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Benchmark models:

¢ DMe-e scattering, DM absorption

Silicon Skipper-CCDs as ionization detectors
¢ DM-e interaction (or absorption)
¢ Energy transfer via electron recoil

¢ lonized h* are captured by potential well

¢ Signalis readout after exposure is finished.

DM range mass: 1-1000 MeV
(~eV on DM absorption)

Electron recoils for sub-GeV DM in Skipper-CCDs
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CCD basics

¢  CCD = pixelated silicon array

¢  ~2g per device of high-resistivity fully-depleted silicon
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Skipper-CCD basics

¢ DM range mass: 1-1000 MeV (~eV on DM absorption)

¢ Very small signals
* Very low energy threshold
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¢  Low energy threshold down to 1.2eV (Si band gap)
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MINOS setup: location and shieldinc

¢ Setup ~107m below surface at shallow underground MINOS site @FNAL to

reduce environmental background radiation.

¢ Inner (1" each) and outer (2” each) lead bricks

reduces environmental gamma radiation

¢ Operated at 135K and high-vacuum regime to

reduce dark current without generating CTlI

DOI: 10.1103/PhysRevLett.125.171802



Data-taking cycle

> Data-taking cycle was divided into 3 phases: Cleaning, Exposure and Readout.

¢

¢

¢

Cleaning: voltages are changed so surface traps energy levels or interface states are filled (“reset”).
This way they do not contribute to DC. CCD is readout in order to erase charges this “reset” leaves.

Exposure: voltages keep fixed. Note bias voltage in output transistor is set to 0V so no amplifier light is

emitted.

Readout: signal is collected.
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Basic model

> Data-taking cycle was divided into 3 phases: Cleaning, Exposure and Readout.
> We will define three type of events based on these three phases:

0 : rate of SEEs produced during Exposure

Mexp
¢ MHgo- rate of SEEs produced during Readout

¢ Mg rate of SEEs produced by the change in the voltages as charge gets transferred (“clocking”)
during both Readout and Cleaning but does not scale with time (exposure-independent events).

H(tpxptro) — M(texp) T H(tro) T HSC

P(tpxp tro) — AEXP tEXP + ARO tRO + HsC



SEE contributions

> We will differentiate three types of SEE events

o Dark current. SEEs that are uniformly generated across the CCD and that scale linearly with time.
They are produced during both Exposure and Readout.

o Amplifier light. SEEs generated from the interaction of amplifier light with the pixels of the CCD. They
are localized near the amplifier and scale linearly with time. They are produced during Readout.

o Spurious charge. SEEs generated due to clocking of pixels. They are produced during Readout but
do not scale with time. They are spread uniformly across the CCD.



All in all

Time dependence

Contribution Spatial
Linear
(e” /pix) Independent |distribution
Exposure Readout

Dark Intrinsic N Uniform
Apc texp | “BE tro -

current| Extrinsic Uniform

Amplifier-light current - AAL tRO - Localized

Spurious charge - - USC Uniform

A
I(tpxp tno) = ADC tExP + (5= + Aar) tro + psc
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— Even though sub-electron readout noise allowed us to take a closer look into SEEs and DC, we'’ve found in
2020 that our DC rate is way higher than the theoretical one at 135K:

1.6 x 10 *e — /pixz/day >>~ 1 x 10 % — /piz/day
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Dark Current = (Surface + Bulk) Dark Current
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— Even though sub-electron readout noise allowed us to take a closer look into SEEs and DC, we'’ve found in

2020 that our DC rate is way higher than the theoretical one at 135K:

1.6 x 10 *e — /piz/day >>~ 1 x 10"%e — /piz/day

— Origin? Essig et al. (2011.13939) proposed the source of this discrepancy may come from the interaction of

high energy events with the CCD as it is was hinted in SENSEI 2020:
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— Because of this, we suggested introducing the concept of extrinsic DC as SEE that appear to be usual DC
(uniform in space, linear in time) but seem to come from an interaction between the environment and the CCD.

— We will refer to SEE that come from thermal agitation as intrinsic DC.

— Hints were found, still unable to make direct measurement or test a model.

— This work does not report a value for both extrinsic and intrinsic DC, without discriminating between them.
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Dark current: Aboc

— Determination of ADC. Fix READOUT time, change EXPOSURE time.

u(texp) = Apc texp + (Uro + psc)

x10 "
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Amplifier light

— Increase linearly with time but spatially localized near the readout stage.

— In SENSEI 2019 this effect was a huge SEE contributor
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FIG. 2. Schematic illustration of a Skipper-CCD readout
stage. H1, H2 and H3 are the last horizontal clocks in the
serial register before the Summing Well (SW).
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Amplifier light study

— How does M1 output transistor bias voltage affect light emission and readout noise?

SEE rate (e~/pix)

FIG. 5.
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Spurious charge

— SEE generated from clocking of pixels.

— Depends mostly on voltage swings and clock shaping. Increases with lower temperatures.

— Low energy background to possible DM signal (reduction and characterization)

— In SENSEI2020,
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Transfer curves: AaL and pJsc

— Determination of A, and pg.. Change READOUT time, set EXPOSURE time to 0.

A
u(tro) = (%C Hr /\AL)tRO + Usc
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All contributions: results

Vpop External Shield ADC AAL USC

91 Yes (1.59 £ 0.16) (0.36 £ 0.18) (1.52 £ 0.07)
10~* e~ /pix/day 10~* e~ /pix/day 107* e~ /pix

— Considering A, negligible, in a 24 hours exposure image (typical science run) we would have the same
amount of SEE coming from DC than from SC. 1072,

— SC can be further reduced by pixel binning and swing shaping.

— This limiting factor in DC may come from both extrinsic and intrinsic i 10—332
contributions. i

1073 ~

 DM—e scattering

— Origin of remaining DC is being investigated at the moment. 10736 Fou=tamdar?
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