photo: Coihueco © Steven Saffi 2016

The Auger Contribution to AMON

PennState Eberly College of Science

Foteini Oikonomou

AMON workshop-10/12/2016

Auger data of interest to multi-messenger monitoring

UHE neutrals guaranteed by UHECR observations:

Triggering + follow-up AMON partner

Marger data 2008-2014 in AMON database: 6T5 events, E > 3 EeV, Herald reconstruction, $\theta < 60^{\circ}$, standard cuts [~10⁵ events]

Realtime stream from Malargüe to AMON (latency ~2min)

Realtime photon analysis under development

Can they reach us?

$$L_n \sim c \cdot \tau_n \cdot \gamma_n \sim 9 (E_n/1 \text{ EeV}) \text{ kpc}$$

[c.f. Milky Way radius ~ 8 kpc]

UHE neutrons in Auger

Neutron showers indistinguishable from proton showers

Identify from excess of CRs from source direction at E > I EeV

UHE neutrons in Auger

Unweighted P-value P

2.3 EoV

>3 EoV

1.2 E v

01055		110.	<u>≥1 DC v</u>	1-2 LC V	2-0 LC V	≥0 LCV
ms	ec PSRs	68	0.86	0.53	0.64	0.65
γ -r	ay PSRs	77	0.82	0.96	0.38	0.64
LM	IXB	87	0.041	0.12	0.13	0.54
HM	IXB	48	0.095	0.090	0.22	0.66
H.I	E.S.S. PWN	17	0.88	0.87	0.75	0.042
H.I	E.S.S. other	16	0.42	0.83	0.66	0.028
H.I	E.S.S. UNID	15	0.48	0.69	0.88	0.86
Mi	croquasars	13	0.031	0.26	0.23	0.56
Ma	gnetars	16	0.73	0.85	0.83	0.41
Ga	l. Center	1	0.24	0.48	0.22	0.17
Ga	l. Plane	1	0.96	0.91	0.70	0.25

>1 EoV

Class

No

Blind/targeted/ stacked searches have placed strong limits on neutron flux at E > I EeV from steady Galactic sources/ GC

JHE neutrons in Auger			Unweighted P-value P			
	Class	No.	$\geq 1 { m EeV}$	$1-2 { m EeV}$	2-3 EeV	$\geq 3~{ m EeV}$
Neutron trigger in AA	msec PSRs γ-ray PSRs LMXB HMXB	68 77 87 48	0.86 0.82 0.041 0.095	0.53 0.96 0.12 0.090	0.64 0.38 0.13 0.22 75	0.65 0.64 0.54 0.66 0.042
Each Auger shower is a r singlet stream)	neutron candida	ate ((cf. IceC	Cube	56 88 23 33 22	0.028 0.86 0.56 0.41 0.17
Bind/ Background doublet rate Blind/ ~0.05/yr* stacke *sensitive to other exper	~ I /yr, threefold iments' data stream	d coi rate	Smith et al. 2	NCES 013,		0.25
nave placed strongstorelimits on neutron0.04flux at E > I EeV0.02from steady0.02GC0.01Auge	180 er Coll.ApJ 789 (2014) L34	60	GC -30 -60	300		40

UHE photons distinguishable from hadronic showers FD: state of the art (X_{max})

UHE photons distinguishable from hadronic showers

SD: Universality/shower radius of curvature/risetime/ muon content) \longrightarrow Much higher statistics, real-time reconstruction

-New triggers installed in 2013 in SD array

-Trigger probability, at large distance from shower axis significantly enhanced for photons

-100 x previous search statistics (lower E threshold)/new triggers used

- γ -like showers trigger AMON

-New triggers installed in 2013 in SD array

-Trigger probability, at large distance from shower axis significantly enhanced for photons

-100 x previous search statistics (lower E threshold)/new triggers used

- γ -like showers trigger AMON

UHE neutrinos

Increased exposure Improved low-energy trigger (low-energy threshold) Improved mass discrimination power

Outlook

Auger triggering and follow-up partner for UHE neutrons/neutrinos/photons in multi-messenger searches (active in AMON)

No neutral flux identified yet- but close to benchmark cosmogenic predictions

Surface detector upgrade will facilitate detection of UHE neutrals + follow-up alerts!

Back-up

"Young" EM shower front

"Old" muonic shower front

Signatures of young/inclined showers:

Time-over-threshold (ToT) trigger:

and/or large Area-over-Peak:

Search data sample (98% of the total): 22853 events

Observables:

- L_{Ldf} deviation from average data LDF
- Δ rise time deviation from the data benchmark

Strictest limits in range E > I EeV

- Top-down models severely constrained by current limits
- Pure p composition of UHECRs+strong source evolution disfavoured
- No point-sources detected

Binary BH mergers can produce UHE neutrinos, if there are magnetic fields and disk debris remaining from the formation of the two black holes (Kotera & Silk 2016, Anchordoqui 2016)

Binary BH mergers can produce UHE neutrinos, if there are magnetic fields and disk debris remaining from the formation of the two black holes (Kotera & Silk 2016, Anchordoqui 2016)

No candidates detected within 500s or 1 day after GW140914/GW15226/LVT15012

▶Limits in ~100 PeV-~25 EeV range:

 $E_{\nu,\text{tot}}(\delta = -53^{\circ}) < 7.7 \times 10^{53} \text{erg}, \text{ for GW150914}$ $E_{\nu,\text{tot}}(\delta = 55^{\circ}) < 7.9 \times 10^{53} \text{erg}, \text{ for GW151226}$