

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Photon searches with the Pierre Auger Observatory and the connection to TeV gamma-ray observations

Daniel Kuempel RWTH Aachen University

HAP Workshop Cochem December 2016

Search for photons at ultra-high energies radio ... opt ... MeV GeV TeV PeV EeV ZeV photons OK OK OK OK OK OK ?????? starting ~400 years ago ...

- Photons, as the gauge bosons of the EM force, at such enormous energy are unique messengers and probes of extreme and, possibly, new physics
- UHE photons are a *smoking gun* for non-acceleration models
- UHE photons are important when trying to constrain interaction parameters such as the proton-air-cross-section at energies far beyond LHC energies
- UHE photons point back to the location of their production. Arrival directions may correlate to possible sources

 ▶ UHE photons play a role in fundamental physics: E.g. they help to constrain Lorentz invariance violation (LIV)
 \$\gamma_{UHE} + \gamma_b \times e^+ + e^-\$ (more photons expected in LIV)
 ▶ UHE photons may help to interpret TeV observations

Detection

primary

photon

Two main characteristics of photon-induced air-showers:

- delayed shower development (larger X_{max})
- Lack of muons due to a smaller photo-nuclear crosssection

Fluorescence light

primary a iron

Measurement via extensive air showers

energy deposit

Xmax

atmospheric depth

Lateral distribution:

shop

Pierre Auger Observatory

Da

Diffuse photon search

Concentrate on latest results using hybrid events

Appeared last Tuesday on arXiv (arXiv.1612.01517) and is submitted to JCAP

Diffuse photon search

Concentrate on latest results using hybrid events

Appeared last Tuesday on arXiv (arXiv.1612.01517) and is submitted to JCAP

Experimental observables

Depth of shower maximum X_{max} (FD related)

Number of triggered surface detector stations N_{stat} (SD related)

Multivariate Analysis

Boosted decision trees (BDT)

- Train Boosted Decision Trees with photon and proton simulations (CORSIKA v. 6.990)
- Apply to data collected between Jan. 2005 and Dec. 2013 (ensure good geometry and profile reconstruction)
- Background rejection about 99% (50% photon efficiency)

Daniel Kuempel

Results

- Three candidate events compatible with background expectation
- Calculate upper limits

Feldman-Cousins upper limit at 95% CL $\Phi_{UL}^{0.95}(E_{\gamma} > E_0) = \frac{N_{\gamma}^{0.95}(E_{\gamma} > E_0)}{\mathcal{E}_{\gamma}(E_{\gamma} > E_0|E_{\gamma}^{-\Gamma})}$ Integrated exposure About a factor 4 **improved** limit Some top-down models severely constrained Optimistic GZK scenarios in reach

> No photon identification yet

Idea directional searches

Directional searches for photon point sources (A. Aab et al. ApJ 789 (2014) 160)

The signature is an accumulation of events from a specific direction in the sky

(neutral particles are not deflected in magnetic fields)

Idea:

Select photon-like air showers and search for an accumulation of events

Background rejection

HAP Monitoring Workshop

Analysis details

- ▶ Blind search: 526200 target directions between declination -85° and +20°.
- Optimized β_{cut} is determined by minimizing upper limit using Zech's method G. Zech, NIM A277, 608-610 (1989)

Data:

- Energy range $10^{17.3} < E/eV < 10^{18.5}$
- Zenith angle range: 0° 60°
- ▶ Angular resolution: 0.7°
- ▶ Top-hat counting with radius 1°

Results

Calculate p-value of observation

Chance probability that p_{min} is observed anywhere in the sky: 36%

Results

Interpretation

Exclude extrapolation of TeV sources

- Absense of point source photons does not mean that sources are extragalactic:
 - Maybe produced in transient sources (e.g. GRB or SN)
 - Maybe emitting in jets not pointing to Earth
 - ► Maybe EeV protons from sources with much **lower optical depth** (comp. to TeV sources)

Next steps

Restrict analysis to predefined target sets (reduce trial factor)

paper close to publication

Class	No. photon search	galactic/extragalactic
msec PSRs	67	galactic
γ -ray PSRs	75	galactic
LMXB	87	galactic
HMXB	48	galactic
H.E.S.S. PWN	17	galactic
H.E.S.S. other	16	galactic
H.E.S.S. UNID	20	galactic
Microquasars	13	galactic
Magnetars	16	galactic
Gal. Center	1	galactic
LMC	3	extragalactic
Cen A	1	extragalactic

Galactic set: Similar to previous neutron search paper (ApJL 789 (2014) L34)

Extragalactic set: Include nearby extragalactic sources

- Cen A (d = 3.8 Mpc): Include core region
- Large Magellanic Cloud (d = 50 kpc): (H.E.S.S. Science 347 (2015) 6220, 406)
 - N 157B J0537-691: Pulsar wind nebula
 - ▶ 30 Dor C J0535-691: Superbubble
 - N 132D J0525-696: Core-collaps SNR

Galactic center region

Interpretation of H.E.S.S. PeVatron results (H.E.S.S., Nature, 531, 406 (2016))

Galactic center region

Interpretation of H.E.S.S. PeVatron results (H.E.S.S., Nature, 531, 406 (2016))

Galactic center region

Interpretation of H.E.S.S. PeVatron results (H.E.S.S., Nature, 531, 406 (2016))

Constrain naive extrapolation to EeV energies
Set upper limit on cutoff energy

Summary

Search for UHE photons with the Pierre Auger Observatory

- Search for ultra-high energy photons is an interesting field with high discovery potential
 - ► No photons in EeV range observed so far

Diffuse searches:

- Top-down models are strongly disfavoured
- Upper limits start to constrain optimistic GZK-scenarios

Directional searches:

- ▶ First particle and energy flux upper limits of photon point sources in the EeV range
- Severe constraints on the continuation of measured TeV fluxes

Daniel Kuempel

Backup slides

What sources can we target?

Assumption:

Photons are produced in the vicinity of the source, e.g. via proton-gamma or proton-proton interactions

Photon horizon

- Primary photons can extend the photon horizon. However, strongly dependent on (unknown) extragalactic magnetic field
- Considering only primary photons galactic and nearby extragalactic sources can be targeted

AugerPrime

Main goals:

Auger upgrade

- Origin of the flux suppression
- Proton contribution in the flux suppression region
- Fundamental particle physics

Daniel Kuempel

Prototype detector

Hybrid detector

Daniel Kuempel