### Gamma-ray Novae: Rare or Nearby? P. J. Morris, G. Cotter, A. M. Brown & P. M. Chadwick

# Cataclysmic Variables (CVs): Novae Progenitors

- White dwarf with a secondary main sequence companion star
- The white dwarf is accreting mass from the secondary
- Eventually enough mass accumulates for a thermonuclear runaway to occur on the surface of the white dwarf: a nova event.



Artist's rendition of a white dwarf accumulating mass from a nearby companion star. This type of progenitor system would be considered singly-degenerate.

Image courtesy of David A. Hardy, © David A. Hardy/www.astroart.org.

# Types of Nova

| Nova                          | Classical                      | Recurrent                  | Dwarf                 |
|-------------------------------|--------------------------------|----------------------------|-----------------------|
| Timescale                     | 10 <sup>4–5</sup> years        | 20 – 40 years              | 30 – 300 days         |
| Factor increase in brightness | 10 <sup>6</sup>                | 10 <sup>3</sup>            | 10                    |
| Magnitude change              | 12                             | 8                          | 6                     |
| Mechanism                     | Thermonuclear<br>Runaway (TNR) | Combination of<br>TNR & DI | Disk Instability (DI) |

Carroll & Ostlie, 2007

### Intro to Gamma-ray Astronomy: The Fermi LAT

- The LAT instrument consists of silicon/tungsten layers
- Tungsten causes the incident gamma-ray to convert into an e<sup>+</sup>e<sup>-</sup> pair
- The silicon allows the e<sup>+</sup>e<sup>-</sup> pair to be tracked through the detector
- As the e<sup>+</sup>e<sup>-</sup> pair can scatter in the instrument, the incident direction can be difficult to reproduce.



| Launch Date    | 11 <sup>th</sup> June 2008 |  |  |  |
|----------------|----------------------------|--|--|--|
| Energy Range   | 20MeV-800GeV               |  |  |  |
| Orbital Period | 95min                      |  |  |  |

### Maximum Likelihood Analysis

- Data is typically downloaded for an  $\approx 10^\circ$  field of view (FoV)
- Each source is modelled using a specific function, typically a power law, with the probability of giving the observations evaluated by a maximum likelihood:

$$\log L = \sum_{i} \log m_{i} - N_{pred}$$

• The significance of each source is evaluated using the test statistic (TS),

 $TS = -2(\log L_0 / \log L_1)$ where  $L_0$  and  $L_1$  are the likelihoods with and without the source in question.

• As a rule of thumb,  $\sigma = \sqrt{TS}$ 



### The > $5\sigma$ Classical Novae

15

10

LAT (>100 MeV)

 With the exception of V407 Cyg, the novae are believed to have no unusual characteristics.



V339 Del 2013

### Distances?

| Nova                                                 | V407 Cyg 2010         | V1324 Sco 2012          | V959 Mon 2012       | V339 Del 2013         |
|------------------------------------------------------|-----------------------|-------------------------|---------------------|-----------------------|
| Distance (kpc)                                       | 2.7                   | 4.5                     | 3.6                 | 4.2                   |
| Peak magnitude                                       | 6.9                   | 10.0                    | 5*                  | 4.3                   |
| Peak date                                            | 10.80 Mar 2010        | 19.96 Jun 2012          | _                   | 16.50 Aug 2013        |
| Optical RA, Decl.                                    | 315.5409°, +45.7758°  | 267.7246°,<br>-32.6224° | 99.9108°, +5.8980°  | 305.8792°, +20.7681°  |
| Optical I, b                                         | 86.9826°,<br>-0.4820° | 357.4255°,<br>-2.8723°  | 206.3406°, +0.0754° | 62.2003°,<br>-9.4234° |
| LAT RA, Decl.                                        | 315.57°, +45.75°      | 267.72°,<br>32.69°      | 99.98°, +5.86°      | 305.91°, +20.78°      |
| Optical-LAT offset                                   | 0.03°                 | 0.07°                   | 0.08°               | 0.03°                 |
| LAT error radius (95%)                               | 0.08°                 | 0.09°                   | 0.18°               | 0.12°                 |
| t <sub>s</sub> (date)                                | 10 Mar 2010           | 15 Jun 2012             | 19 Jun 2012         | 16 Aug 2013           |
| t <sub>s</sub> (MJD)                                 | 55265                 | 56093                   | 56097               | 56520                 |
| Duration (days)                                      | 22                    | 17                      | 22                  | 27                    |
| $L_{\gamma}$ (10 <sup>35</sup> erg s <sup>-1</sup> ) | 3.2                   | 8.6                     | 3.7                 | 2.6                   |
| Total energy (10 <sup>41</sup> erg)                  | 6.1                   | 13                      | 7.1                 | 6.0                   |

\*For V959 Mon, the optical peak magnitude of 9.4 (unfiltered) was observed ~50 days after the initial  $\gamma$ -ray detection, and we adopted an inferred peak of 5 magnitude (9).

#### Ackermann et al. (2012)

# Can't We Just Measure the Distances to a load of novae?

- Method 1: Novae as standardisable candles
  - Poor correlation
  - Affected by interstellar reddening
- Method 2: Resolving the nova shell
  - Accurate
  - Likely only able to resolve the shells of nearby novae.



### What is the Nova Occurrence Rate? -Galactic Method

#### Advantages

 Based on Milky Way, hence novae more likely to represent Galactic population

#### Disadvantages

- Unable to see whole population due to location in the disc
- Reddening effects difficult to account for
- Galaxy may not be axis-symmetric
- Requires observations of the whole sky
- Relies on the assumption that novae are standardisable candles (Cohen, 1985)



$$N_{novae} = 35 \pm 11 \text{ yr}^{-1}$$
  
Shafter (1997)

### What is the Nova Occurrence Rate? -Extragalactic Method

#### **Advantages**

- Reddening roughly constant for all sources
- Sources approximately equidistant
- Can spatially sample a large fraction of the total population

#### Disadvantages

- Relies on scaling relations
- Ignores local effects
- Can be influenced by the relative inclination of the host galaxy



Delle Valle & Livio (1994)

### Novae in M31

- As the closest galaxy, M31 is a prime candidate for a nova survey.
- Spatial binning of novae in M31.
- Ellipses defined differently for bulge and disc regions.
- Data available online (<u>http://www.mpe.mpg.d</u> e/~m31novae/opt/m31/i ndex.php)



Based on 176+86 (disc+bulge) R-band novae

### Defining Milky Way properties -Well constrained parameters?



- Milky Way radius: Typically believed to be in the range 15-25 kpc
- Solar distance from the Galactic centre is well constrained to be close to 8 kpc
- The bulge/disc boundary is not well defined

e.g. Carroll and Ostlie (2007)

## Populating the Milky Way in 2D

- The axis of the Solar System to the Galactic centre was taken as  $\phi = 20^{\circ}$  (Binney et al. 1997)
- We assume that novae are likely to be found within the thin disc of the milky way, such that  $P(z) \propto \exp{\frac{z}{z_d}}$ , where  $z_d = 350$  pc is the characteristic scale height (e.g. Dawson & Johnson, 1994).



### Populating the Milky Way: Bulge

 The below functions used to model bulge infra-red isophotes from Dwek et al. 1995 and Binney et al. 1997 were assessed for nova z production.

$$\rho_B = \rho_0 \frac{\mathrm{e}^{-a^2/a_m^2}}{\left(1 + a/a_0\right)^{1.8}},\tag{1a}$$

$$a = \left(x^2 + \frac{y^2}{y_0^2} + \frac{z^2}{z_0^2}\right)^{1/2},$$
 (1b)

$$\rho_1 = \rho_0 \exp(-0.5r^2),$$
(2a)

$$\rho_2 = \rho_0 r^{-1.8} \exp(-r^3), \tag{2b}$$

$$\rho_3 = \rho_0 \exp(-r), \tag{2c}$$

where r is defined by,

$$r = \left[ \left(\frac{x}{x_0}\right)^2 + \left(\frac{y}{y_0}\right)^2 + \left(\frac{z}{z_0}\right)^2 \right]^{\frac{1}{2}}, \quad (3)$$



## Reddening

• Model of Dawson and Johnson (1994), where  $\alpha_{GC} = 9.4 m_V \text{ pc}^{-1}$ ,  $r_d = 5 \text{kpc}$ and  $z_d = 0.2 \text{ kpc}$ 



### **Galactic Novae Statistics**

- List by Koji Mukai: <u>http://asd.gsfc.nasa.gov</u> /Koji.Mukai/novae/nova <u>e.html</u>
- In the first 8 years of LAT observations, 69 optically identified novae, 6 observed to > 5σ in gamma-rays
- Dimmest has  $m_V \approx 17.5$



### Assigning Gamma-ray Fluxes

| nova                                                                                 | V407 Cyg       | V1324 Sco      | V959 Mon       | V339 Del      | V1369 Cen     | $V5668 \ Sgr$ |
|--------------------------------------------------------------------------------------|----------------|----------------|----------------|---------------|---------------|---------------|
| Peak daily flux, $F_{\gamma}$ (10 <sup>-7</sup> ph s <sup>-1</sup> m <sup>-2</sup> ) | $13.9 \pm 2.6$ | $12.3 \pm 2.9$ | $13.8 \pm 3.7$ | $5.9 \pm 1.1$ | $5.1 \pm 1.3$ | $1.8 \pm 0.8$ |
| $F_{\gamma}/F_{GalDiff}$                                                             | 0.254          | 0.185          | 0.305          | 0.381         | 0.0897        | 0.0704        |
| TS value                                                                             | 56.8           | 35.0           | 27.7           | 65.7          | 37.6          | 11.6          |
| Distance (kpc)                                                                       | $3.5 \pm 0.3$  | $4.3 \pm 0.9$  | $1.4 \pm 0.4$  | $3.2 \pm 0.3$ | 2.5           | $1.5 \pm 0.2$ |

• For gamma-rays,

$$F_{\gamma}=rac{L_{\gamma}}{4\pi d^2}$$
 ,

hence  $L_{\gamma}$  can be obtained for every source.

 As there is a very small sample size, a flat distribution was assumed between them, and used to assign gamma-ray fluxes to simulated novae.

### Results

- Simulations were able to produce the observed percentage of gamma-ray detected novae
- Simulations return  $5 \pm 2$  gamma-ray novae for  $68 \pm 12$  optical novae.
- The limiting factor is always the gamma-ray background and not optical visibility



# Results

- The number of optical novae detected strongly depends on threshold magnitude
- The number of novae discovered in gammarays and optically is independent of this
- Therefore, the limiting factor is always the gamma-ray background and not optical visibility



# Results

- Novae with  $m_R > 12$ are unlikely to be observed in gammarays
- The same is true for novae at d > 8 kpc, though at this distance we can realistically only expect to observe gamma-ray bright novae.



## Conclusions

- Novae with  $m_R > 12$  are unlikely to be observed in gamma-rays.
- We expect all gamma-ray detected novae do occur within a distance  $d < 8 \ \rm kpc$
- The gamma-ray sky background is the greatest inhibition to the discovery of gamma-ray novae.
- The Fermi LAT has detected most, if not all, gamma-ray novae that occur in locations not dominated by the gamma-ray sky background.
- All classical novae are sources of gamma-rays, and their apparent rarity is a consequence of us only being able to detect a nearby sub-sample.

# Appendix 1: V407 Cyg: The First Gamma-ray Nova

- Observed in gamma-rays during a classical nova outburst in 2010
- Unusual system as the secondary star is a pulsating Mira variable
- Gamma-rays were thought to be caused by interaction between the nova shell and dense Mira wind
- It was concluded that novae would not generally emit gamma-rays



Abdo et al. 2010