Tiana_Athrieldhuppenkothen

Time Series Analysis for the Multi-wavelength future

Daniela Huppenkothen

NYU Center for Cosmology and Particle Physics NYU Center for Data Science

How do we convert data into knowledge?

time series How do we convert data into knowledge? black hole physics

1) How can we detect variability?

2) How can we classify variable sources?

3) How can we characterize variability?

machine learning

1) How can we detect variability?

2) How can we classify variable sources?

3) How can we characterize variability?

machine learning

1) How can we detect variability?

2) How can we classify variable sources?

3) How can we characterize variability?

Transients

Maselli et al, 2013

Watts & Strohmayer, 2005

Vaughan et al, 2016

Stationarity vs Non-Stationarity

"The joint probability distribution does not change over time."

Stationarity vs Non-Stationarity

NGC 5548: Peterson et al (1999)

Periodicity Detection

0 = 0 0 =

Graham et al, 2015

Periodicity Detection I

- 1) Fourier Analysis
- 2) Lomb-Scargle Periodogram
- 3) Z² statistic, Rayleigh statistic, ...
- 4) Gregory & Loredo 1992
- 5) Wavelets
- 6) ...

Almost all algorithms used for periodicity detection assume stationary processes and/or white noise

credit: Richard Freeman, <u>flickr.com/photos/freebird710/</u>, CC licensed Wijnands + van der Klis 1998

credit: Richard Freeman, <u>flickr.com/photos/freebird710/</u>, CC licensed Wijnands + van der Klis 1998

constant background

credit: Richard Freeman, <u>flickr.com/photos/freebird710/</u>, CC licensed

variable background!

The human brain is awesome at pattern recognition

*see: pareidolia

Corollary: the human brain is prone to overfitting* + see spurious patterns

(awesome for survival, less awesome for science)

*see: pareidolia

(awesome for survival, less awesome for science)

time (yr)

Hypothesis Testing

Hypothesis Testing

"What is the probability that I observe a frequency with power P_{obs} or higher, if my data is pure photon noise?"

Hypothesis Testing

Hypothesis Testing II

propagate model uncertainty!

Fit a Model to the Power Spectrum

Belloni et al, 2002

... but all my data is unevenly sampled!

Image Credit: Dan Foreman-Mackey

Rasmussen + Williams

Rasmussen + Williams

Rasmussen + Williams

+ works for stochastic processes + probabilistic generative model - computationally expensive

Continuous-time AutoRegressive Moving Average Processes

CARMA

Kelly et al, 2014

+ fast – assumes specific underlying process

Beyond CARMA: Gaussian Processes

Aigrain et al, 2016

Sample Studies

easier to "go wide" than "go deep"

Sample Studies

Vaughan et al, 2016

Graham et al, 2015 sample

periodic signal simulations

Spectral Timing

= consider time and energy information at the same time*

*with evenly sampled data

Time Lags

Cygnus X-1: Nowak, 2000

1H0707-495: Uttley et al, 2014

Time Lags II

Zoghbi et al, 2013

Coherence

+ lag-energy spectra, lag-frequency

spectra, covariance spectra, bispectra, ...

1H0707-495: Zoghbi et al, 2011

Future Challenges

- Multi-wavelength CARMA/GPs?
- Generative models for time-energy data sets
- additional dimensions: polarization

... but my data is non-stationary!

Gaussian Processes Revisited

Credit: Dan Foreman-Mackey

Gaussian Processes Revisited

Credit: Dan Foreman-Mackey

Gaussian Processes Revisited

Heinonen et al, 2015

Hierarchical Flare Modeling

Huppenkothen et al, 2015

- Lomb-Scargle: gatspy , http://www.astroml.org/gatspy
- time series features: extraction: FATS, https://github.com/ isadoranun/tsfeat
- Machine learning on time series: http://cesium.ml
- time series analysis: stingray, https://github.com/
 StingraySoftware/stingray
- CARMA: carma-pack, http://ascl.net/1404.009
- CARMA in Julia: https://github.com/farr/CARMA.jl
- Gaussian Processes: george, http://dan.iel.fm/george/current/
- Hierarchical flare models: https://github.com/dhuppenkothen/ magnetron2

Help us build Stingray!*

*https://github.com/StingraySoftware/stingray

Thank you!