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Fig. 1.—Light curves. Top: Front segments, 25–100 keV band. Middle:
Rear segments, 25–100 keV band. Bottom: Front segments, 100–200 keV band.
The plots show the main peak and decaying tail with the 7.6 s double-peaked
pulse profile. The spike in the front segments at 270 s is due to the removal
of an attenuator. Zero time corresponds to 21:30 UTC on 2004 December 27.

Fig. 2.—Average power spectra from 2.27 s intervals (0.3 cycles) centered
on different rotational phases, computed using photons from the front segments
with recorded energies in the range 25–100 keV. The top curve was computed
using 15 successive 2.27 s intervals, ≈150–260 s after the main flare, at a
rotational phase that includes the secondary peak and part of the DC phase.
The frequency resolution is 1 Hz. The middle curve shows the same spectrum
with 2 Hz frequency resolution. The QPO at 92.5 Hz is clearly visible. The
bottom curve is for the same time period but is an average of rotational phases
!2.27 s away from the 92.5 Hz signal phase: no QPOs are detected. Char-
acteristic error bars are shown for each spectrum.

Fig. 1). Although the flare was not directly in the RHESSI field
of view, most photons in the front segments would have been
direct. Given RHESSI’s native time resolution of 1 binary ms
(2!20 s), these events are clearly suitable for high-frequency
timing analysis. The rear segment flux, by contrast, comprises
scattered photons from the front segments, direct photons en-
tering through the walls of the spacecraft, and albedo flux. The
latter, which could be as much as 40%–50% of the direct flux
in the energy range of interest (McConnell et al. 2004), has a
severe impact on timing analysis. At the time of the flare,
RHESSI was passing the limbs of the Earth (as viewed from
the SGR). Albedo flux is limb-brightened, particularly if the
incoming flux is polarized (Willis et al. 2005). This means that
a large fraction of the detected photons could have incurred
additional delays of up to ≈0.02 s, smearing out signals above
≈50 Hz. Note that although count rates in the rear segments
exceed those recorded by RXTE, count rates in the front seg-
ments are slightly lower. It should also be noted that scattering
from the spacecraft walls and the Earth will cause the photon
energies recorded by RHESSI, particularly in the rear segments,
to deviate from the true energies of the incident photons. Quan-
tifying this effect precisely is extremely difficult. For this reason
we use broad energy bands in our analysis and urge some care
in interpreting the recorded photon energies.
We started by extracting event lists from the RHESSI data,

excluding only events occurring in a 2 s period ≈270 s after
the peak of the flare when an attenuator is removed (the as-
sociated spike introduces spurious variability, particularly in
the front segments). Timing analysis was carried out using the
statistic (Buccheri et al. 1983; Strohmayer & Markwardt2Zn

1999). Israel et al. (2005) showed that the presence of the high-
frequency signals was dependent on the phase of the 7.6 s
rotational pulse; the signals appeared most strongly at phases
away from the main peak. Similar phase-dependence was also
observed in the SGR 1900"14 hyperflare (Strohmayer &Watts
2005). As such, we have conducted a phase-dependent analysis.
We searched for phase-dependent QPOs by folding data of a

given rotational phase from Np pulses, generating power spectra
that are averaged to a frequency resolution Dn. The distribution
of noise powers is a x2 distribution with 2N degrees of freedom,
where ; P is the rotational period and DF isN p N Dn/(PDF)p

the phase window under consideration ( ). We0 ! DF ≤ 1

searched over a range ofDF,Np, and energy bands for any signals
with significance 13 j.
We started by searching for signals in the range 50–1000 Hz,

using only data from the front segments. In this range the noise
profile is Poissonian. We find only two signals that meet our
search criterion.
The first, for photons with recorded energies in the range

25–100 keV, is the QPO at 92.5 Hz previously reported by
Israel et al. (2005), shown in Figure 2. This signal, which we
detect only at a rotational phase away from the main peak, is
strongest ≈150–260 s after the initial flare. As noted by Israel
et al. (2005), this occurs in conjunction with an increase in
unpulsed emission. At Hz the QPO is resolved; atDn p 1

Hz it is not. We estimate the significance of theDn p 2
Hz power using a x2 distribution with 68 degrees ofDn p 2

freedom, which is the distribution expected based on the num-
ber of independent frequency bins and pulses averaged. The
peak at 93 Hz has a single-trial probability of . Ap-!72# 10
plying a correction for the number of frequency bins, inde-
pendent time periods, and rotational phases searched, we arrive
at a significance of ≈ . That this is lower than the!31# 10
significance reported by Israel et al. (2005) is to be expected,
given that the RHESSI front segment count rate is lower than
that of RXTE. A search for the signal in the RHESSI rear
segments indicates that the signal has indeed been smeared out
due to albedo flux. Fitting the QPO with a Lorentzian profile,
we find a centroid frequency of Hz, with a coher-92.7! 0.1
ence value Q of 40. The integrated rms fractional amplitude is

, in good agreement with Israel et al. (2005).10%! 0.3%
The independent detection with RHESSI of the 92.5 Hz QPO

is a strong confirmation of the RXTE findings. Using the sig-
nificance quoted by Israel et al. (2005), we can compute the
probability of getting two apparent detections at the same fre-
quency, time, and phase due to noise alone, given the number
of trials. If we do this, we find that the detection of the 92.5 Hz
QPO has a combined significance of 16 j, an extremely robust
result.
The second detection, for photons with recorded energies in

Watts & Strohmayer, 2005

Maselli et al, 2013

2 S. Vaughan et al.

Over the years there have been many reports of periodic or
quasi-periodic variations from AGN, spanning the range of AGN
types, from radio to gamma-rays, and on timescales from minutes
to years. However, this field has a chequered history. Many reports
of periodic variations are based on very few observed cycles of the
claimed period, and a failure to properly account for the random
(red noise) variations which can produce intervals of seemingly pe-
riodic behaviour. See Press (1978) for a general discussion of this
point, and Vaughan & Uttley (2006) for some specific examples
of periodicity claims drawn just from X-ray observations of nearby
AGN1. Further observations of the same targets usually fail to show
the strictly repeating, coherent oscillations expected from a truly
periodic process. As we enter the era of massive time-domain sur-
veys capable of studying 105 � 107 targets, it is becoming more im-
portant to carefully assess detection procedures in order to under-
stand and control the number of false detections. In this paper we
re-examine the case of PG 1302�102, and we consider the broader
problem of how di↵erent stochastic models can make it di�cult to
distinguish periodic modulation among light curves selected from
large time-domain surveys.

2 THE LIGHT CURVE OF PG 1302�102

Figure 1 (top panel) shows the eight years of CRTS photometric
data for PG 1302�102 fitted with a sinusoidal model. The data
comprise 290 V-band magnitude estimates with a mean of ⇡ 15.0
mag. The data were taken with two very similar telescopes (CSS
and MLS; these provided 234 and 56 photometric points, respec-
tively). The sampling pattern is irregular, comprising nine ‘seasons’
each spanning 4�5 months with gaps of 6�8 months. Within each
season there are ⇠ 7 nights of data, each containing four closely
spaced (�t ⇠ few minutes) photometric measurements. The error
bars provided by the CRTS pipeline processing are in this case
overestimated by a factor of ⇡ 4 � 5. This e↵ect can be seen by
examining the short timescale variations in the data: the rms varia-
tion of the magnitude estimates within groups of nearby data (each
group spanning < 20 days, where intrinsic variability is expected
to be weak, and only including groups with > 5 points) is a factor
⇡ 4 smaller than the error bars2.

The data clearly show significant variations, with an rms ⇠ 0.1
mag. We fitted the data (using weighted least squares) with a model
comprising a sinusoid plus a constant o↵set:

V(t) = A1 cos(2⇡ f0t) + A2 sin(2⇡ f0t) +C. (1)

(This is equivalent to a model A sin(2⇡ f0t + �) + C with amplitude
given by A2 = A2

1 + A2
2 and phase tan � = A1/A2.) The best-fitting

amplitude is (A2
1 + A2

2)1/2 = 0.125 mag and the best-fitting (ob-
server frame) period is t0 = 1/ f0 = 4.65± 0.06 yr, slightly di↵erent
from the 5.16 ± 0.24 yr found by G15a. For fitting their sinusoidal
model G15a included additional archival data – notably LINEAR
data (Sesar et al. 2011) – extending the observational baseline. The
overall fit statistic is �2 = 85.7 for 287 degrees of freedom, again
indicating that the error bars are too large. Comparing this model
to a constant gives ��2 = 741.1.

1 Arguably the best candidate for quasi-periodic AGN light curve was seen
in RE J1034 � 396 (Gierlinski et al. 2008), which showed ⇠ 16 ‘cycles’ in
a single, continuous X-ray observation.
2 We have examined CRTS data for other AGN of similar magnitude and
find that the photometric error bars are often considerably larger than the
short-term scatter in the data.
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Figure 1. Panel (a) shows the ⇡ 8 years of V-band Catalina Real-time Tran-
sient Survey (CRTS) data for PG 1302�102. Panels (b) and (c) show exam-
ple simulations of red noise with the same sampling pattern as the CRTS
data (black points) plus additional data to simulate three seasons of LIN-
EAR data (blue points). Panels (b) and (c) were generated by random pro-
cesses with no periodicity present (a bending power law power spectrum,
and a damped random walk, respectively). In each case, the continuous,
error-free simulation is shown as a pink curve and the sampled data are
shown as circles. The red curve shows the best-fitting sinusoid. Examples
(b) and (c) were randomly selected from the 100 best candidates in runs of
100, 000 simulations of each process.

3 BAYESIAN MODEL COMPARISON

It is also possible to fit the data using a stochastic model. However,
is not meaningful to simply compare the �2 values for these fits.
When fitting stochastic models to individual time series, the �2 fit
statistic loses its simple meaning as a diagnostic of the ‘goodness of
fit’. (This is because the variance of the process is itself a parameter
to be fitted; the standard �2 statistic only makes sense as a likeli-
hood proxy when the variance is fixed. In fact, �2 ! 0 is possible
for any su�ciently flexible stochastic process. See also Kozłowski
2016).

In order to compare a periodic model to a stochastic model, we
have performed a Bayesian model comparison between the sinu-
soidal model and a simple stochastic process, the damped random
walk model. We first computed the posterior densities for the pa-
rameters of each model using Markov Chain Monte Carlo (MCMC)
method. We used a method based on the ensemble sampler pro-
posed by Goodman & Weare (2010) with > 105 draws based on

MNRAS 000, 1–8 (2016)

Vaughan et al, 2016
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“The joint probability distribution 
does not change over time.”

NGC 5548: 
Peterson et al  (1999)



Periodicity Detection
Figure 1 The parameter space of SMBH binary pairs. The expected orbital periods for

SMBH close binary pairs at the specified separations as a function of total black-hole
mass. The solid upper line for each separation indicates a z = 5 track and the solid lower
line a z = 0.05 track whilst the two internal dotted lines show z = 1.0 (lower) and z = 2.0
(upper) tracks respectively. The hatched region indicates the range over which CRTS has
temporal coverage of 1.5 cycles or more of a periodic signal. The pink shaded region
shows the region of detection for the best CRTS candidate given the range of virial black-
hole masses reported in the literature. Also shown (solid black star) is the location of the
best known SMBH binary candidate, OJ 2876.
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Figure 2 The composite light curve for PG 1302-102 over a period of 7,338 days (⇠ 20
years). The light curve combines data from two CRTS telescopes (CSS and MLS) with
historical data from the LINEAR and ASAS surveys, and the literature (see Methods for
details). The error bars represent one standard deviation errors on the photometry values.
The dashed line indicates a sinusoid with period 1,884 days and amplitude 0.14 mag.
The uncertainty in the measured period is 88 days. Note that this does not reflect the
expected shape of the periodic waveform which will depend on the physical properties of
the system. MJD, modified Julian day.

8

Graham et al, 2015 Kjeldsen et al, 2009

one observation of the Z source GX 17+2 from the sample
analyzed by Homan et al. (2002), corresponding to SZ

between 0.5 and 0.6 (middle of the horizontal branch; see
Homan et al. 2002). Notice that since the two kHz peaks in
this observation are quite well separated from the other
components, our fits below 200 Hz do not affect the kHz
QPOs, so that for these high-frequency peaks we could
adopt the values reported in Homan et al. (2002). We
obtained the best fit with a model consisting of six Lorent-
zian components (see Fig. 8): a broad (Q ¼ 0:6) component
that we identify with Lb, a narrow one with a subharmonic
and a first harmonic (see Fig. 8) identified with LLF, and two
additional broad (Q < 1) components with characteristic
frequencies below !b, which we indicate as L0

b and L00
b.

Notice that the L0
b component is not very significant (about

3 "). The best-fit parameters can be found in Table 4.

3.7. Summary of the Fits and Comparison with
Power-LawModels

The three zero-centered Lorentzians Lb, Ll , and Lu are
required in many spectra to fit the band-limited noise. A
narrow low-frequency QPO LLF is detected in the black hole
candidate and in some of the neutron star spectra (preferen-
tially, those with the lower characteristic frequencies—note
that the frequencies are low in the BHC as well). The broad

hump component is required in most neutron star spectra
but not in the BHC. In 1E 1724"3045, when LLF and Lh

are simultaneously present, their centroid frequencies are
identical, but in GS 1826"24 these frequencies are usually
different.

In order to compare the quality of our current fits with
that of other models for broad components, we also fitted
the power spectra first with a combination of a broken
power law and one Lorentzian for the narrow LF QPO
peak. This model has seven free parameters (compared with
the nine of our model). We applied this model to two repre-

Fig. 5.—Power spectrum in !P! form for SLX 1735"269 (observation
M). Lines mark the best-fit model and its components.

Fig. 6.—Power spectra in !P! form for GS 1826"24 (observations N
andQ). Lines mark the best-fit model and its components.

TABLE 4

Best-Fit Characteristic Frequencies for GX 17+2 and Cir X-1

Observation !b0 !b00 !b !LF !l !u

#2

(dof)

GX 17+2

S .................... 0.87# 0.11 3.05# 0.29 6.93# 1.05 38.10# 0.25 537# 23a 798# 6a 150.2(138)

Cir X-1

T .................... . . . . . . 0.59# 0.03 1.27# 0.02 24.09# 3.75 . . . 169.6(151)
U ................... . . . . . . 4.77# 0.16 8.43# 0.04 109.22# 10.09 . . . 153.5(168)

Note.—All frequencies are !max andmeasured in Hz. The subharmonic and first harmonic of LLF are not reported here.
a Values fromHoman et al. 2002, not from our fits.

No. 1, 2002 TIMING FEATURES OF ACCRETING X-RAY BINARIES 399

Belloni et al, 2002



Periodicity Detection I

1) Fourier Analysis 

2) Lomb-Scargle Periodogram 

3) Z2 statistic, Rayleigh statistic, … 

4) Gregory & Loredo 1992 

5) Wavelets 

6) …



Almost all algorithms used for 
periodicity detection assume 

stationary processes and/or white 
noise



credit: Richard Freeman, 
 flickr.com/photos/freebird710/, CC licensed
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credit: Richard Freeman, 
 flickr.com/photos/freebird710/, CC licensed

Wijnands + van der Klis 1998

http://flickr.com/photos/freebird710/


credit: Richard Freeman, 
 flickr.com/photos/freebird710/, CC licensed

constant background

Wijnands + van der Klis 1998

http://flickr.com/photos/freebird710/
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Lachowicz+Done, 2010
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Lachowicz+Done, 2010



Willem van de Velde the Younger, “The Gust”

variable background!

Lachowicz+Done, 2010



The human brain is awesome at 
pattern recognition
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prone to overfitting* + see 

spurious patterns

*see: pareidolia

(awesome for survival, less 
awesome for science)



Corollary: the human brain is 
prone to overfitting* + see 

spurious patterns

*see: pareidolia

(awesome for survival, less 
awesome for science)

By Viking 1, NASA [Public domain], via Wikimedia 
Commons



2 S. Vaughan et al.

Over the years there have been many reports of periodic or
quasi-periodic variations from AGN, spanning the range of AGN
types, from radio to gamma-rays, and on timescales from minutes
to years. However, this field has a chequered history. Many reports
of periodic variations are based on very few observed cycles of the
claimed period, and a failure to properly account for the random
(red noise) variations which can produce intervals of seemingly pe-
riodic behaviour. See Press (1978) for a general discussion of this
point, and Vaughan & Uttley (2006) for some specific examples
of periodicity claims drawn just from X-ray observations of nearby
AGN1. Further observations of the same targets usually fail to show
the strictly repeating, coherent oscillations expected from a truly
periodic process. As we enter the era of massive time-domain sur-
veys capable of studying 105 � 107 targets, it is becoming more im-
portant to carefully assess detection procedures in order to under-
stand and control the number of false detections. In this paper we
re-examine the case of PG 1302�102, and we consider the broader
problem of how di↵erent stochastic models can make it di�cult to
distinguish periodic modulation among light curves selected from
large time-domain surveys.

2 THE LIGHT CURVE OF PG 1302�102

Figure 1 (top panel) shows the eight years of CRTS photometric
data for PG 1302�102 fitted with a sinusoidal model. The data
comprise 290 V-band magnitude estimates with a mean of ⇡ 15.0
mag. The data were taken with two very similar telescopes (CSS
and MLS; these provided 234 and 56 photometric points, respec-
tively). The sampling pattern is irregular, comprising nine ‘seasons’
each spanning 4�5 months with gaps of 6�8 months. Within each
season there are ⇠ 7 nights of data, each containing four closely
spaced (�t ⇠ few minutes) photometric measurements. The error
bars provided by the CRTS pipeline processing are in this case
overestimated by a factor of ⇡ 4 � 5. This e↵ect can be seen by
examining the short timescale variations in the data: the rms varia-
tion of the magnitude estimates within groups of nearby data (each
group spanning < 20 days, where intrinsic variability is expected
to be weak, and only including groups with > 5 points) is a factor
⇡ 4 smaller than the error bars2.

The data clearly show significant variations, with an rms ⇠ 0.1
mag. We fitted the data (using weighted least squares) with a model
comprising a sinusoid plus a constant o↵set:

V(t) = A1 cos(2⇡ f0t) + A2 sin(2⇡ f0t) +C. (1)

(This is equivalent to a model A sin(2⇡ f0t + �) + C with amplitude
given by A2 = A2

1 + A2
2 and phase tan � = A1/A2.) The best-fitting

amplitude is (A2
1 + A2

2)1/2 = 0.125 mag and the best-fitting (ob-
server frame) period is t0 = 1/ f0 = 4.65± 0.06 yr, slightly di↵erent
from the 5.16 ± 0.24 yr found by G15a. For fitting their sinusoidal
model G15a included additional archival data – notably LINEAR
data (Sesar et al. 2011) – extending the observational baseline. The
overall fit statistic is �2 = 85.7 for 287 degrees of freedom, again
indicating that the error bars are too large. Comparing this model
to a constant gives ��2 = 741.1.

1 Arguably the best candidate for quasi-periodic AGN light curve was seen
in RE J1034 � 396 (Gierlinski et al. 2008), which showed ⇠ 16 ‘cycles’ in
a single, continuous X-ray observation.
2 We have examined CRTS data for other AGN of similar magnitude and
find that the photometric error bars are often considerably larger than the
short-term scatter in the data.
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Figure 1. Panel (a) shows the ⇡ 8 years of V-band Catalina Real-time Tran-
sient Survey (CRTS) data for PG 1302�102. Panels (b) and (c) show exam-
ple simulations of red noise with the same sampling pattern as the CRTS
data (black points) plus additional data to simulate three seasons of LIN-
EAR data (blue points). Panels (b) and (c) were generated by random pro-
cesses with no periodicity present (a bending power law power spectrum,
and a damped random walk, respectively). In each case, the continuous,
error-free simulation is shown as a pink curve and the sampled data are
shown as circles. The red curve shows the best-fitting sinusoid. Examples
(b) and (c) were randomly selected from the 100 best candidates in runs of
100, 000 simulations of each process.

3 BAYESIAN MODEL COMPARISON

It is also possible to fit the data using a stochastic model. However,
is not meaningful to simply compare the �2 values for these fits.
When fitting stochastic models to individual time series, the �2 fit
statistic loses its simple meaning as a diagnostic of the ‘goodness of
fit’. (This is because the variance of the process is itself a parameter
to be fitted; the standard �2 statistic only makes sense as a likeli-
hood proxy when the variance is fixed. In fact, �2 ! 0 is possible
for any su�ciently flexible stochastic process. See also Kozłowski
2016).

In order to compare a periodic model to a stochastic model, we
have performed a Bayesian model comparison between the sinu-
soidal model and a simple stochastic process, the damped random
walk model. We first computed the posterior densities for the pa-
rameters of each model using Markov Chain Monte Carlo (MCMC)
method. We used a method based on the ensemble sampler pro-
posed by Goodman & Weare (2010) with > 105 draws based on

MNRAS 000, 1–8 (2016)
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Table 3. Posterior summaries of parameters for model
H1 for the Mrk 766 data. The columns are as in Table 2.

Parameter Mean 5 per cent 95 per cent

α 2.7 2.4 3.1
β 1.6 × 10−2 0.95 × 10−2 2.7 × 10−2

γ 0.10 0.084 0.12
δ 2.1 × 10−4 0.97 × 10−4 3.4 × 10−4

Figure 5. Mrk 766 data and model (H1) computed at the posterior mode.
The panels are the same as in Fig. 3.

partial analysis of the data – it is in effect the application of a data-
dependent ‘stopping rule’ – and it is extremely difficult to see how
such a procedure could be included in the generation of replicated
data I rep used to calibrate the posterior predictive p-values. We
therefore consider p-values only for the analysis of the entire time
series and do not try to replicate exactly the analysis of Gierliński
et al. (2008).

9.3 Application to XMM–Newton data of Mrk 766

A similar analysis was performed on the XMM–Newton observation
of Mrk 766 discussed previously by Vaughan & Fabian (2003), who
claimed to have detected a power spectral break using frequentist
(classical) statistical tools such as χ 2 fitting. The LRT statistic for
the data was T obs

LRT = 18.56, and the posterior predictive distribution
for this statistic had the same shape as in the case of RE J1034 +
396 (Fig. 1). The p-value for the LRT comparison between H0 and
H1 was p < 2 × 10−4 (i.e. not one of the 5000 simulations gave a
larger value of TLRT). This amounts to a very strong preference for
H1 over H0, i.e. a solid detection of a spectral break.

Table 3 summarizes the posterior inferences for the parameters
of H1 and Fig. 5 shows the data, model and residuals. The residuals
show no extreme outliers, and indeed the observed values of the test
statistics TR and TSSE were not outliers in their posterior predictive
distributions (pR = 0.93 and pSSE = 0.89). These suggest that
H1 provides an adequate description of the data (i.e. without any
additional components).

9.4 Sensitivity to choice of priors

It is important to check the sensitivity of the conclusions to the
choice of the prior densities, by studying, for example, the effect of
a different or modified choice of prior on the posterior inferences.
We have therefore repeated the analysis of the RE J1034 + 396

data using a different choice of priors. In particular, we used inde-
pendent normal densities on the four transformed parameters of H1,
this is equivalent to a normal density on the index α and lognormal
densities on the non-negative valued parameters β, γ and δ. In other
words, for each of the transformed parameters p(θ i|H 1) = N (µi,
σ 2

i ), where the hyperparameters µi and σ i control the mean and
width of the prior density functions. After choosing values for the
hyperparameters based on knowledge gained from previous stud-
ies of nearby, luminous Seyfert galaxies (e.g. Uttley et al. 2002;
Markowitz et al. 2003; Papadakis 2004; McHardy et al. 2006),
as outlined below, the posterior summaries (parameter means and
intervals, pairwise marginal posterior contours, and posterior pre-
dictive p-values) were essentially unchanged, indicating that the
inferences are relatively stable to the choice of prior.

Previous studies usually gave a high-frequency index parameter
in the range α ∼ 1–3, and so we assigned p(α|H 1) = N (2, 4), i.e.
a prior centred on the typical index of 2 but with a large disper-
sion (standard deviation of 2). The normalization of the f −1 part
of the power spectrum is thought to be similar between different
sources, with β ∼ 0.005–0.03 (see Papadakis 2004), we assigned
p(log β|H 1) = N (−2, 1), i.e. a decade dispersion around the mean
of β ∼ 10−2. The Poisson noise level is dependent on the count
rate, which can be predicted very crudely based on previous X-
ray observations; we assign a prior p(log γ |H 1) = N (0, 1). The
bend/break frequency δ is thought to correlate with other system
parameters such as MBH, bolometric luminosity LBol and optical
line width (e.g. FWHMHβ). Using the estimated luminosity, and
assuming RE J1034 + 396 is radiating close to the Eddington limit
(Middleton et al. 2009) gave a prediction for the bend time-scale
of T b ∼ 1.6 × 10−3 s, and using the optical line width of Véron-
Cetty, Véron & Gonçalves (2001) gave T b ∼ 1.2 × 10−3 s, using
the relations of McHardy et al. (2006). Both these (independent)
predictions suggest δ = 1/T b ∼ 10−3 Hz, and we therefore as-
signed a prior density p(log δ|H 1) = N (−3, 1). All of these priors
are reasonably non-informative – they have quite large dispersion
around the mean values, to account for the fact that the empirical re-
lations used make these predictions are rather uncertain themselves
and also contain intrinsic scatter (i.e. there are significant source to
source differences) – yet they do include salient information about
the model obtained from other sources.

10 DISCUSSI ON

We have described, in Sections 6–8, a Bayesian analysis of peri-
odogram data that can be used to estimate the parameters of a power
spectral model of a stochastic process, compare two competing con-
tinuum models and test for the presence of a narrow QPO (or strict
periodicity).

10.1 Limitations of the method

The Whittle likelihood function (equation 16) is only an approxi-
mation to the true sampling distribution of a periodogram. In the
absence of distortions due to the sampling window (more on this
below), the ordinates of the periodogram of all stationary, lin-
ear (and many non-linear) stochastic processes become indepen-
dently distributed following equation (13) as N → ∞. With fi-
nite N (i.e. for real data) this is only approximately true, although
with reasonable sample sizes (e.g. N > 100) it is a very good
approximation.

More serious worries about the distribution of the periodogram,
and hence the validity of the Whittle likelihood, come from
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Fit a Model to the Power Spectrum

one observation of the Z source GX 17+2 from the sample
analyzed by Homan et al. (2002), corresponding to SZ

between 0.5 and 0.6 (middle of the horizontal branch; see
Homan et al. 2002). Notice that since the two kHz peaks in
this observation are quite well separated from the other
components, our fits below 200 Hz do not affect the kHz
QPOs, so that for these high-frequency peaks we could
adopt the values reported in Homan et al. (2002). We
obtained the best fit with a model consisting of six Lorent-
zian components (see Fig. 8): a broad (Q ¼ 0:6) component
that we identify with Lb, a narrow one with a subharmonic
and a first harmonic (see Fig. 8) identified with LLF, and two
additional broad (Q < 1) components with characteristic
frequencies below !b, which we indicate as L0

b and L00
b.

Notice that the L0
b component is not very significant (about

3 "). The best-fit parameters can be found in Table 4.

3.7. Summary of the Fits and Comparison with
Power-LawModels

The three zero-centered Lorentzians Lb, Ll , and Lu are
required in many spectra to fit the band-limited noise. A
narrow low-frequency QPO LLF is detected in the black hole
candidate and in some of the neutron star spectra (preferen-
tially, those with the lower characteristic frequencies—note
that the frequencies are low in the BHC as well). The broad

hump component is required in most neutron star spectra
but not in the BHC. In 1E 1724"3045, when LLF and Lh

are simultaneously present, their centroid frequencies are
identical, but in GS 1826"24 these frequencies are usually
different.

In order to compare the quality of our current fits with
that of other models for broad components, we also fitted
the power spectra first with a combination of a broken
power law and one Lorentzian for the narrow LF QPO
peak. This model has seven free parameters (compared with
the nine of our model). We applied this model to two repre-

Fig. 5.—Power spectrum in !P! form for SLX 1735"269 (observation
M). Lines mark the best-fit model and its components.

Fig. 6.—Power spectra in !P! form for GS 1826"24 (observations N
andQ). Lines mark the best-fit model and its components.

TABLE 4

Best-Fit Characteristic Frequencies for GX 17+2 and Cir X-1

Observation !b0 !b00 !b !LF !l !u

#2

(dof)

GX 17+2

S .................... 0.87# 0.11 3.05# 0.29 6.93# 1.05 38.10# 0.25 537# 23a 798# 6a 150.2(138)

Cir X-1

T .................... . . . . . . 0.59# 0.03 1.27# 0.02 24.09# 3.75 . . . 169.6(151)
U ................... . . . . . . 4.77# 0.16 8.43# 0.04 109.22# 10.09 . . . 153.5(168)

Note.—All frequencies are !max andmeasured in Hz. The subharmonic and first harmonic of LLF are not reported here.
a Values fromHoman et al. 2002, not from our fits.

No. 1, 2002 TIMING FEATURES OF ACCRETING X-RAY BINARIES 399
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Figure 2. PSD for the light curve shown in Figure 1. The true PSD is given
by the solid black line, the periodogram by the orange circles, the PSD from
the maximum-likelihood estimate assuming a CARMA(5, 1) model (chosen to
minimize AICc) by the blue dashed line, and the blue region contains 95%
of the probability on the PSD assuming a CARMA(5, 1) model. There is a
weak oscillatory feature centered at a frequency of 1/5 day−1, which is at the
measurement noise level. This feature is not obvious above the measurement
error component for the periodogram, but the CARMA model is able to recover
it, along with the rest of the PSD. We note that the tight errors on the PSD below
the measurement noise level are due to extrapolation assuming the parametric
form of the CARMA(5, 1) model, and using a higher order model would enable
more flexibility and consequently broader errors below the measurement noise
level.
(A color version of this figure is available in the online journal.)

Figure 3. AICc values computed from the simulated light curve shown in
Figure 1 for CARMA(p, q) models of order p ! 7, q < p. The minimum
AICc is achieved for the values p = 5, q = 1 although there is little change in
the AICc for models of order p " 5.
(A color version of this figure is available in the online journal.)

variance Gaussian white-noise sequence, suggesting that the
CARMA(5, 1) model provides an adequate fit.

In Figure 2, we show the maximum-likelihood estimate of the
model PSD and the region containing 95% of the probability on
the PSD. The chosen CARMA(5, 1) model recovers the PSD,
including the QPO feature, the centroid of which corresponds
to an estimated timescale of 5.04 ± 0.08 days. Note that the
tight constraints on the PSD below the noise level are caused
by extrapolation of the CARMA(5, 1) model form and are

Figure 4. Simulated light curve from a CARMA(5, 3) process irregularly
sampled over three observing seasons.The black line denotes the true values,
and the blue dots denote the measured values. Also shown are interpolated
and forecasted values, based on the best-fitting CARMA(5, 1) process; a
CARMA(5, 1) model had the minimum AICc value. The solid blue line and
cyan region denote the expected value and 1σ error bands of the interpolated
and extrapolated light curve, given the measured light curve.
(A color version of this figure is available in the online journal.)

not reflective of the actual uncertainty on the PSD in this
regime when one does not know the order of the CARMA
process. Because the PSD is largely unconstrained below the
measurement noise level, the uncertainties would have been
larger in this regime if we had used a larger value of p.

4.2. Stationary Process under Irregular Sampling

For our second simulated light curve, we used a
CARMA(5, 3) process but with different parameters, as well
as a sampling pattern and measurement errors that are more
realistic of an actual optical light curve. We simulated three ob-
serving seasons of 90 epochs separated by 180 days with time
spacing drawn from a uniform probability distribution over one
to three days. The measurement error standard deviations were
set to 20% of the standard deviation in the light curve. In this
case we used a PSD that has a strong oscillator mode centered at
a frequency of 1/25 day−1; this type of PSD is more representa-
tive of certain types of variable stars. As with the first simulated
light curve, there is a weak oscillatory feature at 1/5 day−1, but
in this case the feature falls primarily below the measurement
noise level. The simulated light curve is shown in Figure 4, and
its PSD is shown in Figure 5. Note that because this light curve
is irregularly sampled, we do not compute a periodogram due
to distortions caused by the sampling pattern.

We ran our MCMC sampler on the second light curve using
the same configuration as for the first. The AICc values are
shown in Figure 6. In this case, the p = 5, q = 1 model
was chosen as having the best AICc. The 95% probability
bounds on the PSD based on the CARMA(5, 1) model are
also shown in Figure 5. The CARMA(5, 1) model is able to
recover the PSD above the measurement noise level. The high-
frequency oscillatory feature may be encompassed in the prob-
ability contours derived from a higher order CARMA process;
however, a detection of this feature would not be possible. In an
actual analysis one would in general not have knowledge of the
PSD below the measurement noise level, so we consider it best

9
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Figure 3. Same as Figure 1, but for a light curve displaying quasi-periodic variations.

ness). The correction is thus ‘conservative’, meaning that it
does not remove true variability, but it also leaves much of
the systematics una↵ected.

In Paper I, we noted that this problem could be over-
come on a case-by-case basis by altering the initial guess for
⌘
t

, or by implementing a more explicit model of the variabil-
ity. This would be suitable for relatively rare kinds of vari-
ables, such as pulsating stars. However, one of the strengths
of K2 is its ability to observe young open clusters, whose
members are typically active and rapidly rotating. These
are too numerous to be treated manually. We have there-
fore implemented an automated procedure for identifying
and handling variable stars that display a clear periodic-
ity. First, we compute the Lomb-Scargle periodogram of the
raw light curve (Lomb 1976; Press et al. 2007) in the pe-
riod range 0.05–20 days. If the false alarm probability of
the periodigram maximum is lower than a given threshold
value (by default 10�50), we replace the time-component of
the GP model with the following, quasi-periodic covariance
function:
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where P is the period, � the inverse length scale of the pe-
riodic component of the variations, and L

e

the evolutionary
time-scale of the variations. P is initially set to the period of
the periodogram peak, and the evolutionary time-scale to 10
times that value. The covariance parameters are then refined

using the same procedure as for the non-periodic case. This
gives significantly improved results for spotted stars and pul-
sating stars with pulsation periods of a day or more. As a
by-product, this procedure yields estimates of the dominant
period of the stellar variability and of its characteristic evo-
lutionary timescale, which are stored in the headers of the
corrected light curve files. Figure 3 shows an example light
curve for a spotted star before and after correction.

2.5 Hyper-parameter distributions

Figure 5 shows the distributions of the final (best-fit) hyper-
parameters for Campaigns 3 to 6, for the non-periodic
and quasi-periodic cases, respectively. The distributions are
broadly consistent between the di↵erent campaigns, which
implies that the noise, systematics and variability proper-
ties of the light curves do not change significantly from one
campaign to the next. This provides an a-posteriori justifi-
cation of our choice to use the medians of the distributions
from Campaign 4 (which was the first campaign we pro-
cessed in full) as the default values for the initial detrending
performed prior to identifying outliers (see Section 2.2).

The distributions for the white noise term show more
variation between campaigns, but this is due to the di↵erent
magnitude distributions of the targets. In the quasi-periodic
cases, the final periods do not necessarily match the ini-
tial guess taken from the Lomb-Seeliger results. The sec-

c� 2016 RAS, MNRAS 000, 1–14
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Sample Studies
False periodicities in quasar surveys 5

based on fits to 360 data points spanning ⇠ 10.6 yr (appropriate for
a combined CRTS + LINEAR dataset) – this included more points
and a longer baseline than most of the CRTS data used by G15b –
and so our criteria for selecting periodic variability are in this sense
more strict.

Simulated data meeting our selection criteria were produced
with a rate of ⇠ 1 � 2 per 1, 000 simulations for the DRW and BPL
processes, with parameters defined as above. The periods of the fit-
ted sinusoids are long, most are in the range 4.0�5.3 yr (i.e. 1.5�2.5
cycles over the simulated data), and the strongest cases have peri-
ods of ⇡ 5.3 yr, always near the lower limit of the allowed range.
The distribution of periods is shown in Figure 3 for the 111 can-
didates identified by G15b from the CRTS data, and from the 100
strongest period detections in simulations of the BPL, DRW, and
sine processes. The steep spectrum (red noise) random processes
produce nearly-sinusoidal variations when sampled intermittently,
and most of these ‘phantom periodicities’ show only a few cycles,
typically less than three5.

We have repeated the simulation experiments above with
di↵erent choices for the BPL bend frequencies and the DRW
timescale. The rate of phantom periods is highest when ⌧ ⇠ 200 �
400 d (DRW) or flow ⇠ 0.2 yr�1 (BPL). The power spectra that show
f ⇥ P( f ) peaks (⇠ 1/2⇡⌧ for the DRW model) near the observable
frequency range (⇠ 0.1 � 1 yr�1) produce time series with strong,
smooth variations on the timescales sampled, and are mostly likely
to produce phantom periods. MacLeod et al. (2010) and Andrae,
Kim & Bailer-Jones (2013) found a geometric mean of ⌧ ⇠ 200 d
(0.55 yr) from their DRW model fitting to large samples of quasars.
This is the right order of magnitude for phantom periods to be most
easily produced in data spread over ⇠few years. If the DRW spec-
trum is modified to have a high frequency slope of 3 (rather than
2), the rate of phantom periods is increased by a factor of ⇠few, to
⇠ 1 in 200 simulations.

The reduction in the rate of phantom periods with
higher/lower DRW characteristic timescale can be understood as
follows. If the timescale above which the power spectrum flattens
to ↵ ⇠< 1 (⇡ 2⇡⌧ in the DRW model, ⇡ 1/ flow in the BPL model)
is shorter than the ⇡ 1 yr inter-season spacing of the data, phan-
tom periods are rare. In such cases the inter-season variability is
essentially white noise and this is unlikely to produce smooth un-
dulations between seasons. On the other hand, if this timescale is
considerably longer than the ⇡ 10 yr span of the observations, and
the power spectrum remains steep far below the lowest observ-
able frequencies (longest timescales), the variations will be dom-
inated by smooth, quasi-linear trends that get weaker as flow moves
lower (in our models the total power in the power spectrum is con-
stant, so power moves out of the observed band as flow decreases).
The chance of the variations being dominated by a succession of
roughly equally spaced peaks (and/or troughs) is therefore reduced
(unless one applies ‘detrending’ to the data, which then increases
the rate of phantom periods).

5 One way to understand this is in terms of the Fourier decomposition of a
realisation of a steep-spectrum stochastic process, sampled at a finite num-
ber of discrete times. The observed time series can be decomposed into
a finite number of ‘modes’ with di↵erent frequencies; modes with lower
frequencies have (on average) much higher amplitudes due to the steep
power spectrum. But the amplitudes (at a given frequency) fluctuate greatly
between di↵erent realisations of the same process (e.g. Timmer & König
1995). With steep spectrum processes it will often be the case that a sin-
gle low frequency mode dominates the power (variance) of the data, due to
random fluctuations.
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Figure 3. Period distributions of periodic candidates. Panel (a) shows the
distribution of the 111 period candidates identified by G15b. Panels (b)-(d)
show the frequencies of the 100 best candidates from 100, 000 simulations
of (b) red noise with BPL spectrum, (c) red noise with a DRW spectrum,
(d) sinusoids with uniformly distributed periods. The histograms show the
density of periods, i.e. each is normalised such that its total area is unity.
There is a clear tendency to find phantom periodicities with long periods
(⇠ 5 yr) while truly sinusoidal signals are most easily recovered at shorter
periods (a preference for periods of ⇠ 2 years is expected from sampling
theory given the roughly annual spacing of the observing seasons).

5 SEEING PATTERNS IN THE NOISE

These simulation experiments demonstrate that when trying to de-
tect periodic signals from a large pool of red noise time series sam-
pled like CRTS data, ‘phantom’ periodicities will be found, and
their periods tend to be near the longest allowed period (1.5 � 2.5
cycles over the available data, assuming obvious aliasing periods
are ignored). This e↵ect was previously discussed by Kozłowski et
al. (2010) and MacLeod et al. (2010) from large surveys of quasar
light curves. By contrast, genuinely periodic variations are most
easily detected with periods ⇠ 2 yr due to the seasonal sampling
of the data. We stress that the precise number of phantom periods
we find should not be directly compared to the survey of G15a,
G15b, or of Liu et al. (2015), and Charisi et al. (2016) – our detec-

MNRAS 000, 1–8 (2016)
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Time Lags
X-ray reverberation around accreting black holes 5

Fig. 3 Time lag (8–13 keV relative to 2–4 keV) versus frequency for a hard state obser-
vation of Cyg X-1 obtained by RXTE in December 1996. The trend can be very roughly
approximated with a power-law of slope −0.7, but note the clear step-like features, which
correspond roughly to different Lorentzian features in the power spectrum (Nowak 2000).

1997). However, given the large low-frequency lags seen in BHXRB data ob-
tained by the Rossi X-ray Timing Explorer, these mechanisms were considered
to be unfeasible when taking into account the energetics of heating such a large
corona (Nowak et al. 1999). To get around this difficulty Reig et al. (2003) and
later Giannios et al. (2004) developed a model where the hard lags are pro-
duced by scattering at large scales in a focussed jet, which solves the heating
problem, but this model suffers from other significant difficulties, not least in
explaining the observed relativistically broadened reflection (see Uttley et al.
2011 for a discussion).

Coronal upscattering models predict a log-linear dependence of time-lag
versus energy, and such a dependence is approximately observed (Nowak et al.
1999) but the detailed lag-energy dependence shows significant ‘wiggles’ no-
tably around the iron line (Kotov et al. 2001). As noted however, reverberation
cannot explain the large hard lags observed at low frequencies (Kotov et al.
2001; Cassatella et al. 2012b). Thus, Kotov et al. (2001) proposed a propaga-
tion model for the lags (later explored in detail by Arévalo & Uttley 2006),
where they are interpreted in terms of the inward propagation of variations
in the accretion flow through a corona which becomes hotter at smaller radii
(thus harder emission is produced more centrally, leading to hard lags). Sim-
ilar models where the spectrum of the emission evolves on slower time-scales
than light-crossing were proposed by Poutanen & Fabian (1999), invoking the
evolution of magnetic reconnection flares and Misra (2000), discussing waves
through an extended hot accretion flow, but these models still have difficul-

Cygnus X-1: Nowak, 2000
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Fig. 9 The ratio spectrum of 1H0707-495 to a continuum model (Fabian et al. 2009). The
broad iron K and iron L band are clearly evident in the data. The origin of the soft excess
below 1 keV in this source had been debatable, but in this work was found to be dominated
by relativistically broadened emission lines.
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Fig. 10 The frequency-dependent lags in 1H0707-495 between the continuum dominated
hard band at 1–4 keV and the reflection dominated soft band at 0.3–1 keV.

and found significant high-frequency soft lags in 15 sources. Plotting the am-
plitude of the lags with their best-estimated black hole masses11, revealed that

11 Black hole masses used by De Marco et al. (2013); Kara et al. (2013c) and in Fig. 12
were obtained from the literature, and estimated primarily using optical broad line rever-
beration. In a few cases masses were estimated using the scaling relation between optical

1H0707-495: Uttley et al, 2014
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Figure 1. The two cases of base power-spectra used in the simu-
lations. Solid lines represent the underlying generating spectrum.
Dashed lines include the effect of Poisson noise. Case 1 corresponds
to a bright variable (35% rms) source and case 2 corresponds to a
relatively fainter and less variable source (10% rms).

are however only a lower limit on the uncertainties when
the off-diagonal values are not small (i.e. parameters are
correlated).
The alternative is to step through the parameters,

taking the 68% uncertainty as the value that changes
−2log(L/Lmax) by 1 (Miller et al. 2010). Another
approach involves using Monte Carlo Markov Chain
(MCMC) to map the full probability space, obtaining
probability distributions for the parameters directly. The
uncertainties quoted in this work, unless stated other-
wise, are the result of stepping through each parame-
ter individually, allowing the rest to change, and tak-
ing the error as the value that changes the value of
−2log(L/Lmax) by 1. This choice works when the num-
ber of parameters to be fitted is small ( np <∼ 20, so
stepping through parameters is computationally feasible
relatively quickly). If the number is large, the best option
is to use MCMC to obtain uncertainties.

4. SIMULATIONS

In order to test the above method, we simulate light
curves with known underlying power-spectra and time
delays, introduce gaps, and explore how well they can
be recovered. Starting with a functional form for the P ,
we randomize the amplitude and the phase then inverse
Fourier transform to obtain one light curve realization
(Timmer and Koenig 1995). When a second light curve is
needed, we shift the phase by the desired amount before
performing the inverse Fourier transform. This assumes
unity coherence. When fitting real data, the coherence
can be estimated from the cross spectrum and the indi-
vidual power spectra. Poisson noise is added to all light
curves.
In this work, we take the input power spectrum P to

be a broken power-law of the form:

P(f) = Ab

(

f

fb

)α

(9)

where α = −1 below some break frequency fb, and
α = −1.5 above it, and Ab is a normalization factor.
We take fb = 10−6 Hz. This break frequency is consis-
tent with a black hole of ∼ 5× 107M⊙, which is typical
of many Seyfert galaxies (McHardy et al. 2006). The
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Figure 2. Typical light curve realizations from cases 1 (panel a)
and 2 (panel b) in Fig.1. In each case, the second light curve is
lagged by 1 radians with respect to first. Panel c shows typical
light curves with gaps for the two cases. The y-axis is similar to
panels a and b.
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Figure 3. Left: The average estimated PSD for the high (a) and
low-rms (b) cases without including gaps. Right: The histogram
of the values for two selected frequency bands (marked with verti-
cal lines in the left panel ). For each of the high and low-rms cases,
more than 2000 separate light curves are simulated. For each one,
the power is estimated at nine frequency bins. The means of the
resulting distributions are plotted in the left panel. Their errors
bars represent the standard deviation of the distribution. The av-
erage error from the 2000 estimates are plotted as the dotted lines
above and below the best estimate. The solid line is the the value
of P (i.e. input) at that frequency. The frequency error bars repre-
senting the width of the bin are omitted for clarity. The horizontal
lines in the histogram plots represent the mean (solid) and input
model (dotted).
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Figure 5. Similar to Fig. 3 but now showing lags instead of psd.
High and low rms cases are shown in panels a (top) and b (bottom)
respectively for light curves without gaps. The average estimated
lag is shown as points. The standard deviation around the mean is
shown in as error pars. The envelope dotted line shows the average
estimated uncertainties. The right panels in each case show the
(normalized) number of values histogram for the 1st (un-shaded)
and 5th (shaded) frequency bins, marked with vertical lines in the
left panels..

is similar to that in Fig. 3. The points and the errors
bars are for the case with no gaps for comparison. The
red-dotted and green-dashed lines are the envelope of the
standard deviation of the PSD estimates for light curves
with gaps and light curve lengths of 200 ks (hereafter case
G1) and on-source exposure of 200 ks (hereafter case G2)
respectively.
The gaps have several effects compared to the continu-

ous case. The errors are in general larger because there is
less data on the whole, except for the very lowest frequen-
cies where the errors in G2 are smaller than the no-gaps
case because the requirement of a on-source exposure of
200 ks means there is more low frequency data. Also, the
errors for both G1 and G2 are larger for frequencies close
to the gap periodicity. The reason is that information on
those frequencies are missing because of the gaps. This
is a general result that we found throughout the simu-
lations, and it shows that the periodic gaps cause the
uncertainties at the frequency corresponding to the gaps
periodicity (∼ 1 × 10−4 Hz). G1 has about 60-70% less
exposure and its errors are slightly larger then G2 (the
difference for a single frequency band is not huge, but all
frequency bins are affected). The distribution histogram
for the frequency bin closes to the gaps frequencies are
also plotted in Fig. 4.

4.2. Time lag

Analysis similar to that presented in section 4.1 was
extended to include time lags. Fig. 2 show typical light
curves pairs for the high and low rms cases defined in
section 4, where for each pair, the second light curve is
shifted with a phase of 1 radian. The results are pre-
sented in Fig. 5. Although the presented simulations are
for the case of constant phase lag at 1 radians, we tested
for other forms (e.g. constant time lag, a time lag that
has functional dependence on f etc.), and the results are
not different from those discussed here.
The figure, analogous to Fig. 3, shows the averaged

lag calculated from an ensemble of 2000 light curve re-
alization for the high and low rms cases without gaps.
The lags are well-recovered for all frequencies for both
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Figure 6. Similar to Fig. 5 but now including light curves with
gaps for the high rms case. The average estimated lag for light
curves without gaps is shown as points. The standard deviations
around the mean are shown as error bars. The envelope dotted
line (red) shows the standard deviation for light curves with gaps
and length of 200 ks (G1). The envelope dashed line (green) is
for the case of light curves with gaps and an on-source exposure of
200 ks (G2). The right panels shows the corresponding (normal-
ized) number of values histogram for the 5th frequency bins, which
corresponds roughly to the frequency of the periodic gaps.

cases. The distributions of the estimates (shown in Fig.
5) are almost perfect Gaussians. The plot also shows that
the uncertainty estimates (dotted envelopes), discussed
in sec. 3.3 and taken here as the ensemble average of in-
dividual uncertainties, are also consistent with the stan-
dard deviation of an ensemble of estimates. The slight
difference at the noise-dominated frequencies (highest
frequencies at panel b in Fig. 5) is an artifact of the simu-
lation, where the noise-dominated parameters sometimes
fail to converge, and it is therefore hard to obtain uncer-
tainties and those are removed when estimating the aver-
age uncertainties. In practical data analysis, one would
reduce the number of frequency bins to improve the sig-
nal to noise ratio.
Extending the analysis to light curves with gaps is

again straight forward. Fig. 6. As in the case of power
spectra, the errors are larger for light curves with gaps
because less data is used. The lowest frequencies are not
affected much because the long time-scale trends in the
light curves are not affected if there are gaps on smaller
time-scale. The periodic gaps have the effect of increas-
ing the uncertainty of the measured lags at frequencies
close to the gaps frequency and also its harmonics where
information is missing. This, combined with the gap ran-
domness (i.e. it is not a single frequency) and frequency
binning produces the fluctuations seen in Fig. 6. The re-
sults for the low rms case is very similar. The low signal
to noise ratio however means the errors are larger, and
sometimes simulations not constrained. Better estimates
are obtained when using less frequency bins (i.e. improv-
ing the signal per bin), and in this case, the results are
similar to those of the high rms case.
This increased uncertainty at the gaps periodicity is

further illustrated in Fig. 7, which is similar to Fig. 6
but for a different gap pattern. Here, the gaps have a
periodicity corresponding to a frequency of ∼ 7 × 10−5

Hz. Again, the effect of the gaps is that less information
is available to the gap frequency, and therefore the un-
certainty is larger. The distribution of the estimates is
Gaussian or very close to Gaussian in most cases. The
power of the likelihood method presented here is that,
even in frequency bands where the effective number of
independent frequencies is small, one can obtain a direct

Zoghbi et al, 2013
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Fig. 4 Left: The Poisson-noise subtracted PSDs of the NLS1 AGN 1H0707-495 (taken from
Zoghbi et al. 2011). Right: 1H0707-495 frequency-dependent coherence between the 0.3–
1 keV and 1–4 keV bands. The solid and dashed blue lines give the median and upper and
lower 95 per cent confidence levels for the coherence obtained from simulations of correlated
(unity intrinsic coherence) light curves with the same flux levels, variance and PSD shape as
the data. Note the dip, suggesting a changeover between two processes. At high frequencies,
the coherence is consistent with unity, as expected from simple reverberation. Figure taken
from Zoghbi et al. (2010).

We can see how the cross-spectrum is used to derive the frequency-dependent
(phase) lag between two bands by considering the complex polar representa-
tion of the Fourier transform Xn = AX,n exp [iψn], where AX,n is the abso-
lute magnitude or amplitude of the Fourier transform and ψn is the phase
of the signal (which for a noise process is randomly distributed between −π
and π) at the frequency fn. Thus, a linearly correlated light curve y(t) with
an additional phase-shift φn at frequency fn has a Fourier transform Yn =
AY,n exp [i(ψn + φn)]. Multiplying by the complex conjugate of Xn, the phase
ψn cancels and the cross-spectrum is given by:

CXY,n = AX,nAY,n exp (iφn) (8)

with the phase of the cross-spectrum giving the phase lag between the light
curves, as expected.

In principle the cross-spectrum may also be normalised in the same way as
the periodogram, except that instead of dividing by ⟨x⟩2 to obtain fractional
rms-squared units, we must divide by the product of light curve means, ⟨x⟩⟨y⟩.
Note that due to the well-known linear rms-flux correlation in AGN and XRB
light curves, different results can be obtained if the lags depend on the flux
level (see Sect. 3.1.4) and either the cross-spectrum is normalised by the means
of each light curve segment before averaging segments, or a single combined
mean value for all segments is used after averaging (Alston et al. 2013).

In the presence of any uncorrelated signal between the two light curves
(e.g. due to Poisson noise, but there may also be an intrinsically incoherent
signal, perhaps due to the presence of an additional independently-varying
component in one energy band but not the other), the cross-spectrum should
be averaged over Fourier frequencies in a given frequency bin νj , as well as

+ lag-energy spectra, lag-frequency 
spectra, covariance spectra, bispectra, … 



Future Challenges

- Multi-wavelength CARMA/GPs? 

- Generative models for time-energy data sets 

- additional dimensions: polarization



… but my data is  
non-stationary!



Gaussian Processes Revisited
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Hierarchical Flare Modeling
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FIG. 3.— We test the model constructed in Section 3 on simulated data. We simulated light curves of a single spike with Fermi /GBM-like background count
rates and varied the amplitude of the spike in order to test detectability. In the left panel, we show the posterior distribution of the number of spikes as a function
of the signal-to-noise ratio of the spike as a box plot. The box encompasses the interquartile range (the 0.25 and 0.75 quantiles) with the median marked. The
whiskers extend out to 1.5 times the interquartile range; outliers are marked as scatter points. In the other panels, we show distributions of peak position versus
amplitude for the four signal-to-noise ratios of the left panel (in the same order). The position and time and amplitude of the signal injected into the light curve is
marked as a dark grey cross; similarly coloured lines are added to guide the eye.
If the noise in the light curve dominates the signal, the model will place a large number of low-amplitude spikes all throughout the light curve (second panel). For a
signal-to-noise ratio of 3 or greater, the probability distributions over amplitude and position collapse into a sharp peak at the position and amplitude where we
places the spike in the simulations (panels 3-5).
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FIG. 4.— An example burst from the magnetar SGR J1550-5418, in an observation taken on 2009 January 22 (ObsID 090122173). In the left panel, the light
curve at high time resolution (black), �t = 5⇥ 10

�4

s, and model light curves for 10 random draws from the posterior distribution (in colours). On the right, the
marginalised posterior distribution over the number of components in the model. The posterior for the number of components lies between 10 and 20 components.

ing (either integrating for continuous variables, or summing
for discrete variables) over all nuisance parameters (e.g. the
hyperparameters).

In Figure 4, we show an example of a burst light curve, to-
gether with 10 random draws from the posterior distribution
(left panel). The burst was chosen specifically for its multi-
peaked structure such that we can investigate how well the
method does in inferring the properties of a single burst. Over-
all, the posterior distribution is narrow and peaked for bright

features in the data; the presence of Poisson noise leads to un-
certainty in the weaker features, leading to a broader posterior
distribution in those dimensions.

There is some ambiguity for some features on whether there
should be a component, or whether perhaps a particular feature
should be modelled as a superposition of two components, but
this ambiguity is generally small.

If we were interested in deciding whether a feature should
be modelled with a spike component, we could marginalise out

Huppenkothen et al, 2015
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FIG. 7.— Differential distributions for the duration, count-space amplitude and fluence for all model components from 332 bursts. In each bin, we plot the mean
(bars) and standard deviation (error bars) for that bin from 100 ensembles of random draws from the posterior distribution of each burst (see text for details). All
three distributions are strongly peaked, duration and amplitude seem to have a slight excess at smaller values.

presented in Section 4. Where the count rate is low in the data,
we cannot say with certainty whether there are (weak) features
close in amplitude to the background count rate: they may
well exist, but the intrinsic sky and instrumental background
make it difficult to ascertain their presence. In this limit of
low source count rates, the model essentially explores the prior.
This problem can be effectively solved with a hierarchical
model that considers all bursts at the same time. In this case,
all bursts will share the same prior distributions with the same
hyperparameters. Consequently, in this model weak bursts will
be realizations drawn from the tail of those prior distributions,
and their parameters will be much better constrained than when
seen individually, because all bursts will inform the inference
of all other bursts. However, this analysis is beyond the scope
of this exploratory work.

Five quantities are of particular interest for their potential
connection with physical processes: the spike duration T , the
exponential rise time scale ⌧ , the exponential fall time scale as
parametrised by the skewness parameter s, ⌧

fall

= s⌧ , the total
dissipated energy E and waiting time between consecutive
spikes t

wait

. The exponential rise time scale and skewness for
each model component are free parameters in our model, and
thus easily extracted. We compute spike duration by finding
the time between the two points at which the flux has dropped
by a factor of 100 on either side of the spike peak. We choose
this definition for the spike duration, as opposed to, for exam-
ple, a definition in terms of where the spike vanishes into the
instrumental background, because it is independent of the sky
background (which may be variable between observations and
even between bursts). Thus, by defining the duration in terms
of rise time, skewness and amplitude alone, in other words,
only in terms of the spike parameters, we avoid introducing
unnecessary instrument-dependent biases into our analysis.

Finally, we compute the dissipated energy in a spike by inte-
grating Equation 9 analytically in count space, then converting

from count space to fluence using the spectral modelling re-
sults from van der Horst et al. (2012) and von Kienlin et al.
(2012). First, a detector response was generated in order to
deconvolve the source spectrum from detector effects. Then,
each background-subtracted burst spectrum was fit indepen-
dently in the 8�200 keV range. The fluence of each burst was
estimated by integrating the energy spectrum estimated by the
best-fit spectral model.

We subtract the integrated number of background counts,
derived from the background parameter µy, from the total
integrated number of counts in a burst in the full 8–200 keV

energy band, and then converted between count space and the
fluences computed in van der Horst et al. (2012). To compute
the fluence in a single spike, we divide the dissipated energy
in that spike (integrated analytically) by the total number of
background-subtracted counts in that burst, and multiply the
resulting fraction with the burst fluence.

Here, we test for correlation between fluence and rise time
as well as fluence and duration, and construct differential distri-
butions in order to compare with predictions from SOC theory.
We construct differential distributions by picking a sample
from the posterior distribution for each burst in the data set,
and hence form an ensemble of posterior draws for all bursts,
for which we can construct the differential distribution. We
repeat this process S times, such that we have S ensembles of
burst models and S differential distributions, and plot the mean
and standard deviation of the distribution in each bin of that
distribution. Similarly, we test for correlations by S ensembles
of burst models and test for the presence of a correlation us-
ing a Spearman rank coefficient for each ensemble. We then
report the mean and standard deviation of the distribution of
coefficients for S draws, where S = 100 in all cases below.

In Figure 7, we show differential distributions of duration,
peak amplitude (measured in count space) and fluence for
all spikes in 332 bursts. All three distributions are strongly



Software
- Lomb-Scargle: gatspy , http://www.astroml.org/gatspy 

- time series features: extraction: FATS,  https://github.com/

isadoranun/tsfeat 

- Machine learning on time series: http://cesium.ml 

- time series analysis: stingray,  https://github.com/

StingraySoftware/stingray 

- CARMA: carma-pack, http://ascl.net/1404.009 

- CARMA in Julia:  https://github.com/farr/CARMA.jl 

- Gaussian Processes: george, http://dan.iel.fm/george/current/ 

- Hierarchical flare models: https://github.com/dhuppenkothen/

magnetron2 
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