Bimodal radio variability in OVRO-40m-monitored blazars

I. Liodakis¹

Collaborators: A. Readhead², T. Hovatta^{3,4}, W. Max-Moerbeck⁵, J. Richards², D. Blinov¹, I. Papadakis¹, V. Pavlidou¹

¹University of Crete, ²California Institute of Technology, ³Aalto University, ⁴Tuorla Observatory ⁵Max-Planck Institute fur Radioastronomie

> HAP-Monitoring of the non-thermal Universe December 2016

OVRO monitored blazars...

 Monitoring blazars since 2008 in support of Fermi gamma-ray space telescope:

– At 15 GHz

– 1158 sources from the Candidate Gamma-Ray Blazar Survey (CGRaBS, a complete sample)

 additional gamma-ray loud sources resulting in sample of >1800 sources

- cadence of twice per week

First maximum likelihood approach...

(Richards et al. 2011)

15 GHz BL Lacertae

15 GHz BL Lacertae

Bimodal model...

15 GHz BL Lacertae

Sample...

Sanity check...

1) Are all sources bimodal?

~8.9% (52) sources can be considered consistent with a single-Gaussian

2) How does bimodal fare against and non-likelihood?

$$S = (1 - f_t) S_{off} + f_t S_{on} \qquad \langle m \rangle = \sqrt{\langle Var \rangle} / \langle S \rangle \langle Var \rangle = (1 - f_t) (\sigma_{off}^2 + S_{off}^2) + f_t (\sigma_{on}^2 + S_{on}^2) - \langle S \rangle^2$$

Bimodal vs Not-likelihood

Results...

Exponential distribution with mean:

$$\langle m_{on} \rangle = 0.089 \pm 0.004$$

Exponential distribution with mean:

 $\langle R = S_{on}/S_{off} \rangle = 1.485 \pm 0.006$

Gamma-ray loud vs Gamma-ray quiet

Kolmogorov-Smirnov : **10**⁻⁸% Wilcoxon rank sum: **10**⁻¹⁰%

Gamma-ray loud vs Gamma-ray quiet

Intrinsic distribution of timescales

The timescale modulation factor (m) follows an exponential distribution!

(Liodakis & Pavlidou 2015a; Liodakis, Pavlidou & Angelakis 2016a)

Intrinsic distribution of timescales

(Liodakis et al., 2016b)

Application to EVPA rotations observed by RoboPol!

K-S test – Normal: 31.5%

K-S test – Uniform: 31%

Normal: $\mu = 87 \text{ days}$, $\sigma = 5 \text{ days}$ Uniform: $t_{min} = 80 \text{ days}$, $t_{max} = 96 \text{ days}$

(Liodakis et al., 2016b)

Summary & Conclusions...

We have created a 5-d maximum likelihood formalism to capture the bimodal behavior of OVRO monitored blazars

The flaring ratio and off-state and on-state modulation indices follow exponential distributions.

BL Lacs are more variable in their on-state with larger outbursts than the FSRQs

Blazars are more variable with larger outbursts than the U-Rs in either state.

Gamma-ray loud sources are **systematically more variable with larger outbursts** than the Gamma-ray quiet sources.

We have created a novel mathematical formalism to **uncover the intrinsic distribution of timescales** in blazars

The fractional bias of our method is below **8% regardless of sample size** for time intervals between observations <14 days

The intrinsic distribution of EVPA durations seen by RoboPol is **narrow** (most probable either normal or uniform)

ADDITIONAL SLIDES

Bimodal vs single-Gaussian

Bimodal vs Not-likelihood (Below flux-limit)

