks and turns over at frequencies between 100 and
200 MHz (Kuzmin et al. 1978; Slee et al. 1986; Malofeev et al.
1994).

After their discovery, a lot of the early work on pulsars (e.g.
Cole 1969; Staelin & Reifenstein 1968; Rankin et al. 1970) con-
tinued at low radio frequencies (defined here as <300 MHz).
However, despite the fact that most pulsars are intrinsically
brightest in this frequency range, since then the vast majority
of pulsars have been discovered and studied at frequencies in the
range 300–2000 MHz; much of our knowledge of the properties
of the radio emission mechanism stems from studies at these
frequencies and above. There are three main reasons for this
(see Sect. 3): the deleterious effects of the interstellar medium
(ISM) on pulsed signals; the effective background sky temper-
ature of the Galactic synchrotron emission; and ionospheric ef-
fects. All three of these effects have steep power law dependen-
cies on frequency and therefore become worse towards lower
frequencies. Combined with the generally steep spectra of pul-
sars, these effects conspire to make observing frequencies of
∼300−2000 MHz the range of choice for most pulsar studies
and searches.

However, despite these challenges, there are many reasons
why it is important and interesting to observe pulsars in a signif-
icantly lower frequency regime than now commonly used; these
are discussed in detail in Sect. 4. In recent years some excellent
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Fig. 1. Three successive zoom-outs showing the stations in the LOFAR core. The different scales of the hierarchically organised HBA elements
are highlighted and their respective beam sizes are shown. The large circular area marks the edge of the Superterp, which contains the inner-most
6 stations (i.e. 12 HBA sub-stations: where there are 2 sub-stations, each of 24 tiles, in each HBA core station); other core stations can be seen
highlighted beyond the Superterp in the third panel. Left: a single HBA tile and associated beam. Middle: a single HBA sub-station with three
simultaneous station beams. Right: the 6 stations of the Superterp plus 3 core stations in the background are highlighted. Four independent beams
formed from the coherent combination of all 24 core HBA stations, most of which are outside this photo, are shown. For the LBA stations, a
similar scheme applies except that each LBA dipole can effectively see the whole sky. Fields of the relatively sparsely distributed LBA antennas
are visible in between the highlighted HBA stations in all three panels.

studies have continued at frequencies between 20−110 MHz
mainly using the Pushchino, Gauribidanur and UTR-2 tele-
scopes (e.g. Malov & Malofeev 2010; Malofeev et al. 2000;
Asgekar & Deshpande 2005; Popov et al. 2006b; Ulyanov et al.
2006). These studies have begun to map, e.g., the low-frequency
spectra, pulse morphologies, and pulse energy distributions of
pulsars, but have in some cases been limited by the available
bandwidths and/or polarisation and tracking capabilities of these
telescopes (see Sect. 2).

The LOw Frequency ARray (LOFAR) was designed and
constructed by ASTRON, the Netherlands Institute for Radio
Astronomy, and has facilities in several countries, that are
owned by various parties (each with their own funding sources),
and that are collectively operated by the International LOFAR
Telescope (ILT) foundation under a joint scientific policy.
LOFAR provides a great leap forward in low-frequency radio
observations by providing large fractional bandwidths and so-
phisticated multi-beaming capabilities. In this paper we present
the LOFAR telescope as it will be used for pulsar and other
high-time-resolution beamformed observations; this will serve
as a reference for future science papers that use these LOFAR
modes. We also describe the varied pulsar and fast transient
science LOFAR will enable and present commissioning results
showing how that potential is already being realised. LOFAR is
well suited for the study of known sources, and its huge field
of view (FoV) makes it a powerful survey telescope for finding
new pulsars and other “fast-transients”. In Sect. 2 we present
the basic design parameters of the LOFAR telescope. The chal-
lenges associated with observing at low radio frequencies and
how they can be mitigated with LOFAR will be discussed in
Sect. 3. A detailed description of the science that will be possi-
ble with LOFAR is presented in Sect. 4. The flexible nature of
LOFAR means that there are many possible observing modes;
these are introduced in Sect. 5. In Sect. 6 we discuss the different
pulsar pipelines that are being implemented. Commissioning re-
sults, which demonstrate that LOFAR is already performing pul-
sar and fast transients observations of high quality, are presented

Table 1. Arrangement of elements in LOFAR stations.

Station type LBA (No.) HBA tiles (No.) Baseline (km)
Core 2× 48 2× 24 0.1–1
Remote 2× 48 48 1–10 s
International 96 96 ∼100 s

Notes. Arrangement of elements in the three types of LOFAR stations,
along with their typical distance from the center of the array (baseline).
In the Core and Remote stations there are 96 LBA dipoles but only 48
can be beamformed at any one time. For these stations, one can select
either the inner circle or the outer ring of 48 LBA dipoles depending on
the science requirements. The HBA sub-stations can be correlated, or
used in beamforming, independently.

in Sect. 7. We summarise the potential of LOFAR for future pul-
sar observations in Sect. 8.

2. LOFAR

Instrumentation in radio astronomy is undergoing a revolution
that will exploit massive computing, clever antenna design, and
digital signal processing to greatly increase the instantaneous
FoV and bandwidth of observations. This work is part of the in-
ternational effort to create the “Square Kilometre Array” (Carilli
& Rawlings 2004), a radio telescope orders of magnitude better
than its predecessors.

One of the first “next generation” radio telescopes to im-
plement these techniques is LOFAR, which operates in the fre-
quency range 10–240 MHz. The large collecting area of LOFAR
is comprised of many thousands of dipole antennas, hierarchi-
cally arranged in stations which come in three different con-
figurations (Table 1). These stations are distributed in a sparse
array with a denser core region near Exloo, the Netherlands, ex-
tending out to remote stations in the Netherlands and then on
further to stations in France, Germany, Sweden and the United
Kingdom. There are a total of 40 stations in the Netherlands and
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1. Introduction

Pulsars are rapidly rotating, highly magnetised neutron stars that
were first identified via pulsed radio emission at the very low ra-
dio observing frequency of 81 MHz (Hewish et al. 1968). They
have subsequently been shown to emit pulsations across the elec-
tromagnetic spectrum, at frequencies ranging from 17 MHz to
above 87 GHz (e.g. Bruk & Ustimenko 1976, 1977; Morris et al.
1997) in the radio and at optical, X-ray and γ-ray wavelengths
(see Thompson 2000, and references therein), although the vast
majority are seen to emit only at radio wavelengths. These pul-
sations provide invaluable insights into the nature of neutron star
physics, and most neutron stars would be otherwise undetectable
with current telescopes. Though radio pulsars form over 85% of
the known neutron star population, they are generally very weak
radio sources with pulsed flux densities ranging from 0.0001 to
5 Jy with a median of 0.01 Jy at a frequency of 400 MHz. The
pulsed flux density at radio wavelengths exhibits a steep spec-
trum (S ∝ να; −4 < α < 0; αmean = −1.8, Maron et al. 2000)
that often peaks and turns over at frequencies between 100 and
200 MHz (Kuzmin et al. 1978; Slee et al. 1986; Malofeev et al.
1994).

After their discovery, a lot of the early work on pulsars (e.g.
Cole 1969; Staelin & Reifenstein 1968; Rankin et al. 1970) con-
tinued at low radio frequencies (defined here as <300 MHz).
However, despite the fact that most pulsars are intrinsically
brightest in this frequency range, since then the vast majority
of pulsars have been discovered and studied at frequencies in the
range 300–2000 MHz; much of our knowledge of the properties
of the radio emission mechanism stems from studies at these
frequencies and above. There are three main reasons for this
(see Sect. 3): the deleterious effects of the interstellar medium
(ISM) on pulsed signals; the effective background sky temper-
ature of the Galactic synchrotron emission; and ionospheric ef-
fects. All three of these effects have steep power law dependen-
cies on frequency and therefore become worse towards lower
frequencies. Combined with the generally steep spectra of pul-
sars, these effects conspire to make observing frequencies of
∼300−2000 MHz the range of choice for most pulsar studies
and searches.

However, despite these challenges, there are many reasons
why it is important and interesting to observe pulsars in a signif-
icantly lower frequency regime than now commonly used; these
are discussed in detail in Sect. 4. In recent years some excellent
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Table 3. Comparison of the LOFAR beam-forming modes.

Mode Sensitivity FoV Resolution Data rate FoM
(Norm.) (sq. deg) (deg) (TB/h) (Norm.)

High-Band Antennas (HBAs)
Single HBA sub-station 1/0.35 18/147 4.8 0.3 1
Single Rem. Station 2/0.7 10/82 3.6 0.3 3
Single Intl. Station 4/1.4 6 /45 2.7 0.3 9
Fly’s Eye 1/0.35 1050/8400 4.8 20 56
Dutch Inc. Sum 11/4 10/82 3.6 0.3 77
Intl. Inc. Sum 11/4 6/45 2.7 0.3 73
Coherent Superterp (94 beams) 12/4 18/147 0.5 29 1382
Coherent Sum Core (100 beams) 48/17 0.4/3 0.075 31 3206
Constrained Coherent Core (29 beams) 10/3.5 18/147 0.9 9 512

Low-Band Antennas (LBAs)
Single Core Station Outer 1/0.35 17/132 4.6 0.3 1
Single Core Station Inner <1/<0.35 105/840 11.6 0.3 <1
Single Rem. Station 1/0.35 17/132 4.6 0.3 1
Single Intl. Station 2/0.7 26/211 5.8 0.3 5
Fly’s Eye 1/0.35 660/5300 4.6 12 40
Dutch Inc. Sum 6/2 17/132 4.6 0.3 40
Intl. Inc. Sum 6/2 26/211 5.8 0.3 44
Coherent Superterp (15 beams) 6/2 17/132 1.2 4.5 138
Coherent Sum Core (100 beams) 24/8.5 3/23 0.19 30 2460

Notes. LOFAR beam-formed modes and their (approximate) associated sensitivity, FoV, resolution (i.e. ∆Ω), data-rate, and survey FoM (see text).
High-band (HBA) and low-band (LBA) sensitivities and FoMs have been normalized to that of a single 24-tile HBA sub-station or a 48-dipole
Dutch LBA field respectively (Recall that each Dutch LBA field contains 96 dipoles, only 48 of which are used in any particular observation.
Unless otherwise stated, we assume the LBA Outer mode is being used. This mode gives somewhat higher gain, but reduced FoV compared with
the LBA Inner mode.). Quantities are quoted assuming one beam per station (48 MHz bandwidth) and 8 beams per station (6 MHz bandwidth per
beam) respectively. FoV (∝λ2

obs) and resolution (i.e. FWHM of the beam, ∝λobs) are quoted for a central observing frequency of 150 MHz (HBA,
λobs = 2 m) and 60 MHz (LBA, λobs = 5 m). Note that FWHM is taken to be α × λobs/D, where α = 1.3 and D is the size of a station or the
maximum baseline between combined stations where applicable. As LOFAR stations consist of several square tiles, they are not perfectly circular;
thus, the product of FoV and sensitivity is not constant when station size increases. We have used LBA (Inner)/LBA (Outer)/HBA station sizes
of 32.3 m/81.3 m/30.8 m (core), 32.3 m/81.3 m/41.1 m (remote), and 65 m/56 m (international, Inner/Outer mode does not apply here). Further
empirical beam modeling will likely refine the value of α, and will somewhat effect the rough values quoted here. Where applicable, we assume
that 24 core stations of 2 × 24 HBA tiles/48 LBA dipoles, 16 Dutch remote stations of 48 HBA tiles/48 active LBA dipoles, and 8 international
stations of 96 HBA tiles/96 LBA dipoles are available and can be recorded separately if desired. Fly’s Eye mode assumes all Dutch stations – i.e.
48 HBA core sub-stations plus 16 remote HBA stations or 40 LBA fields of 48-dipoles each are used. For the “Coherent” modes, we assume the
maximum number of tied-array beams required to cover the station beam, up to a maximum of 100 (per station beam), can be synthesized, and that
the maximum baseline between stations is 300 m for the Superterp and 2000 m for the entire Core. The “Coherent Sum Core” mode assumes that
all 48 Core sub-stations are combined coherently. The “Dutch Incoherent Sum” mode assumes that all 40 Dutch stations (24 core/16 remote) are
combined incoherently. The “Intl. Incoherent Sum” mode assumes that all 8 international stations are combined incoherently. The “Constrained
Coherent Core” mode is a hybrid coherent/incoherent summation in which the two HBA sub-stations of each core station are first summed
coherently at station level before these stations are in turn summed incoherently. The integration time used in each mode is assumed to be the
same, though this would likely differ in practice, especially in the case of wide-field surveys. The data rates assume 16-bit samples (this could be
reduced if desired), summed to form Stokes I, at the maximum possible spectral/time resolution, which for certain applications can be downgraded
by a factor of a few in order to save on disk space and processing load.

Project (Fender et al. 2006) will use both the imaging and beam-
formed modes to discover and study transient sources. The imag-
ing mode will probe flux changes on timescales of seconds to
years, while the beamformed modes will probe timescales from
seconds down to microseconds and will revisit the same sky
locations over the course of days to years. With the Transient
Buffer Boards (TBBs; Sect. 5.5) it will be possible to form im-
ages with high time resolution, but limited observing durations.

There are many ways in which the various parts of LOFAR
(antennas, tiles, stations) can be combined to form beams (see
Table 3). The almost completely digital nature of the LOFAR
signal processing chain means that it is highly flexible to suit a
particular observational goal. In the following sub-sections we
will discuss different options for combining these signals, to

maximise either the FoV, instantaneous sensitivity or to com-
promise between these two factors. For the sake of clarity how-
ever, we begin by defining some related terms. An element beam
refers to the FoV seen by a single element, a dipole in the case
of the LBAs and a tile of 4 × 4 dipoles in the case of the HBAs
(recall that these dipoles are combined into a tile beam using an
analog beamformer). The term station beam corresponds to the
beam formed by the sum of all of the elements of a station. For
any given observation there may be more than one station beam
and they can be pointed at any location within the wider element
beam. A tied-array beam is formed by coherently combining
all the station beams, one for each station, which are looking
in a particular direction. There may be more than one tied-array
beam for each station beam. Station beams can also be combined
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Transients key science project

could be part of AMON
• issuing triggers to others

(low-frequency [30-240 MHz] transient events)

•receiving external triggers
(implemented for ksp CRs to read out radio 
antennas after particle detector trigger)



How could we contribute by measuring 
cosmic rays with LOFAR and AERA?

The radio technique is now mature.

All properties of cosmic rays are being measured:
- direction                      ~ 0.1° - ~0.5°
- energy                         ~ 25%
- particle type (mass)   Xmax ~ 20 g/cm2     ln A ~0.5
    --> identify gamma rays & neutrinos



Figure 7: Fit quality for a hyperbolic (top), conical (middle) and spherical (bottom) wavefront shape.

to shower maximum increases with decreasing elevation angle (✓), the shape of the radio wavefront is also
expected to depend on the elevation angle. This can be seen in Fig. 2 where the radius of curvature of the
inner part, its extent and the slope of the conical part are all expected to depend on the distance to the last
emission point. This in turn would depend on X

max

.
Similar to [10], we can take e.g. the time lag of the radio wavefront at r = 100m, with respect to the

arrival time of the emission along the shower axis (r = 0). It is not possible to use the hyperbola parameter
b (the slope of the asymptote) directly, as in some cases the asymptotic regime is (far) outside the data
range. Fig. 9 shows the time lag at r = 100m as a function of elevation angle. We find a weak correlation
with a Pearson correlation coe�cient of 0.32. The probability of obtaining this value for uncorrelated data
is 4 · 10�5.

To give an order of magnitude of the angular deviation between the measured wavefront and the shower
plane, we can use t

100

to get

↵ =
c t

100

100m
, (13)

which is on average 0.11 rad = 0.63 �. As the hyperbola becomes steeper further out, we could also use t

250

instead (still inside the data range), which would give on average 0.94 �. These numbers agree qualitatively
with the average deviation angle from a plane of 0.83 � found by [10]. The small angle of less than one degree
explains why accurate timing is required in order to measure the wavefront shapes.

In practice however, it appears to be di�cult to use wavefront timing by itself to determine (the distance
to) X

max

. This is due to the strong interdependency of the shower axis position and the exact shape of the
wavefront. While the wavefront shape remains hyperbolic when moving the shower axis location around,
the curvature near the axis as well as the slope further out change. Therefore it is best to combine timing
information with other information available on the shower. This information may come from the particle
detectors, or from the radio data in the form of the intensity pattern at ground level. It has already been
shown that the radio intensity pattern itself is highly sensitive to X

max

[21]. Combining this technique with
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Figure 2: Toy model motivating a hyperbolic wavefront shape. A point source moves vertically at a velocity
v > c/n and emits for a limited amount of time. The solid horizontal line represents the ground plane. The
generated wavefront is observed as conical (top panel) by an observer at small distances to the point where
the source stops emitting. Observers at intermediate distances see a hyperbolic wavefront shape (middle
panel). For observers at larger distances the observed wavefront shape is closer to a sphere (bottom panel).
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Figure 6: The arrival time di�erences from a plane wave as a function of distance to the shower axis with
the best fitting shape solutions. A hyperbolic (top), conical (middle) and spherical (bottom) fit has been
applied, respectively. Each plot shows the arrival times as a function of the distance to the shower axis (top
panel) and deviations from the best fit scaled to the uncertainty for each datapoint (bottom panel). Note
that the shower core position is a free parameter in each fit, therefore the positions of the data points on
the x-axis di�er between fits, as is in particular evident for the spherical fit.
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Figure 8: Angular di�erence between reconstructed shower axis direction for three wavefront shape as-
sumptions. Assuming a planar wavefront shape typically introduces an error in the direction of up to � 1 �,
when the shape is in fact hyperbolic (top plot). The di�erences in reconstructed direction between a conical
and hyperbolic wavefront shape are approximately a factor of ten smaller (bottom plot).
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Auger Engineering Radio Array
AERA

Measurement of the Radiation Energy in the Radio Signal of Extensive 
Air Showers as a Universal Estimator of Cosmic-Ray Energy6

FIG. 1. Top: Energy fluence for an extensive air shower with
an energy of 4.4⇥ 1017 eV, and a zenith angle of 25� as mea-
sured in individual AERA radio detectors (circles filled with
color corresponding to the measured value) and fitted with
the azimuthally asymmetric, two-dimensional signal distribu-
tion function (background color). Both, radio detectors with
a detected signal (data) and below detection threshold (sub-
threshold) participate in the fit. The fit is performed in the
plane perpendicular to the shower axis, with the x-axis ori-
ented along the direction of the Lorentz force for charged par-
ticles propagating along the shower axis ~v in the geomagnetic
field ~

B. The best-fitting impact point of the air shower is
at the origin of the plot, slightly o↵set from the one recon-
structed with the Auger surface detector (core (SD)). Bottom:
Representation of the same data and fitted two-dimensional
signal distribution as a function of distance from the shower
axis. The colored and black squares denote the energy flu-
ence measurements, gray squares represent radio detectors
with signal below threshold. For the three data points with
the highest energy fluence, the one-dimensional projection of
the two-dimensional signal distribution fit onto lines connect-
ing the best-fitting impact point of the air shower with the
corresponding radio detector positions is illustrated with col-
ored lines. This demonstrates the azimuthal asymmetry and
complexity of the two-dimensional signal distribution func-
tion. The inset figure illustrates the polar angles of the three
projections. The distribution of the residuals (data versus fit)
is shown as well.

FIG. 2. Correlation between the normalized radiation energy
and the cosmic-ray energy ECR as determined by the Auger
surface detector. Open circles represent air showers with radio
signals detected in three or four radio detectors. Filled circles
denote showers with five or more detected radio signals.

all events in the data set presented here.
In Fig. 2, the value of EAuger

30�80MHz/ sin2(↵) for each
measured air shower is plotted as a function of the
cosmic-ray energy measured with the Auger surface de-
tector. A log-likelihood fit taking into account threshold
e↵ects, measurement uncertainties and the steeply falling
cosmic-ray energy spectrum [33] shows that the data can
be described well with the power law

EAuger
30�80MHz/ sin2(↵) = A ⇥ 107 eV (ECR/1018 eV)B . (1)

The result of the fit yields A = 1.58 ± 0.07 and B =
1.98 ± 0.04. For a cosmic ray with an energy of 1EeV
arriving perpendicularly to the Earth’s magnetic field at
the Pierre Auger Observatory, the radiation energy thus
amounts to 15.8MeV, a minute fraction of the energy of
the primary particle. The observed quadratic scaling is
expected for coherent radio emission, for which ampli-
tudes scale linearly and thus the radiated energy scales
quadratically.

Taking into account the energy- and zenith-dependent
uncertainty of ECR, the resolution of EAuger

30�80MHz/ sin2(↵)
is determined from the scatter of points in Fig. 2. It
amounts to 22% for the full data set. Performing this
analysis for the high-quality subset of events with a suc-
cessful radio detection in at least five radio detectors
yields a resolution of 17%.

The value of A reported here applies for a cosmic-ray

A. Aab et al., PRL  116 (2016) no.24, 241101 
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FIG. 1. Top: Energy fluence for an extensive air shower with
an energy of 4.4⇥ 1017 eV, and a zenith angle of 25� as mea-
sured in individual AERA radio detectors (circles filled with
color corresponding to the measured value) and fitted with
the azimuthally asymmetric, two-dimensional signal distribu-
tion function (background color). Both, radio detectors with
a detected signal (data) and below detection threshold (sub-
threshold) participate in the fit. The fit is performed in the
plane perpendicular to the shower axis, with the x-axis ori-
ented along the direction of the Lorentz force for charged par-
ticles propagating along the shower axis ~v in the geomagnetic
field ~

B. The best-fitting impact point of the air shower is
at the origin of the plot, slightly o↵set from the one recon-
structed with the Auger surface detector (core (SD)). Bottom:
Representation of the same data and fitted two-dimensional
signal distribution as a function of distance from the shower
axis. The colored and black squares denote the energy flu-
ence measurements, gray squares represent radio detectors
with signal below threshold. For the three data points with
the highest energy fluence, the one-dimensional projection of
the two-dimensional signal distribution fit onto lines connect-
ing the best-fitting impact point of the air shower with the
corresponding radio detector positions is illustrated with col-
ored lines. This demonstrates the azimuthal asymmetry and
complexity of the two-dimensional signal distribution func-
tion. The inset figure illustrates the polar angles of the three
projections. The distribution of the residuals (data versus fit)
is shown as well.

FIG. 2. Correlation between the normalized radiation energy
and the cosmic-ray energy ECR as determined by the Auger
surface detector. Open circles represent air showers with radio
signals detected in three or four radio detectors. Filled circles
denote showers with five or more detected radio signals.

all events in the data set presented here.
In Fig. 2, the value of EAuger

30�80MHz/ sin2(↵) for each
measured air shower is plotted as a function of the
cosmic-ray energy measured with the Auger surface de-
tector. A log-likelihood fit taking into account threshold
e↵ects, measurement uncertainties and the steeply falling
cosmic-ray energy spectrum [33] shows that the data can
be described well with the power law

EAuger
30�80MHz/ sin2(↵) = A ⇥ 107 eV (ECR/1018 eV)B . (1)

The result of the fit yields A = 1.58 ± 0.07 and B =
1.98 ± 0.04. For a cosmic ray with an energy of 1EeV
arriving perpendicularly to the Earth’s magnetic field at
the Pierre Auger Observatory, the radiation energy thus
amounts to 15.8MeV, a minute fraction of the energy of
the primary particle. The observed quadratic scaling is
expected for coherent radio emission, for which ampli-
tudes scale linearly and thus the radiated energy scales
quadratically.

Taking into account the energy- and zenith-dependent
uncertainty of ECR, the resolution of EAuger

30�80MHz/ sin2(↵)
is determined from the scatter of points in Fig. 2. It
amounts to 22% for the full data set. Performing this
analysis for the high-quality subset of events with a suc-
cessful radio detection in at least five radio detectors
yields a resolution of 17%.

The value of A reported here applies for a cosmic-ray
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an energy of 4.4⇥ 1017 eV, and a zenith angle of 25� as mea-
sured in individual AERA radio detectors (circles filled with
color corresponding to the measured value) and fitted with
the azimuthally asymmetric, two-dimensional signal distribu-
tion function (background color). Both, radio detectors with
a detected signal (data) and below detection threshold (sub-
threshold) participate in the fit. The fit is performed in the
plane perpendicular to the shower axis, with the x-axis ori-
ented along the direction of the Lorentz force for charged par-
ticles propagating along the shower axis ~v in the geomagnetic
field ~

B. The best-fitting impact point of the air shower is
at the origin of the plot, slightly o↵set from the one recon-
structed with the Auger surface detector (core (SD)). Bottom:
Representation of the same data and fitted two-dimensional
signal distribution as a function of distance from the shower
axis. The colored and black squares denote the energy flu-
ence measurements, gray squares represent radio detectors
with signal below threshold. For the three data points with
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all events in the data set presented here.
In Fig. 2, the value of EAuger

30�80MHz/ sin2(↵) for each
measured air shower is plotted as a function of the
cosmic-ray energy measured with the Auger surface de-
tector. A log-likelihood fit taking into account threshold
e↵ects, measurement uncertainties and the steeply falling
cosmic-ray energy spectrum [33] shows that the data can
be described well with the power law

EAuger
30�80MHz/ sin2(↵) = A ⇥ 107 eV (ECR/1018 eV)B . (1)

The result of the fit yields A = 1.58 ± 0.07 and B =
1.98 ± 0.04. For a cosmic ray with an energy of 1EeV
arriving perpendicularly to the Earth’s magnetic field at
the Pierre Auger Observatory, the radiation energy thus
amounts to 15.8MeV, a minute fraction of the energy of
the primary particle. The observed quadratic scaling is
expected for coherent radio emission, for which ampli-
tudes scale linearly and thus the radiated energy scales
quadratically.

Taking into account the energy- and zenith-dependent
uncertainty of ECR, the resolution of EAuger

30�80MHz/ sin2(↵)
is determined from the scatter of points in Fig. 2. It
amounts to 22% for the full data set. Performing this
analysis for the high-quality subset of events with a suc-
cessful radio detection in at least five radio detectors
yields a resolution of 17%.

The value of A reported here applies for a cosmic-ray
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FIG. 1. Top: Energy fluence for an extensive air shower with
an energy of 4.4⇥ 1017 eV, and a zenith angle of 25� as mea-
sured in individual AERA radio detectors (circles filled with
color corresponding to the measured value) and fitted with
the azimuthally asymmetric, two-dimensional signal distribu-
tion function (background color). Both, radio detectors with
a detected signal (data) and below detection threshold (sub-
threshold) participate in the fit. The fit is performed in the
plane perpendicular to the shower axis, with the x-axis ori-
ented along the direction of the Lorentz force for charged par-
ticles propagating along the shower axis ~v in the geomagnetic
field ~

B. The best-fitting impact point of the air shower is
at the origin of the plot, slightly o↵set from the one recon-
structed with the Auger surface detector (core (SD)). Bottom:
Representation of the same data and fitted two-dimensional
signal distribution as a function of distance from the shower
axis. The colored and black squares denote the energy flu-
ence measurements, gray squares represent radio detectors
with signal below threshold. For the three data points with
the highest energy fluence, the one-dimensional projection of
the two-dimensional signal distribution fit onto lines connect-
ing the best-fitting impact point of the air shower with the
corresponding radio detector positions is illustrated with col-
ored lines. This demonstrates the azimuthal asymmetry and
complexity of the two-dimensional signal distribution func-
tion. The inset figure illustrates the polar angles of the three
projections. The distribution of the residuals (data versus fit)
is shown as well.

FIG. 2. Correlation between the normalized radiation energy
and the cosmic-ray energy ECR as determined by the Auger
surface detector. Open circles represent air showers with radio
signals detected in three or four radio detectors. Filled circles
denote showers with five or more detected radio signals.

all events in the data set presented here.
In Fig. 2, the value of EAuger

30�80MHz/ sin2(↵) for each
measured air shower is plotted as a function of the
cosmic-ray energy measured with the Auger surface de-
tector. A log-likelihood fit taking into account threshold
e↵ects, measurement uncertainties and the steeply falling
cosmic-ray energy spectrum [33] shows that the data can
be described well with the power law

EAuger
30�80MHz/ sin2(↵) = A ⇥ 107 eV (ECR/1018 eV)B . (1)

The result of the fit yields A = 1.58 ± 0.07 and B =
1.98 ± 0.04. For a cosmic ray with an energy of 1EeV
arriving perpendicularly to the Earth’s magnetic field at
the Pierre Auger Observatory, the radiation energy thus
amounts to 15.8MeV, a minute fraction of the energy of
the primary particle. The observed quadratic scaling is
expected for coherent radio emission, for which ampli-
tudes scale linearly and thus the radiated energy scales
quadratically.

Taking into account the energy- and zenith-dependent
uncertainty of ECR, the resolution of EAuger

30�80MHz/ sin2(↵)
is determined from the scatter of points in Fig. 2. It
amounts to 22% for the full data set. Performing this
analysis for the high-quality subset of events with a suc-
cessful radio detection in at least five radio detectors
yields a resolution of 17%.

The value of A reported here applies for a cosmic-ray
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FIG. 1. Top: Energy fluence for an extensive air shower with
an energy of 4.4⇥ 1017 eV, and a zenith angle of 25� as mea-
sured in individual AERA radio detectors (circles filled with
color corresponding to the measured value) and fitted with
the azimuthally asymmetric, two-dimensional signal distribu-
tion function (background color). Both, radio detectors with
a detected signal (data) and below detection threshold (sub-
threshold) participate in the fit. The fit is performed in the
plane perpendicular to the shower axis, with the x-axis ori-
ented along the direction of the Lorentz force for charged par-
ticles propagating along the shower axis ~v in the geomagnetic
field ~

B. The best-fitting impact point of the air shower is
at the origin of the plot, slightly o↵set from the one recon-
structed with the Auger surface detector (core (SD)). Bottom:
Representation of the same data and fitted two-dimensional
signal distribution as a function of distance from the shower
axis. The colored and black squares denote the energy flu-
ence measurements, gray squares represent radio detectors
with signal below threshold. For the three data points with
the highest energy fluence, the one-dimensional projection of
the two-dimensional signal distribution fit onto lines connect-
ing the best-fitting impact point of the air shower with the
corresponding radio detector positions is illustrated with col-
ored lines. This demonstrates the azimuthal asymmetry and
complexity of the two-dimensional signal distribution func-
tion. The inset figure illustrates the polar angles of the three
projections. The distribution of the residuals (data versus fit)
is shown as well.

FIG. 2. Correlation between the normalized radiation energy
and the cosmic-ray energy ECR as determined by the Auger
surface detector. Open circles represent air showers with radio
signals detected in three or four radio detectors. Filled circles
denote showers with five or more detected radio signals.

all events in the data set presented here.
In Fig. 2, the value of EAuger

30�80MHz/ sin2(↵) for each
measured air shower is plotted as a function of the
cosmic-ray energy measured with the Auger surface de-
tector. A log-likelihood fit taking into account threshold
e↵ects, measurement uncertainties and the steeply falling
cosmic-ray energy spectrum [33] shows that the data can
be described well with the power law

EAuger
30�80MHz/ sin2(↵) = A ⇥ 107 eV (ECR/1018 eV)B . (1)

The result of the fit yields A = 1.58 ± 0.07 and B =
1.98 ± 0.04. For a cosmic ray with an energy of 1EeV
arriving perpendicularly to the Earth’s magnetic field at
the Pierre Auger Observatory, the radiation energy thus
amounts to 15.8MeV, a minute fraction of the energy of
the primary particle. The observed quadratic scaling is
expected for coherent radio emission, for which ampli-
tudes scale linearly and thus the radiated energy scales
quadratically.

Taking into account the energy- and zenith-dependent
uncertainty of ECR, the resolution of EAuger

30�80MHz/ sin2(↵)
is determined from the scatter of points in Fig. 2. It
amounts to 22% for the full data set. Performing this
analysis for the high-quality subset of events with a suc-
cessful radio detection in at least five radio detectors
yields a resolution of 17%.

The value of A reported here applies for a cosmic-ray
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an energy of 4.4⇥ 1017 eV, and a zenith angle of 25� as mea-
sured in individual AERA radio detectors (circles filled with
color corresponding to the measured value) and fitted with
the azimuthally asymmetric, two-dimensional signal distribu-
tion function (background color). Both, radio detectors with
a detected signal (data) and below detection threshold (sub-
threshold) participate in the fit. The fit is performed in the
plane perpendicular to the shower axis, with the x-axis ori-
ented along the direction of the Lorentz force for charged par-
ticles propagating along the shower axis ~v in the geomagnetic
field ~

B. The best-fitting impact point of the air shower is
at the origin of the plot, slightly o↵set from the one recon-
structed with the Auger surface detector (core (SD)). Bottom:
Representation of the same data and fitted two-dimensional
signal distribution as a function of distance from the shower
axis. The colored and black squares denote the energy flu-
ence measurements, gray squares represent radio detectors
with signal below threshold. For the three data points with
the highest energy fluence, the one-dimensional projection of
the two-dimensional signal distribution fit onto lines connect-
ing the best-fitting impact point of the air shower with the
corresponding radio detector positions is illustrated with col-
ored lines. This demonstrates the azimuthal asymmetry and
complexity of the two-dimensional signal distribution func-
tion. The inset figure illustrates the polar angles of the three
projections. The distribution of the residuals (data versus fit)
is shown as well.

FIG. 2. Correlation between the normalized radiation energy
and the cosmic-ray energy ECR as determined by the Auger
surface detector. Open circles represent air showers with radio
signals detected in three or four radio detectors. Filled circles
denote showers with five or more detected radio signals.

all events in the data set presented here.
In Fig. 2, the value of EAuger

30�80MHz/ sin2(↵) for each
measured air shower is plotted as a function of the
cosmic-ray energy measured with the Auger surface de-
tector. A log-likelihood fit taking into account threshold
e↵ects, measurement uncertainties and the steeply falling
cosmic-ray energy spectrum [33] shows that the data can
be described well with the power law

EAuger
30�80MHz/ sin2(↵) = A ⇥ 107 eV (ECR/1018 eV)B . (1)

The result of the fit yields A = 1.58 ± 0.07 and B =
1.98 ± 0.04. For a cosmic ray with an energy of 1EeV
arriving perpendicularly to the Earth’s magnetic field at
the Pierre Auger Observatory, the radiation energy thus
amounts to 15.8MeV, a minute fraction of the energy of
the primary particle. The observed quadratic scaling is
expected for coherent radio emission, for which ampli-
tudes scale linearly and thus the radiated energy scales
quadratically.

Taking into account the energy- and zenith-dependent
uncertainty of ECR, the resolution of EAuger

30�80MHz/ sin2(↵)
is determined from the scatter of points in Fig. 2. It
amounts to 22% for the full data set. Performing this
analysis for the high-quality subset of events with a suc-
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FIG. 1. Top: Energy fluence for an extensive air shower with
an energy of 4.4⇥ 1017 eV, and a zenith angle of 25� as mea-
sured in individual AERA radio detectors (circles filled with
color corresponding to the measured value) and fitted with
the azimuthally asymmetric, two-dimensional signal distribu-
tion function (background color). Both, radio detectors with
a detected signal (data) and below detection threshold (sub-
threshold) participate in the fit. The fit is performed in the
plane perpendicular to the shower axis, with the x-axis ori-
ented along the direction of the Lorentz force for charged par-
ticles propagating along the shower axis ~v in the geomagnetic
field ~

B. The best-fitting impact point of the air shower is
at the origin of the plot, slightly o↵set from the one recon-
structed with the Auger surface detector (core (SD)). Bottom:
Representation of the same data and fitted two-dimensional
signal distribution as a function of distance from the shower
axis. The colored and black squares denote the energy flu-
ence measurements, gray squares represent radio detectors
with signal below threshold. For the three data points with
the highest energy fluence, the one-dimensional projection of
the two-dimensional signal distribution fit onto lines connect-
ing the best-fitting impact point of the air shower with the
corresponding radio detector positions is illustrated with col-
ored lines. This demonstrates the azimuthal asymmetry and
complexity of the two-dimensional signal distribution func-
tion. The inset figure illustrates the polar angles of the three
projections. The distribution of the residuals (data versus fit)
is shown as well.

FIG. 2. Correlation between the normalized radiation energy
and the cosmic-ray energy ECR as determined by the Auger
surface detector. Open circles represent air showers with radio
signals detected in three or four radio detectors. Filled circles
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FIG. 5. (top) The radio-energy estimator Sradio as a function of the
cosmic-ray energy E

CR

measured with the surface detector. A power
law is fitted to the data using a likelihood approach which takes all
uncertainties and detection efficiencies into account. Green filled cir-
cles denote air showers where the core position has been determined
in the radio LDF fit, i.e., all air showers with at least five stations with
signal. Open circles denote events with less than five stations with
signal and use the SD core position. (bottom) Relative energy reso-
lution: The energy of the radio detector is obtained using the fit in
the left-hand figure. The left histogram contains all air showers, and
the right histogram contains the air showers with at least five stations
with signal (green filled circles). The expected distribution is shown
as a gray shaded area which is computed from the fitted probability
model that describes the fluctuations.

B. Precision and possible improvements of the energy
reconstruction

We have found that the instrumental noise and the envi-
ronmental influences are not the dominant contributions to
our energy resolution. Applying the method described to a
CoREAS Monte Carlo data set [23, 49], including a represen-
tative set of shower geometries as well as shower-to-shower
fluctuations, but no instrumental or environmental uncertain-
ties, a similar energy resolution is obtained for the same de-

tector layout.
The intrinsic limitation in the energy resolution due to

shower-to-shower fluctuations of the electromagnetic part of
the shower is predicted to be smaller than 10% [9, 20] and
we expect that the current energy resolution can be further
improved. Under the condition that the LDF samples the rele-
vant part of the signal distribution on the ground correctly for
all geometries, the energy estimator should only be affected
by the shower-to-shower fluctuations in the electromagnetic
part of the shower. The only additional geometric dependence
is due to the fact that the air shower might not be fully devel-
oped when reaching the ground, i.e., some part of the shower
is clipped away. As the atmospheric depth increases with the
secant of the zenith angle, clipping mostly affects high-energy
vertical showers. Hence, we expect an additional dependence
on the zenith angle. In the future, with larger statistics, this
effect will be parametrized from data and will further improve
the energy resolution. Also, a better understanding of the de-
tector and the environmental effects, such as temperature de-
pendencies, will help to improve the energy reconstruction.

Combined measurements, such as they are possible at the
Pierre Auger Observatory, hold great potential for future im-
provements of the energy resolution due to the anti-correlation
of the energy reconstructed with the radio and surface detec-
tors.

C. The energy content of extensive air showers in the radio
frequency range of 30 to 80 MHz

So far, the energy content of extensive air showers in the ra-
dio frequency range of 30 to 80 MHz has only been measured
at the Pierre Auger Observatory in Argentina. However, our
findings can be generalized by the following consideration.

To obtain a prediction that is independent of the location
of the experiment, i.e., a universal formula to calculate the
radiation energy from the cosmic-ray energy, the calibration
function Eq. (6) can be normalized to the local magnetic field.
We found that it is sufficient to correct only for the dominant
geomagnetic part of the radio emission. This is because the
increase of radiation energy due to the charge-excess emission
is small, as constructive and destructive interference with the
geomagnetic emission mostly cancel out in the integration of
the energy densities over the shower plane, see Eq. (5). For the
average relative charge-excess strength of 14% at AERA [15]
the increase in radiation energy is only 2%. As most locations
on Earth have a stronger magnetic field than the AERA site the
effect of the charge-excess emission on the radiation energy
will be even smaller. Within the statistical accuracy of the
calibration function this effect can be neglected which leads
to the universal prediction of the radiation energy

E30�80MHz =(15.8 ± 0.7(stat) ± 6.7(sys)) MeV

⇥
✓

sin ↵
ECR

10

18
eV

BEarth

0.24 G

◆2

,
(7)

where ECR is the cosmic-ray energy, BEarth denotes the lo-
cal magnetic-field strength and 0.24 G is the magnetic-field

� ⇡ 24%

E30-80 MHz = 15.8 MeV @ 1018 eV
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Figure 1: Two-dimensional radio air shower reconstructions. The measured power for two different showers
(left/right) is fitted to a simulated radio map (top panels). The one-dimensional lateral distribution functions
(middle panels) are not single-valued functions of distance to the shower axis. The reconstructed Xmaxis
found by plotting the quality-of-fit for all simulations (bottom panels).
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van Haarlem et al. : LOFAR: The Low-Frequency Array

Fig. 1. Aerial photograph of the Superterp, the heart of the LOFAR core, from August 2011. The large circular island encompasses the six core
stations that make up the Superterp. Three additional LOFAR core stations are visible in the upper right and lower left of the image. Each of these
core stations includes a field of 96 low-band antennas and two sub-stations of 24 high-band antenna tiles each.

low-frequency radio domain below a few hundred MHz, repre-
senting the lowest frequency extreme of the accessible spectrum.

Since the discovery of radio emission from the Milky Way
(Jansky 1933), now 80 years ago, radio astronomy has made a
continuous stream of fundamental contributions to astronomy.
Following the first large-sky surveys in Cambridge, yielding the
3C and 4C catalogs (Edge et al. 1959; Bennett 1962; Pilkington
& Scott 1965; Gower et al. 1967) containing hundreds to thou-
sands of radio sources, radio astronomy has blossomed. Crucial
events in those early years were the identifications of the newly
discovered radio sources in the optical waveband. Radio astro-
metric techniques, made possible through both interferometric
and lunar occultation techniques, led to the systematic classifi-
cation of many types of radio sources: Galactic supernova rem-
nants (such as the Crab Nebula and Cassiopeia A), normal galax-
ies (M31), powerful radio galaxies (Cygnus A), and quasars
(3C48 and 3C273).

During this same time period, our understanding of the phys-
ical processes responsible for the radio emission also progressed
rapidly. The discovery of powerful very low-frequency coherent
cyclotron radio emission from Jupiter (Burke & Franklin 1955)
and the nature of radio galaxies and quasars in the late 1950s was
rapidly followed by such fundamental discoveries as the Cosmic
Microwave Background (Penzias & Wilson 1965), pulsars (Bell
& Hewish 1967), and apparent superluminal motion in compact
extragalactic radio sources by the 1970s (Whitney et al. 1971).

Although the first two decades of radio astronomy were
dominated by observations below a few hundred MHz, the pre-
diction and subsequent detection of the 21cm line of hydrogen at
1420 MHz (van de Hulst 1945; Ewen & Purcell 1951), as well
as the quest for higher angular resolution, shifted attention to
higher frequencies. This shift toward higher frequencies was also
driven in part by developments in receiver technology, interfer-
ometry, aperture synthesis, continental and intercontinental very
long baseline interferometry (VLBI). Between 1970 and 2000,
discoveries in radio astronomy were indeed dominated by the
higher frequencies using aperture synthesis arrays in Cambridge,
Westerbork, the VLA, MERLIN, ATCA and the GMRT in India
as well as large monolithic dishes at Parkes, E�elsberg, Arecibo,
Green Bank, Jodrell Bank, and Nançay.

By the mid 1980s to early 1990s, however, several factors
combined to cause a renewed interest in low-frequency radio as-
tronomy. Scientifically, the realization that many sources have
inverted radio spectra due to synchrotron self-absorption or free-
free absorption as well as the detection of (ultra-) steep spectra
in pulsars and high redshift radio galaxies highlighted the need
for data at lower frequencies. Further impetus for low-frequency
radio data came from early results from Clark Lake (Erickson &
Fisher 1974; Kassim 1988), the Cambridge sky surveys at 151
MHz, and the 74 MHz receiver system at the VLA (Kassim et al.
1993, 2007). In this same period, a number of arrays were con-
structed around the world to explore the sky at frequencies well

2

[1] At the LOFAR core, radio emission from air showers is 
detected by hundreds of 30-80 MHz antennas simultaneously
[2] The radio power footprint can be simulated with the 
CoREAS code, but depend on Xmax. For each shower we 
produce a set of 50 proton and 25 iron showers. The best fitting 
shower is shown here.
[3] The pattern is not rotationally symmetric due to interference 
between geomagnetic and charge excess radiation. Therefore, 
the lateral distribution function is not single-valued. A 2D 
approach is needed to achieve high-resolution reconstructions  
[4] The quality-of-fit depends strongly on Xmax and is used to 
reconstruct the shower depth.   
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[5] The energy resolution of 32% is given by the distribution of 
the ratio between the energy scaling factor of the radio 
reconstruction and the particle reconstruction from the LORA 
array
[6] The uncertainty on Xmax is found with a Monte Carlo study. 
For this sample the mean uncertainty is 17 g/cm2 [7] Composition measurement based on 118 

showers. See 34th ICRC Oral #780

5 6
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Xmax reconstruction with radio detection S. Buitink

Figure 1: Two-dimensional radio air shower reconstructions. The measured power for two different showers
(left/right) is fitted to a simulated radio map (top panels). The one-dimensional lateral distribution functions
(middle panels) are not single-valued functions of distance to the shower axis. The reconstructed Xmaxis
found by plotting the quality-of-fit for all simulations (bottom panels).
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telescope. Showers that occurred within an hour of lightning activity 
or that have a polarization pattern that is indicative of influences from 
atmospheric electric fields are excluded from the sample15.

Radio intensity patterns from air showers are asymmetric, owing to 
the interference between geomagnetic and charge-excess radiation. 
These patterns are reproduced from first principles by summing the 
radio contributions of all electrons and positrons in the shower. We 
use the radio simulation code CoREAS16, a plug-in of CORSIKA17, 
which follows this approach.

It has been shown that Xmax, the atmospheric depth of the shower 
maximum, can be accurately reconstructed from densely sampled 
radio measurements18. (The atmospheric depth is the air density 
integrated over the path that the particle has travelled, starting at the 
top of the atmosphere.) We use a hybrid approach that involves simul-
taneously fitting the radio and particle data. The radio component is 
very sensitive to Xmax, whereas the particle component is used for the 
energy measurement.

The fit contains four free parameters: the shower core position (x, y), 
and scaling factors for the particle density (fp) and the radio power (fr). 
If fp deviates substantially from unity, then the reconstructed energy 
does not match the simulation and a new set of simulations is pro-
duced. This procedure is repeated until the energies agree within the 
chosen uncertainties. The ratio of fr and fp should be the same for all 
showers, and is used to derive the energy resolution of 32% (see Fig. 1).

The radio intensity fits have reduced χ2 values ranging from 0.9 to 
2.9. All features in the data are well reproduced by the simulation (see 
Extended Data Figs 1–5), which demonstrates that the radiation mech-
anism is well understood. The reduced χ2 values that exceed unity 
could indicate uncertainties in the antenna response or the atmos-
pheric properties that were not already accounted for, or limitations 
of the simulation software.

Radio detection becomes more efficient for higher-altitude show-
ers that have larger footprints (that is, larger areas on the ground in 
which the radio pulse can be detected). However, the particle trigger 
becomes less efficient because the number of particles reaching the 
ground decreases. To avoid a bias, we require that all the simulations 
produced for a shower satisfy a trigger criterion (see Methods). Above 
1017 eV, this requirement removes four showers from the sample. At 
lower energies, the number of showers excluded increases rapidly, and 
so we exclude all showers with energies less than 1017 eV from our 
analysis.

Furthermore, we evaluate the reconstructed core positions of all 
simulated showers. Showers with a mean reconstruction error greater 

than 5 m are rejected. This criterion does not introduce a composition 
bias because it is based on the sets of simulated showers, not on the 
data. The final event sample contains 118 showers.

The uncertainty in Xmax is determined independently for all show-
ers18, and has a mean value of 16 g cm−2 (see Extended Data Fig. 6). 
Figure 2 shows our measurements of the average Xmax, 〈Xmax〉, which 
are consistent with earlier experiments using different methods. The 
high resolution for Xmax per shower allows us to derive more informa-
tion about the composition of cosmic rays, by studying the shape of 
the Xmax distribution. For each shower, we calculate a mass-dependent 
parameter:

=
〈 〉−
〈 〉− 〈 〉

( )a
X X
X X

1proton shower

proton iron

in which Xshower is the reconstructed Xmax, and 〈Xproton〉 and 〈Xiron〉 
are mean values of Xmax for proton and iron showers, respectively,  
predicted by the hadronic interaction code QGSJETII.0419.

The cumulative probability density function (CDF) for all showers 
is plotted in Fig. 3. First, we fit a two-component model of protons and 
iron nuclei (p and Fe), with the mixing ratio as the only free parameter.  
To calculate the corresponding CDFs we use a parameterization of the 
Xmax distribution fitted to simulations based on QGSJETII.04. The 
best fit is found for a proton fraction of 62%, but this fit describes  
the data poorly, with p = 1.1 × 10−6. (The test statistic for this fit is 
the maximum deviation between the data and the model CDFs, and p 
represents the probability of observing this deviation, or a larger one, 
assuming the fitted composition model; see Methods.)

A better fit is achieved with a four-component model of protons and 
helium, nitrogen and iron nuclei (p, He, N and Fe), yielding p = 0.17. 
Although the best fit is found for a helium fraction of 80%, the fit qual-
ity deteriorates slowly when replacing helium nuclei with protons. This 
is demonstrated in Fig. 4, in which p is plotted for four-component 
fits for which the fractions of helium nuclei and protons are fixed, and 
the ratio of nitrogen and iron nuclei is the only free parameter. The 
total fraction of light elements (p and He) is in the range [0.38, 0.98] 
at a 99% confidence level, with a best-fit value of 0.8. The heaviest 
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Cosmic rays are the highest-energy particles found in nature. 
Measurements of the mass composition of cosmic rays with energies 
of 1017–1018 electronvolts are essential to understanding whether 
they have galactic or extragalactic sources. It has also been proposed 
that the astrophysical neutrino signal1 comes from accelerators 
capable of producing cosmic rays of these energies2. Cosmic 
rays initiate air showers—cascades of secondary particles in the 
atmosphere—and their masses can be inferred from measurements 
of the atmospheric depth of the shower maximum3 (Xmax; the depth 
of the air shower when it contains the most particles) or of the 
composition of shower particles reaching the ground4. Current 
measurements5 have either high uncertainty, or a low duty cycle 
and a high energy threshold. Radio detection of cosmic rays6–8 is 
a rapidly developing technique9 for determining Xmax (refs 10, 11) 
with a duty cycle of, in principle, nearly 100 per cent. The radiation 
is generated by the separation of relativistic electrons and positrons 
in the geomagnetic field and a negative charge excess in the shower 
front6,12. Here we report radio measurements of Xmax with a mean 
uncertainty of 16 grams per square centimetre for air showers 

initiated by cosmic rays with energies of 1017–1017.5 electronvolts. 
This high resolution in Xmax enables us to determine the mass 
spectrum of the cosmic rays: we find a mixed composition, with 
a light-mass fraction (protons and helium nuclei) of about 80 per 
cent. Unless, contrary to current expectations, the extragalactic 
component of cosmic rays contributes substantially to the total flux 
below 1017.5 electronvolts, our measurements indicate the existence 
of an additional galactic component, to account for the light  
composition that we measured in the 1017–1017.5 electronvolt range.

Observations were made with the Low Frequency Array (LOFAR13), 
a radio telescope consisting of thousands of crossed dipoles with 
built-in air-shower-detection capability14. LOFAR continuously 
records the radio signals from air showers, while simultaneously 
running astronomical observations. It comprises a scintillator array 
(LORA) that triggers the read-out of buffers, storing the full wave-
forms received by all antennas.

We selected air showers from the period June 2011 to January 2015 
with radio pulses detected in at least 192 antennas. The total uptime 
was about 150 days, limited by construction and commissioning of the 

1Astrophysical Institute, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. 2Department of Astrophysics/IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen,  
The Netherlands. 3ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands. 4Nikhef, Science Park Amsterdam, 1098 XG Amsterdam, The Netherlands. 
5Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany. 6Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, 
Germany. 7Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, USA. 8KVI Center for Advanced Radiation Technology, University of Groningen, 9747  
AA Groningen, The Netherlands. 9Vrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels, Belgium. 10Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Department 1, 
Geodesy and Remote Sensing, Telegrafenberg A17, 14473 Potsdam, Germany. 11Shell Technology Center, 560 048 Bangalore, India. 12SRON Netherlands Institute for Space Research, PO Box 
800, 9700 AV Groningen, The Netherlands. 13Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands. 14CSIRO Australia Telescope National Facility, PO Box 76, Epping, 
New South Wales 1710, Australia. 15University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands. 16Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, 
Massachusetts 02138, USA. 17Square Kilometre Array (SKA) South Africa, 3rd Floor, The Park, Park Road, Pinelands 7405, South Africa. 18Institute for Astronomy, University of Edinburgh, Royal 
Observatory of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK. 19University of Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany. 20Leibniz-Institut für Astrophysik Potsdam (AIP),  
An der Sternwarte 16, 14482 Potsdam, Germany. 21School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK. 22Research School of Astronomy and Astrophysics, 
Australian National University, Canberra, Australian Capital Territory 2611, Australia. 23Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, 
The Netherlands. 24Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, 85741 Garching, Germany. 25Onsala Space Observatory, Department of Earth and Space Sciences, 
Chalmers University of Technology, SE-43992 Onsala, Sweden. 26SmarterVision BV, Oostersingel 5, 9401 JX Assen, The Netherlands. 27Astronomisches Institut der Ruhr-Universität Bochum, 
Universitaetsstrasse 150, 44780 Bochum, Germany. 28Thüringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany. 29Hamburger Sternwarte, Gojenbergsweg 112, D-21029 
Hamburg. 30Department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK. 31Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte 
d’Azur, CNRS, Boulevard de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France. 32Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands. 33LPC2E - Universite 
d’Orleans/CNRS, 45071 Orleans Cedex 2, France. 34Station de Radioastronomie de Nancay, Observatoire de Paris - CNRS/INSU, USR 704 - Université Orleans, OSUC, route de Souesmes, 18330 
Nançay, France. 35National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, New Mexico 87801-0387, USA. 36Astro Space Center of the Lebedev Physical Institute, Profsoyuznaya 
street 84/32, Moscow 117997, Russia. 37Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK. 38National Astronomical 
Observatory of Japan, Tokyo 181-8588, Japan. 39Sodankylä Geophysical Observatory, University of Oulu, Tähteläntie 62, 99600 Sodankylä, Finland. 40STFC Rutherford Appleton Laboratory, 
Harwell Science and Innovation Campus, Didcot OX11 0QX, UK. 41Center for Information Technology (CIT), University of Groningen, PO Box 72, 9700 AB Groningen, The Netherlands. 42Centre de 
Recherche Astrophysique de Lyon, Observatoire de Lyon, 9 avenue Charles André, 69561 Saint Genis Laval Cedex, France. 43Fakultät für Physik, Universität Bielefeld, Postfach 100131, D-33501 
Bielefeld, Germany. 44Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa. 45Department of Astrophysical Sciences, Princeton University, 
Princeton, New Jersey 08544, USA. 46GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France. 47LESIA, Observatoire de Paris, CNRS, UPMC, 
Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France.

Fe

p



2  |  N A T U R E  |  V O L  0 0 0  |  0 0  M O N T H  2 0 1 6

LETTERRESEARCH

telescope. Showers that occurred within an hour of lightning activity 
or that have a polarization pattern that is indicative of influences from 
atmospheric electric fields are excluded from the sample15.

Radio intensity patterns from air showers are asymmetric, owing to 
the interference between geomagnetic and charge-excess radiation. 
These patterns are reproduced from first principles by summing the 
radio contributions of all electrons and positrons in the shower. We 
use the radio simulation code CoREAS16, a plug-in of CORSIKA17, 
which follows this approach.

It has been shown that Xmax, the atmospheric depth of the shower 
maximum, can be accurately reconstructed from densely sampled 
radio measurements18. (The atmospheric depth is the air density 
integrated over the path that the particle has travelled, starting at the 
top of the atmosphere.) We use a hybrid approach that involves simul-
taneously fitting the radio and particle data. The radio component is 
very sensitive to Xmax, whereas the particle component is used for the 
energy measurement.

The fit contains four free parameters: the shower core position (x, y), 
and scaling factors for the particle density (fp) and the radio power (fr). 
If fp deviates substantially from unity, then the reconstructed energy 
does not match the simulation and a new set of simulations is pro-
duced. This procedure is repeated until the energies agree within the 
chosen uncertainties. The ratio of fr and fp should be the same for all 
showers, and is used to derive the energy resolution of 32% (see Fig. 1).

The radio intensity fits have reduced χ2 values ranging from 0.9 to 
2.9. All features in the data are well reproduced by the simulation (see 
Extended Data Figs 1–5), which demonstrates that the radiation mech-
anism is well understood. The reduced χ2 values that exceed unity 
could indicate uncertainties in the antenna response or the atmos-
pheric properties that were not already accounted for, or limitations 
of the simulation software.

Radio detection becomes more efficient for higher-altitude show-
ers that have larger footprints (that is, larger areas on the ground in 
which the radio pulse can be detected). However, the particle trigger 
becomes less efficient because the number of particles reaching the 
ground decreases. To avoid a bias, we require that all the simulations 
produced for a shower satisfy a trigger criterion (see Methods). Above 
1017 eV, this requirement removes four showers from the sample. At 
lower energies, the number of showers excluded increases rapidly, and 
so we exclude all showers with energies less than 1017 eV from our 
analysis.

Furthermore, we evaluate the reconstructed core positions of all 
simulated showers. Showers with a mean reconstruction error greater 

than 5 m are rejected. This criterion does not introduce a composition 
bias because it is based on the sets of simulated showers, not on the 
data. The final event sample contains 118 showers.

The uncertainty in Xmax is determined independently for all show-
ers18, and has a mean value of 16 g cm−2 (see Extended Data Fig. 6). 
Figure 2 shows our measurements of the average Xmax, 〈Xmax〉, which 
are consistent with earlier experiments using different methods. The 
high resolution for Xmax per shower allows us to derive more informa-
tion about the composition of cosmic rays, by studying the shape of 
the Xmax distribution. For each shower, we calculate a mass-dependent 
parameter:

=
〈 〉−
〈 〉− 〈 〉

( )a
X X
X X

1proton shower

proton iron

in which Xshower is the reconstructed Xmax, and 〈Xproton〉 and 〈Xiron〉 
are mean values of Xmax for proton and iron showers, respectively,  
predicted by the hadronic interaction code QGSJETII.0419.

The cumulative probability density function (CDF) for all showers 
is plotted in Fig. 3. First, we fit a two-component model of protons and 
iron nuclei (p and Fe), with the mixing ratio as the only free parameter.  
To calculate the corresponding CDFs we use a parameterization of the 
Xmax distribution fitted to simulations based on QGSJETII.04. The 
best fit is found for a proton fraction of 62%, but this fit describes  
the data poorly, with p = 1.1 × 10−6. (The test statistic for this fit is 
the maximum deviation between the data and the model CDFs, and p 
represents the probability of observing this deviation, or a larger one, 
assuming the fitted composition model; see Methods.)

A better fit is achieved with a four-component model of protons and 
helium, nitrogen and iron nuclei (p, He, N and Fe), yielding p = 0.17. 
Although the best fit is found for a helium fraction of 80%, the fit qual-
ity deteriorates slowly when replacing helium nuclei with protons. This 
is demonstrated in Fig. 4, in which p is plotted for four-component 
fits for which the fractions of helium nuclei and protons are fixed, and 
the ratio of nitrogen and iron nuclei is the only free parameter. The 
total fraction of light elements (p and He) is in the range [0.38, 0.98] 
at a 99% confidence level, with a best-fit value of 0.8. The heaviest 
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indicated by the shaded band. The Pierre Auger Observatory26 measures 
the fluorescent light emitted by atmospheric molecules excited by  
air-shower particles. HiRes/MIA27 used a combination of this fluorescence 
technique and muon detection. The Yakutsk28 and Tunka29 arrays use  
non-imaging Cherenkov detectors. The green (upper) lines indicate 〈Xmax〉 
for proton showers simulated using QGSJETII.04 (solid) and EPOS-LHC 
(dashed); the red (lower) lines are for showers initiated by iron nuclei.
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Cosmic rays are the highest-energy particles found in nature. 
Measurements of the mass composition of cosmic rays with energies 
of 1017–1018 electronvolts are essential to understanding whether 
they have galactic or extragalactic sources. It has also been proposed 
that the astrophysical neutrino signal1 comes from accelerators 
capable of producing cosmic rays of these energies2. Cosmic 
rays initiate air showers—cascades of secondary particles in the 
atmosphere—and their masses can be inferred from measurements 
of the atmospheric depth of the shower maximum3 (Xmax; the depth 
of the air shower when it contains the most particles) or of the 
composition of shower particles reaching the ground4. Current 
measurements5 have either high uncertainty, or a low duty cycle 
and a high energy threshold. Radio detection of cosmic rays6–8 is 
a rapidly developing technique9 for determining Xmax (refs 10, 11) 
with a duty cycle of, in principle, nearly 100 per cent. The radiation 
is generated by the separation of relativistic electrons and positrons 
in the geomagnetic field and a negative charge excess in the shower 
front6,12. Here we report radio measurements of Xmax with a mean 
uncertainty of 16 grams per square centimetre for air showers 

initiated by cosmic rays with energies of 1017–1017.5 electronvolts. 
This high resolution in Xmax enables us to determine the mass 
spectrum of the cosmic rays: we find a mixed composition, with 
a light-mass fraction (protons and helium nuclei) of about 80 per 
cent. Unless, contrary to current expectations, the extragalactic 
component of cosmic rays contributes substantially to the total flux 
below 1017.5 electronvolts, our measurements indicate the existence 
of an additional galactic component, to account for the light  
composition that we measured in the 1017–1017.5 electronvolt range.

Observations were made with the Low Frequency Array (LOFAR13), 
a radio telescope consisting of thousands of crossed dipoles with 
built-in air-shower-detection capability14. LOFAR continuously 
records the radio signals from air showers, while simultaneously 
running astronomical observations. It comprises a scintillator array 
(LORA) that triggers the read-out of buffers, storing the full wave-
forms received by all antennas.

We selected air showers from the period June 2011 to January 2015 
with radio pulses detected in at least 192 antennas. The total uptime 
was about 150 days, limited by construction and commissioning of the 
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telescope. Showers that occurred within an hour of lightning activity 
or that have a polarization pattern that is indicative of influences from 
atmospheric electric fields are excluded from the sample15.

Radio intensity patterns from air showers are asymmetric, owing to 
the interference between geomagnetic and charge-excess radiation. 
These patterns are reproduced from first principles by summing the 
radio contributions of all electrons and positrons in the shower. We 
use the radio simulation code CoREAS16, a plug-in of CORSIKA17, 
which follows this approach.

It has been shown that Xmax, the atmospheric depth of the shower 
maximum, can be accurately reconstructed from densely sampled 
radio measurements18. (The atmospheric depth is the air density 
integrated over the path that the particle has travelled, starting at the 
top of the atmosphere.) We use a hybrid approach that involves simul-
taneously fitting the radio and particle data. The radio component is 
very sensitive to Xmax, whereas the particle component is used for the 
energy measurement.

The fit contains four free parameters: the shower core position (x, y), 
and scaling factors for the particle density (fp) and the radio power (fr). 
If fp deviates substantially from unity, then the reconstructed energy 
does not match the simulation and a new set of simulations is pro-
duced. This procedure is repeated until the energies agree within the 
chosen uncertainties. The ratio of fr and fp should be the same for all 
showers, and is used to derive the energy resolution of 32% (see Fig. 1).

The radio intensity fits have reduced χ2 values ranging from 0.9 to 
2.9. All features in the data are well reproduced by the simulation (see 
Extended Data Figs 1–5), which demonstrates that the radiation mech-
anism is well understood. The reduced χ2 values that exceed unity 
could indicate uncertainties in the antenna response or the atmos-
pheric properties that were not already accounted for, or limitations 
of the simulation software.

Radio detection becomes more efficient for higher-altitude show-
ers that have larger footprints (that is, larger areas on the ground in 
which the radio pulse can be detected). However, the particle trigger 
becomes less efficient because the number of particles reaching the 
ground decreases. To avoid a bias, we require that all the simulations 
produced for a shower satisfy a trigger criterion (see Methods). Above 
1017 eV, this requirement removes four showers from the sample. At 
lower energies, the number of showers excluded increases rapidly, and 
so we exclude all showers with energies less than 1017 eV from our 
analysis.

Furthermore, we evaluate the reconstructed core positions of all 
simulated showers. Showers with a mean reconstruction error greater 

than 5 m are rejected. This criterion does not introduce a composition 
bias because it is based on the sets of simulated showers, not on the 
data. The final event sample contains 118 showers.

The uncertainty in Xmax is determined independently for all show-
ers18, and has a mean value of 16 g cm−2 (see Extended Data Fig. 6). 
Figure 2 shows our measurements of the average Xmax, 〈Xmax〉, which 
are consistent with earlier experiments using different methods. The 
high resolution for Xmax per shower allows us to derive more informa-
tion about the composition of cosmic rays, by studying the shape of 
the Xmax distribution. For each shower, we calculate a mass-dependent 
parameter:

=
〈 〉−
〈 〉− 〈 〉

( )a
X X
X X

1proton shower

proton iron

in which Xshower is the reconstructed Xmax, and 〈Xproton〉 and 〈Xiron〉 
are mean values of Xmax for proton and iron showers, respectively,  
predicted by the hadronic interaction code QGSJETII.0419.

The cumulative probability density function (CDF) for all showers 
is plotted in Fig. 3. First, we fit a two-component model of protons and 
iron nuclei (p and Fe), with the mixing ratio as the only free parameter.  
To calculate the corresponding CDFs we use a parameterization of the 
Xmax distribution fitted to simulations based on QGSJETII.04. The 
best fit is found for a proton fraction of 62%, but this fit describes  
the data poorly, with p = 1.1 × 10−6. (The test statistic for this fit is 
the maximum deviation between the data and the model CDFs, and p 
represents the probability of observing this deviation, or a larger one, 
assuming the fitted composition model; see Methods.)

A better fit is achieved with a four-component model of protons and 
helium, nitrogen and iron nuclei (p, He, N and Fe), yielding p = 0.17. 
Although the best fit is found for a helium fraction of 80%, the fit qual-
ity deteriorates slowly when replacing helium nuclei with protons. This 
is demonstrated in Fig. 4, in which p is plotted for four-component 
fits for which the fractions of helium nuclei and protons are fixed, and 
the ratio of nitrogen and iron nuclei is the only free parameter. The 
total fraction of light elements (p and He) is in the range [0.38, 0.98] 
at a 99% confidence level, with a best-fit value of 0.8. The heaviest 
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Figure 1 | Energy resolution. The distribution of fr/fp (blue bars) is fitted 
with a Gaussian (red dashed curve), yielding a standard deviation of 
σ = 0.12 on a logarithmic scale, which corresponds to an energy resolution 
of 32%; this value is the quadratic sum of the energy resolution of the radio 
and particle resolutions. In this analysis, there was no absolute calibration 
for the received radio power, so fr has an arbitrary scale.
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Figure 2 | Measurements of 〈Xmax〉. Mean depth of the shower maximum 
Xmax as a function of energy E for LOFAR, and for previous experiments 
that used different techniques26–29. Error bars indicate 1σ uncertainties. 
The systematic uncertainties are +

− g14
10  cm−2 on 〈Xmax〉 and 27% on E, as 

indicated by the shaded band. The Pierre Auger Observatory26 measures 
the fluorescent light emitted by atmospheric molecules excited by  
air-shower particles. HiRes/MIA27 used a combination of this fluorescence 
technique and muon detection. The Yakutsk28 and Tunka29 arrays use  
non-imaging Cherenkov detectors. The green (upper) lines indicate 〈Xmax〉 
for proton showers simulated using QGSJETII.04 (solid) and EPOS-LHC 
(dashed); the red (lower) lines are for showers initiated by iron nuclei.
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g/cm2 at 10 EeV and 25 g/cm2 at 100 EeV for the scintillator upgrade (zenith angle <60°) 10. We expect a 
similar resolution for HAS with the proposed new detectors (zenith angle >60°). 
Based on the experience to reconstruct HAS with the WCDs and the radio measurements of showers with 
AERA (and LOFAR) we will optimize the radio reconstruction for HAS with the new radio array. 
 
*Sub project #5: Optimization of the radio reconstruction for neutrino identification – PhD student 2, PD 2 
The (radio) detection of HAS is also an ideal tool for neutrino detection. The radio detectors can be used as a 
veto against hadronic showers. 
The standard way at the PAO for neutrino identification54 is based on the broad time-structure of the signals 
expected in the WCDs, and is efficiently done for neutrinos of all flavours interacting in the atmosphere at 
large zenith angles, as well as for “Earth-skimming” neutrino interactions in the case of tau neutrinos. The 
searches for downward-going neutrinos with zenith angles exceeding 60° and for upward-going neutrinos, 
are combined to give a single limit. The 90% C.L. single-flavour limit to the diffuse flux of ultra-high energy 
neutrinos with an E−2 spectrum in the energy range 1.0 × 1017 eV - 2.5 × 1019 eV is  
Eν2dNν /dEν < 6.4 × 10−9 GeV cm−2 s−1 sr−1. 
 

 

Figure 14: Radio signal as a function of distance to the shower axis.49 A measured shower (black) is 
compared to simulations for a proton and an iron nucleus as well as for a neutrinos, interacting at different 

heights above the array as indicated.  

The additional information on the e/m shower component through the HAS radio measurements will further 
improve the neutrino limits. Simulation studies49 indicate that hadronic showers and neutrino induced HAS 
are being distinguished by the shape of the radio lateral distribution. This is illustrated in Fig. 14, where the 
amplitude of the radio signal is plotted as a function of the distance to the shower axis (in the shower plane, 
perpendicular to the shower axis). The measured values (black) are compared to calculations for hadronic 
showers (protons and iron nuclei, red and blue, respectively) and to predictions for neutrinos (pink). Two 
exemplary cases are shown for the neutrinos, they are assumed to travel horizontally across the array at 
heights of 5 km and 12 km above the ground. The hadronic showers exhibit almost the same shape, while the 
neutrino-induced showers yield a different behaviour. The neutrino-cascade starting 5 km above the array 
shows a clearly different shape close to the shower axis. The neutrino, interacting at a height of 12 km 
exhibits a slightly different slope at distances beyond 1000 m from the shower axis. Exploring these features 
further will be one of the tasks of the AdG in order to enhance the sensitivity of the PAO to neutrinos. We 
will determine the direction and location of the shower axis in a combined analysis of WCDs and RDs. Thus, 
5 RDs with a signal above noise will be sufficient to establish an efficient veto against hadron-induced 
showers, thus improving the neutrino flux limits. 
We will optimize the identification (or exclusion, in case of upper flux limits) of neutrinos with the 
additional measurements of the new radio array. Operating the upgraded PAO up to 2025 will triple the 
available number of showers to establish neutrino flux limits10, including the radio-detected HAS will 
significantly improve the neutrino-hadron separation through the clear calorimetric measurement of the e/m 
component with the RDs. We expect upper limits close to Eν2dNν /dEν < 10−9 GeV cm−2 s−1 sr−1. A value 
expected to be superior to all other experiments in this energy range and well below the Waxman-Bahcall 
limit, which will significantly constrain astrophysical neutrino models. 
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could contribute to AMON by
•detecting air showers in time and/or spatial 
coincidence with external signal
(offline correlation or realtime trigger)

•provide particle type
(isolate gamma rays and/or neutrinos)
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How can we contribute with LOFAR and the 
Pierre Auger Observatory/AERA to AMON 

multi-messenger observations?

• detecting air showers in time and/or spatial 
coincidence with external signal
(offline correlation or realtime trigger)

• provide particle type
(isolate gamma rays and/or neutrinos)

• issuing triggers to others
(low-frequency [30-240 MHz] transient events)

• receiving external triggers
(implemented for ksp CRs to read out radio 
antennas after particle detector trigger)

Auger Engineering Radio Array
AERA

Transients

Cosmic Rays


