The location of the gamma-ray emission site in blazars from radio and gamma-ray monitoring

Walter Max-Moerbeck

Max-Planck-Institut für Radioastronomie, Bonn

Monitoring the non-thermal Universe Cochem, Germany December 8, 2016

Collaborators

OVRO blazar monitoring program:

- A. Readhead, T. Pearson (Caltech OVRO)
- T. Hovatta (Aalto U.)
- R. Reeves (U. de Concepción)
- J. Richards
- J. A. Zensus (MPIfR)

and many others

Blazars

Urry and Padovani 1995

VLBI can resolve these objects

- Radio loud
- Small angular size
- Single sided jet
- Superluminal expansion

Blazars: Spectral Energy Distribution

Synchrotron emission

Inverse Compton

- Synchrotron self Compton
- External Compton
- •Accretion disk, corona
- •Broad line region
- Dust torus

Hadronic models

Blazars are extremely variable

Y -ray

X-ray

optical/UV

optical polarization degree

optical polarization angle

radio mm and cm

Variability in 3C 279 from Hayashida et al 2012

Uncertain location of the gamma-ray emission site

Close to the central engine < 1 pc

Blandford and Levinson 1995

Few parsecs down the jet

Jorstad et al. 2001, Marscher 2006

Observational constraints on the gamma-ray emission site

- Direct imaging is not possible
 - VLBI observations have submilliarcsecond resolution
 - Gamma-ray telescopes have $\sim 0.2^{\circ}$ at E ~ 10 GeV
- One alternative is to use the variability
- Correlated variations expected if the emission regions are related

- Fermi monitors the sky continuously at high energies
 - Energies from 20 MeV to 300 GeV
- A full sky map every 3 hours

Radio Monitoring: The OVRO 40 m Telescope Blazar Monitoring Program

- Monitoring ~1800 sources
- Radio continuum observations
 - 15 GHz with 3 GHz bandwidth
 - ~4 mJy thermal noise
 3% typical error
- Two observations per week since 2008
- Richards et al. 2011 for details

The OVRO 40 m telescope at night by J. L. Richards

More details in our website www.astro.caltech.edu/ovroblazars

Example of 15 GHz light curves (2008-2016)

OVRO/Fermi-LAT results: Relation between the radio and gamma-ray bands

- 4 years of radio and 3 years of gamma-ray data
- 3 out of 41 sources significant correlation
- In all cases radio lags gamma-ray emission
 - => gamma-rays are produced inside the radio core
- Consistent signature in multiwavelength radio data using source stacking (Fuhrmann et al. 2014)

Max-Moerbeck et al. 2014a

OVRO/Fermi-LAT results: Relation between the radio and gamma-ray bands

- 4 years of radio and 3 years of gamma-ray data
- 3 out of 41 sources significant correlation
- In all cases radio lags gamma-ray emission
 - => gamma-rays are produced inside the radio core
- Consistent signature in multiwavelength radio data using source stacking (Fuhrmann et al. 2014)

Characterization of the Power Spectral Density

- Variability is one the main characteristics of blazars
- Essential ingredient for crosscorrelation significances
- Several models are available
 - Power spectral density (PSD)
 - Stochastic models
- Characterization of the PSDs is complicated by the uneven sampling of the light curves
 - Max-Moerbeck et al 2014b
 based on PSRESP (Uttley et al. 2002)

Variability in all wavebands 3C 279 from Hayashida et al. 2012

Characterization of the radio variability:

- We use a simple $PSD \propto 1/f^{\beta}$
- 8 years of radio data
- 1,722 sources, 421 with high quality PSD fits

PSD results:

No difference between different blazar classes

• The values cluster around $\beta \sim 2.1$

PSD results:

No difference between different blazar classes

 The values cluster around $\beta \sim 2.1$

- Consistent distributions for different source populations
 - Gamma-ray loud v. gammaray quiet: KS-test p-value=0.23

BL Lac v. FSRQ: KS-test p-value=0.24

8 years of radio and 7 years of gamma-ray data

8 years of radio and 7 years of gamma-ray data

8 years of radio and gamma-ray monitoring

8 years of radio and gamma-ray monitoring

8 years of radio and gamma-ray monitoring

- Preliminary results for 33 sources
 - 4 with 3sigma significant time lags
 - Radio lags gamma-ray emission as seen before
- Results in preparation for more (> 100)

Simulating light curves

- A light curve can be characterized by its
 - Power Spectral Density
 - Probability Density Function
- Methods to simulate light curves
 - Timmer and König 1995
 - PSD and Gaussian PDF
 - Emmanoulopoulos et al 2013
 - PSD and arbitrary PDF
- Don't forget aliasing and red-noise leakage
 - Aliasing -> include high frequencies, finely sampled data
 - Red-noise leakage -> include low frequencies, longer light curves

The significance depends on PSD

Simulated light curves with different $PSD \propto 1/f^{\beta}$

Error on the slope of the PSD and limits of the method

Good sampling Low noise

⇒ well constrained PSD exponent

Error on the slope of the PSD and limits of the method

Good sampling but high noise

⇒ non-constrained PSD exponent

An example of a systematic problems with a simple methods

Example case where we directly fit a slope to log(P)-log(f)

Only for the purpose of the example, don't do it a home

Lomb-Scargle periodogram

Evenly sampled with interpolation + DFT

An extreme example of a systematic problem

Lomb-Scargle periodogram

No spectra steeper than 1 can be fit

Evenly sampled with interpolation + DFT

No problems fitting stepper spectra BUT the slopes are biased to higher values.

We can see how simply fitting a slope to log(P)-log(f) produces problems

It is a good idea to validate any method with signals of known properties

Summary

- OVRO blazar monitoring program
 - Monitoring of ~1800 blazars at 15 GHz, twice per week since 2008
- Blazar variability is essential for their study
 - Access to small scales and help us understand their multiband behavior
- Correlated radio/gamma-ray variability for uniform sample
 - Only a minority of the sources show significant correlations, always with radio lagging gamma-ray variations
 - We are currently looking at 8 years of radio data and gamma-ray monitoring
- Progress in methodology but there are still some problems
 - Simulations are a powerful tool that should be use with care